CASIO PERSONAL COMPUTER
FP-200

TECHNICHL EQOR

) NMACHINE LANGURAGE AND
| CONINMIUNICRATIONS







PREFACE

Ihe .fundgmental principle employed throughout this book in the
learn:ng of machine language and RS-232C communications is that the
reader is required to create test programs for himself in order to ac-
cumulate practical knowledge step by step.

Part 1 of this book is entitled “A 8085 Machine Language primer”. It
encourages the reader to solve problems through experimentation. Part
2, entitled “RS-232C Communications”, describes the methods of con-
necting the FP-200 with other personal computers via an RS-232C inter-
face. It is important to master the techniques of RS-232C communica-
tions, since the FP-200 can be used as an efficient data entry machine.
Once RS-232C communication techniques have been mastered, it is
possible to collect data with an FP-200 in the field and then process the
data on another personal computer back in the office. The authors
hope this book will help the reader to make the most of his FP-200 and
achieve a deeper understanding of computers in general.

April 1984



CONTENTS
| &=
WikEdhihe Laneuee [PrineEm

. Introduction 70

Why learn a machine language now? (Machine language processing speed) 12

I) Why use machine language? 712

2) Machine language processing speed /2

§. Use of binary, decimal and hexadecimal numbers /7
1) Binary numbers and decimal numbers 77 B
2) Hexadecimal numbers 18 ala
3) BASIC and decimal numbers I8 VR
4) Getting accustomed to hexadecimal numbers 19 i

4. Creating a disassembler 24

I)Memory dump requirements 24

2) Input routine problems 26

3)Pattern 1: Programming using INPUT 27

4)Pattern 2: Programming using INKEY$ 30

5)Comparison between Pattern 1 and Pattern 2 33

6)Program to write machine language in memory using POKE 38

A look at the inside of the FP-200 40

6. Basic principles of computer operation 43
1)Logic circuit functions 43
2)Stored programs and microcomputers 44

7. Functions of registers and counters 47

1) Working register 48

2) Program counter 49

3) Stack pointer 50

Instruction formats 57

14 basic machine language instructions 53

1) REGISTER TO REGISTER TRANSFER instruction 53

2) IMMEDIATE instruction 54

L

“

© oo




3) LOAD instruction 54

4) STORE instruction 5%
5) ADD instruction 56
6) SUBTRACT instruction 56
7) IN_CREMENT instruction 56
g) DECREMENT instruction 57
10; ggsng” ION/.\LW JUMP instruction 57
g | IQNK\_I..‘ZLR(.) JUMP instruction 57
) SUBROUT INE CALL instruc tion 58
12) SUBROUTINE RETURN instruction 44
13) NO OPERATION Instruction 58 l
14) HALT instruction 59
10. Writing Programs in machine language 60
1) Creating machine language programs 60
2) Subroutines 63
3) ROM MAP 64

rar ®. BS-EERG
Communiceions

1. Foreword 68
2. Basic RS-232C information 69
1) RS-232C connection 69
2) RS-232C electrical characteristics 70
3) Mode of synchronization 72
4) Data transmission rate 72
5) Character configuration 72
6) Start bit 73




[

»

. Program transfer between an FP-200 and an FP-1000/1100 98

7) Data length 73

8) Parity bit 74

9) Stop bit 75

10) Connection cables 75

11) Connectors 76

12) Pin layout 77

13) Send data SD (TXD) 78

14) Receive data RD (RXD) 79

15) Request to send RS (RTS) 79

16) Clear to send CS (CTS) 79

17) Data set ready DR (DSR) 80

18) Data carrier detect CD (DCD) 80

19) Data terminal ready ER (DTR) 80

Basic information about communication modes 83

Preparation for FP-200 serial data communication 85

1) RS-232C terminal on the FP-200 &85

2) Connection cables 86

3) Communication protocol 86

4) Data transmission/reception timing 86

5) Preparation for serial data communication (hardware) 87

FP-200 serial data communication software 88

1) Transmitting a program — SAVE “COM 0:”, A 89

2) Receiving a program — LOAD “COM 0:” 90

3) Data transmission — OPEN “COM 0:” FOR OUTPUT AS #n !

4) Data reception — OPEN “COM 0:” FOR INPUT AS #n 97

5) Summary of serial data communications (software) 92 %

Communication between an FP-1000/1100 and an FP-200 93
Connecting the FP-200 to an FP-1000/1100 94

Transferring programs between an FP-200 and an FP-1000/11¢
FP-200 key data communication 707 "
1) FP-200 key data transmission program 702
2) FP-200 key data reception program 703




\

9.

3) FP-200 key data transmission/reception program 704
4) FP-1000/1100 key data transmission program 7106

"V

5) FP-1000/1100 key data reception program 707

6) FP-1000/1100 key data transmission/reception program 708
RS — 232C signal interface 709

1) Signal interface 1 : Special connector assembly 709
2) Signal interface 2 : Connector with alligator clips 770

3) Signal interface 3 : Jumpered universal signal interface 170



— —W‘\P%
M =90 =

-~ f. N . —
BEhihe Langueeg




I

Introduction

10

For what purpose did you purchase your FP-200? To p;:rform office
work more efficiently? To keep up with the computer age?

Whatever the reason, you ought to be well aware of the fact that
without software, a computer is of little use. Unfortunately, not‘all
computers are now used to their full capacity. Many ofﬁces., having
installed expensive small business computers, depend on outside soft-
ware firms for their applications because of the lack of staff capable of
understanding software.

At the time when you purchased your FP-200, you must have had
various applications in mind. At the same time, you might have thought
that it would be easy to master the BASIC language, as well as the __
simple language called CETL available with the FP-200. In reality,
however, you may already have encountered problems such as difficul- 3
ties involved in using BASIC, insufficient memory capacity, slow
processing speed, limited capabilities of CETL, and so on. g
One approach tosolving these problems is to master the FP-200 machine
language.
As is well known, BASIC has become the most widely used computer
language. Recently, however, users who Wish to master machine language
in addition to BASIC are increasing in number. Perhaps you are one of
those users. Why is BASIC, which is a high-level language, insufficient?
The answer lies in its processing speed, as described in detail in later
sections. !

Machine language is often considered difficult to understand, but |
really not so difficult if it is learned step by step.
Part 1 is intended to help the reader to learn the FP-200

language and the fundamentals of rogramming in thi
the FP-200, Programming in this language




The FP-200 is a so-called hand-held com
and easy to carry, the FP-200 has m
conventional desk akuhtws.Gm

Canbeusedmawsdemwtydamﬂﬁm

Master the FP-200 machine m S
most of your FP-200. and you will be able to make the

¥
5 oo £ 4
1 P e S ol AT P 14 s
¥ E Sy
| " 3 e -'-'L ;

s o g

¥
" . E
. = s 2

) DT BN DE : ;

SIS L &mewm S
RS R M

J-fﬁ w wm s.ww%;

S, Y




= e—

Why learnamachine language now?
(Machine language processing speed)

12

e

A Why use machine langvage?

Before discussing this question, let us review some of the advantages

and disadvantages of machine language from various aspects. :

(1) Machine language cannot be used without thorough understanding
of both the hardware and software of computers.

(2) Machine languages are difficult to learn and difficult to use.

(3) Machine languages have evolved into assemblers, compilers, inter-
preters, and simplified languages. Why do we have to use a machine
language now?

(4) Machine languages are apt to cause programming errors which are
difficult to debug.

(5) Once a program written in 2 machine language overruns, it becomes
unmanageable.

(6) Machine language cannot be used interchangeably among different
computer models.

(7) Machine languages offer higher processing speeds and require smaller
memory capacity. F:

e
A
e

rrrr

Judging from the apparent merits and demerits enumerated above, it
seems that machine language has more demerits than merits. Then why
use machine language? As mentioned earlier, the answer to this qt
lies in its processing speed.
Is the processing speed of a machine language igh?

fast? As an example, let us compare the processi?ge:dlg:l; t:::g’"
machine language with that of BASIC by an experiment.

The method of experimentation will be to compare the time

to draw on the entire liquid crystal di
s S RASH rys isplay of the FP-200 for m

The sample programs for the e i below. S
FP-200 has multiple programs, :;-ge 3:1;?(; e shom:s loade Il.

0 and the machine language pr ; 3 %
“ - Program is loaded so
comparison can be made any number of times. o FROS R



BASIC program (PROG 0), example 1

Machine language program (PROG 1), example 1
e e e

FOKE 40704,205
FOKE 4070S,142

1@ INIT(@,@),1,1 FOKE 4@7@6,2
2@ CLS FOKE 4@07@7,5
@ X=0:Y=0

FOKE 4@7@8,194
FOKE 4@070%9,0
FOKE 4@710,159
FOKE 4@711,4
FOKE 4@712,19

40 FOR J=@ TO &2

S8 FOR I=0 TO 150
6@  DRAW(X,Y)

@ X=X+1

8@ NEXT I FOKE 4@713,13
90 X=0 FOKE 4@714,194
100 Y=Y+1 POKE 40715,0

11@ NEXT J FPOKE 40716,159
12@ END FOKE 40717,201

1@ CLEAR, 40703
20 CALL 4Q704,255,0,0,4927
30 END

i hat the BASIC program
ecute the programs. You will find t :
E{I)(:s, :;proximately eight minutes to perform t:e task, while the
i e pr takes less thar! one second.
E:Sixhrg;z Ia:&ag)\%lmes just eight minutes, or 480 seconds, and the
chineglanguage takes 0.5 second, the processing speed of the machine
lmﬁ uage is approximately 1,000 times faste.r thfm that t?f BASIC. Even
i? tlg1e riachine language takes one second, it is still 500 times faster.
the comparison more accurately. ‘
tzf:.?:saT at';:: fc?llowigg sample programs. 'They use the Tlgnif:m;ntzg
(available in FP-200 BASIC) at the beginning ar]d at the end ( i cg
END) so that the starting time and the ending time can be checked.

13



- PROG 0), sample 2
st i i e MACHINE, L EX-1
BASIC EX BOKE 40704, 205

PROG ©
to INIT(O,@),1,1
1% Tie=TIMES

10 CLEAR, 40703
1% TIQITINE'

110 NEXT J
11% T29=TIMES e T2$=TIMES
{16 PRINT T1%,T2% e PRINT T1%,T2%

s This time, the times required for exe
tion are displayed: 7 minutes and 46 seconds, or 466 seconds, for
BASIC, and 1 second for machine language. We find that the machin
language is approximately 500 times faster than BASIC. L
Now you see the reason why machine language is attracting incri
attention, despite the fact that it has a number of disadvantages in
respects, '-
Incidentally, an experiment is only half done unless the results
experiment are verified. In order to verify the above-mentioned
some of the questions which may occur to you, and the
answers, are given below,
Q1: I'm very doubtful as to the processing time of one secc
machine language program, Isn’t there any method of me:
processing time more accurately?
A1: The TIME function of the FP-200 counts the time in
of'one second. Hence, in order to measure the time m

it is necessary to use either of the following methods:
(1) Based on the result of analysis of the TIME '—

mechanism, create software which permits setting
time slices. Note, however, that this method require
:car:lc;:f;;gge of the BASIC internal mechanism
2) Repe : .
s e ey s
elatively easy, UM

to the machine lan # sk
more detail, Buage is required. This

Q2: | think that line number 10 INIT (0, 0), 1,
PONF s R

Now, execute these program

grams is unnecessary,

14



AZ:

Q5:

Ab5:

Q6:

AG:

Q7:

A7:

Qs8:

A8:

Exactly. It is unnecessary in this case. The INIT statement is con-
veniently used when determining a scale or setting coordinates in
graphic applications.

~|s it possible to replace the (X, Y) in the DRAW statement with 1,

| in the FOR statement? It will reduce the length of the entire
program, and hence the execution time will beocme shorter.

. 1t is possible. It certainly will make the nrogram easier

: WESE shwent . i DI Ogram casier to read.
Try the same experimentation using the program in which 1, | is
substituted for X, Y.

: In the sample programs, the maximum values of | and | are 62 and

150, respectively. Aren’t they 63 and 159, respectively?

: You are right. The ranges of | and | are 0 to 63 and 0 to 159,

respectively, as determined by the display configuration.

Isn’t it possible to improve the processing speed of the BASIC pro-
gram by using a compound statement?

Generally speaking, the use of a compound statement reduces the
memory requirement and improves the processing speed, although
it makes the program look complicated. It will be interesting to
compare the processing speed between a program with a compound
statement and a program without compound statement. In the
above experiment, it may be possible to substitute a single com-
pound statement for the entire BASIC program.

In the machine language program, it is tiresome to repeat direct
input of a POKE command as many as 14 times. Isn’t there any
better method?

Certainly this is a problem with the FP-200 having no monitor for
its machine language. One way to make the work easier is to use a
DATA statement in the program. This and other possible ways will
be discussed in more detail in later sections.

In our experimentation, the machine language program is called by
the CALL statement in BASIC. Taking this into consideration, the
actual processing speed of the machine language should be faster
than one second.

Exactly. This will also be discussed later.

Can the processing speed of the BASIC program be increased b)r
rewriting the DRAW statement as (X1, Y) — (X2, Y), where Y is
in the range O to 63?7 £ SR :
Intrinsically, the DRAW statement is more efficient in drawing a
line than in plotting dots. Verify this using a modified program.

With the above-mentioned questions and answers in mind, four sample
programs are provided for the reader’s convenience.

15



Modified sample programs (PROG 2 to PROG §)

BASIC EX-1A
PROG 2

10 Ti$=TIMES

20 CLS

30 FOR J=0 TO 63
40 FOR I=0 TO 159
5@ DRAW(I,J)

60 NEXT I,J

70 T2$=TIMES$

80 PRINT T1$,T2%
9@ END

BASIC EX-1B |
PROG 3 Zilic
10 T1%mTIME®: CL!
@ TO 631FOR

91 DRAW (1, J) 1 NEX
T28wTIMESt PRINT

291 END

BASIC EX-1C
PROG 4

10 Ti1$=TIMES

20 FOR Y=0 TO 63

30 X1=0:X2=15%9

40 DRAW(X1,Y)—-(X2,Y)
S0 NEXT Y

£0 T2$=TIMES

70 PRINT T1$,T2%

80 END

BASIC EX-1D
PROG & .
10 T1#=TIMES:FOR
631 X1m03 X2m1
1,¥)=(X2,Y) s
$=TIME$: PRINT




s

Use of binary, decimal and

hexadecimal numbers

Look at the first machine language program used in our previous experi-
mentation, On the first line, you see the numbers ‘40704, 205.' These
express a machine word in decimal notation. In actual practice, hexa-
decimal notation is often used to represent a machine language. Inside
the computer, however, the binary numbers, 0 and 1, are used.

Since the concepts of binary numbers, decimal numbers and hexadeci-
mal numbers will prove extremely important in later sections, let us
explain them in detail.

-Bimynvmbmmddcdmdnumbers

The computer uses two types of electrical signals, “1" (a pulse of 2.2 to
SV) and “0" (a pulse of 0 to 0.8V),to perform various types of process-
ing. Thus, binary numbers are used inside the computer.

As you already know, the unit of information represented by either 1
or Q is called a bit. The CPU employed for the FP-200 is an 8085, and
the FP-200 is called an 8-bit machine.

By the way, can you immediately tell whether a particular 8-bit binary
number, say, 10001000, is a large number or a small number, or calcu-
late the decimal equivalent of that number?

The decimal equivalent of the binary number 10001000 is 136. As is
evident, a binary number has more digits than its decimal equivalent,
and is somewhat inconvenient for reading by humans. Thus, binary
notation has the drawback of being inconvenient to use and apt to
cause errors.

Why not use decimal numbers instead of binary numbers? As a matter
of fact, computers employing decimal notation were used at one time.
After all, we humans perform arithmetic operations using decimal num-
bers with few exceptions.

This is because we are accustomed to the use of decimal numbers,
hence the possibility of making mistakes is minimal. Surprisingly, how-
ever, decimal numbers are a nuisance to the computer.Namely, in order
for the computer to represent decimal numbers, 4 bits (2* = 16 differ-
ent combinations) are required because 3 bits (2° = 8 different combina-
tions) are insufficient to represent 10 different digits. If 4 bits are used
to represent decimal digits, however, six combinations become redun-

17



dant (because onl

i 9). Six
the decimal digits 0 through sod during computer of

Bl Hexodecimal numbers
' the case of hexadecimal notation, all the

wire (2% = 16) are used. 10 combina‘tbns‘ are used to nt
: ‘-J-.mt: the remaining 6 combinations e o r

= .lr\- - )t.and rl .‘-;-_.«
etters A, B, C, This system of notation |

Table 1-1. Binary, decimal and 8-bit machine to divide e
hexadeckmal Rotatee two 4-bit blocks for maxin

[ Wy - O —— m ency. Actually, hexadeci

' are used to represent

machine language. -

: 3 For example, the bin

" : 10001000 can be reg

: 5 he xadecimal notation as

. & case, in order to prevent |

mal number 88 from being ¢
with the decimal number

8 g

’ ’ hexadecimal number is
‘ A or &H88. This is u

g . there is no fear of s

. ks Table 1-1 shows b

- . hexadecimal equi

. . vour reference. -

Decimal numbers, although

BASIC. ot ted for e

SASIC s an acronym for Beginner's All-purp
LIt isamhwm developed by

Kurtz at Dartmouth College around 1965 &




BASIC was developed with top priority given to ease of programming.
This approach proved successful. With the development of microcom-
puters, BASIC became popular at a rapid pace.

Although BASIC is primarily based on decimal numbers, most versions
permit handling hexadecimal numbers by specific methods of represen-
tation (e.g., K HABCD, HAB13, 1234H).

Getting accustomed to hexadecimal numbers

If you wish to learn machine language, you will need to get accustomed
to hexadecimal numbers. As a matter of fact, calculations using hexa-
decimal numbers will be needed as we discuss the monitor and disassem-
bler written in BASIC in the next chapter. Note, however, that the
FP-200 has no monitor to handle machine language. Therefore, machine
language programs can only be entered by means of the BASIC langu-
age. The point is, therefore, to learn how to handle hexadecimal num-
bers in BASIC.

EX:2: Create a program to add le-digit hexadecimal A
and B, which are keyed in

Loamo

We show four sample programs, each of which will be discussed below.
Compare these programs with yours.

Program 2-1 Program 2-2

E X @ =g
104 s 1 NP LT f B
20 A=A+B
30 PRINT A

Yo EX il

0 INPUT &HA,&HB
20 &HA=&HA+&HB
30 P RINT & HA

40 END 40 END
Input A and B in the form of &Hl:_;:_, &HF.
Program 2-3 Program 2-4
EX—2-3 ' EX—-2-4
10 INPUT A8, B3 0 INPUT A,B
20 A=VAL (AS) +VAL (B e ARASSE
$) 30 PRINT HEXS (A)
A
30 PRINT STRS$ (A) AR L
40 END




I

sion first, all the four programs shiowit
h they are apparently correct, am
ted. Let us now check the pr

To state the conclu
in an error. Althoug
occur when they are execu

One- . ‘ 1 be m. .n'e
3 ble ‘&HA’ cannot
Feogran 2 BRI oL will occur when this program

mitted. An SN error ¥ i
E’gsgt,;);ozl: Although there is no program error, ﬂ,e '&H’
indicate that input data is hexadec:ma_l will caf:r a m error.
error will also occur when the hexadecimal number A or B

i rogram will work when only decimal

Program 2-3: This p _work 4 na
invc?lved. However, when letters indicating hexadecimal ¢

i ition i imal is not perfc
and B, are input, the addition In hexadecimal is _
when hexadecimal digits are input, the .addatlon is not
correctly if a carry occurs. All this is ascribable to line 20
forms the addition. 7
Program?2-4: This program does not produce any answer. This
the HEX$ function is not available in Cs s—BASIC for the F

If your program did not work, try again paying attention
ments given above. The following hint will help you create
program. _
As mentioned above, program 2-3 will work if only deci
involved and if a carry does not occur. This suggests that
will be able to be used if it has a proper method of keying
presenting hexadecimal digits.

Thus, note the following:

1) HEX$ - DEC Hexadecimal letter = Decimal
2) Perform the addition in decimal. T
3) DEC - HEX$ Decimal digits > Hexadecimal letter
Now, we will show you three valid sample programs
discussed below. ' '

Program 2-5

5 CEX-2A-5

19 INPUT A$;B$

20 C$=A%$:D=0:K=1:_=1
30 IF C$="A"THEN C=1@:GOTO 1
40 1IF C$="B"THEN C=11:G0TO 1@
50 IF C$="C"THEN C=12:60TO 1
-69 IF C$=HDIITHEN C=13:GGTB :
;: ;E C$="E"THEN C=14:G0T0 1

z C$="F"THEN C=15:60T0
30 C=UAL(C$) " CotoE
108 D=D+C




120 Cs
130 IF
148 IF
150 IF
168 IF
178 IF
180 IF
130 IF
200 Cs$
210 ON
220 PR
230 PR
240 EN

118 ON K GOTO 120, 130

=B$:D=C:K=2:60T0 30

D=18 THEN C$="A":GOTO 219
D=11 THEN C$="B":G60TO 2109
D=12 THEN C$="C":60T0 210
D=13 THEN C$="D":60TO 219
D=14 THEN C$="E":GOTO 219
D=15 THEN C$="F":60T0 210
D>15 THEN D=D-16:L=2:60T0O 139
=STR$(D)

L GOTO 222,239

INT C$:G60T0O240

INT "1vipe

D

Program 2-6

2
10
20
30

r=lipbs
40
50
60
/0
80
S17]
100
119
120
138
148
150
160
170
A%
180

‘EX-2A-6
CLEAR
DIM E$<¢5)
E$(8)=”ﬂ“:E$(1)=”B“:E$(2)=“C“:E$(3
E$(4)="E":E$(5)="F":K=0
FOR I=8 TO 1
INPUT As$
FOR J=8 TO 5
IF A$=E$C(J>THEN C=J+18:G0OTO 190
NEXT 7J
C=UAL (A%$)
D=D+C
NEXT 1
IF D>15 THEN D=D-16:K=1

FOR I=8 TO 5
IF D=1+180 THEN A$=E$(I1)>:GOTO 170

NEXT I

A$=STR$(D>
IF K=1 THEN PRINT"1"+A$ ELSE PRINT

END




22

Program 2-7
5 tEX-2A-7
1@ CLEAR
2@ OPTION BASE 1
39 DIM E$(6?
4p FOR I=1 TO &
59 READ E$CID
60 NEXT I
70 DATA AyBsCsDsEsF

89 FOR I=1 TO 2 4
gp INPUT A$:IF A$>"/"THEN IF ASCH:STH =

EN 130 ELSE IF A$>"@"THEN IF ASCUG"THEN =

190 ELSE 90
1980 FOR J=1 TO 6
110 IF A$=E$CJ>THEN C=J+39:GOTO 140
120 NEXT J
130 C=UAL(A%$>
140 D=D+C
158 NEXT 1
160 IF D>15 THEN D=D-16:K=1 _
170 FOR I=1 TO 6 i

244
(i
Ao
-
_
)

1890 IF D=I+9 THEN A$=E$(1)>:GOTO 218
190 NEXT 1 =
200 A$=STR$(D>
210 IF K=1 THEN PRINT"1"+A$ ELSE P
A%

220 END

First, look at program 2-5. Taking in ideration tl
program 2-3 failed to convert hexadgcim?; I:?t‘;ilsdfem; '
gram 2-5 uses | F statements for the conversion. Line num
_GOTO 120, 130 is a unique feature of this pr' ram,,. No
is passed to the conversion routine twice for A$og and

In program 2-6, a FOR statement instead of an IF
the same purpose. Note that line 30 is the ass: nr
:iata into the array. o
n program 2-7, the READ sta . DAT
Note that line number 20 oft:l'l:i?:trshfathe .
You may of course use OPTION BASEgO Eu?f

By the way, what will ha i
: s SRt
(0'— 9) and the letters A ¢ alrecll::\rfzfjt?g v



incorrect result due to incorrect data input by a human operator.
However, since human beings make mistakes from time to time, it is
desirable to guard against possible mistakes. In this respect, program
2-T is superior to the other two programs.

There is one more thing to remember. Although the FP-200 permits
storing up to 10 different programs at a time, the variables stored in
memory are not erased even when the NEW statement is executed.
Therefore, when a DIM statement is used to define an array variable, a
double definition error may occur. In order to prevent such trouble, it
s advisable to insert a CLEAR statement in the program.




Creating a disassembler

i let us learn how to create a disassembler for using
:1?1:;";; hlif,tgeur;gc. As the first step, let us create a BASIC program {
perform a memory dump.

W .
‘W Memory dump requirements
iy e
Since no monitor is available with the Css—BASIC for the F
only the PEEK function can be used to perform a memory dump.
First, let us list various requirements for performing a memory du
(1) Since the PEEK function is available in BASIC, addresses are iy
in decimal. In the case of machine language, however, hexad
notation is used for the memory map, etc. In this light, it is d
ble that hexadecimal notation be used for address input. This m:
that conversion from hexadecimal to decimal is required.
(2) A maximum of 64K bytes can be addressed by 16-bit addre
Thus, 4-digit hexadecimal numbers are handled.
(3) It is necessary to guard against input errors. 5
(4) When the PEEK function is used, data is output in decimal
decimal-to-hexadecimal conversion is required. In this
decimal number is converted to a 2-digit hexadecimal numk
it consists of one byte. '
(5) It is necessary to implement the HEX$ function, which is
able with Css —BASIC.
(6) It is desirable to create a mode in which the contents o
can be automatically checked while incrementing the add
(7) The availability of a printer is extremely desirable, It i
for the printer to offer at least three styles.
(8) In order to display addresses, it is necessary to conve
bers from decimal to hexadecimal. i
(9) It is advisable to arrange 8 or 16 data items in each hc

during. a memory dump in order to facilitate chec
later time.




' Fig.1-1 C.reating tﬁa.dil.nlsir-r-!.bl.é.r.

| Fig. 1-2 Task flow

[ O Jﬂlﬂﬂmm
- Primtwyle ¢

ADGRESS  MEMORY DUMP
=30 ponnoonn
B0 poooooon
- Lonoooan




i » i BAS'C I

i '« shown in Fig. 1-2. In preparing a :

o fl'abdk ':lg;:ie!i :nd more efficient to begin with easy-to-write
i difficult segments, combine theminto a single

‘0C wore
E;gtfﬁgnl?efr:t:c the program, than to use the conventional prog
technique that calls for in-depth system analysis, precise fle

: to perform a complex job perfe,
ste. After all, no one will be aple i 1
(H:: first attempt. However, it is advisable to construct a flowchart ;

inte jate stage. "
;:utﬂzeit::iatlial sc%ting, it is only necessary to write CLEAR, DIM,
required for the moment. Details can be added at a later time, At
it is not necessary to worry about line numbers, etc. For example,
may assign line numbers in increments of 10 and insert additional

ments where appropriate at a later time. The RENUM statement
used later to renumber the program lines.

M

2 Input routine problems

NN

10 INPUT"START ADDR

This program will run ‘correctly’ regardless of the number of
input data. Isn't there any method to ensure that only 4-dig
accepted? Here are two methods.

One is to use the LEN function in an |F statement in order
length of input data. Thus,

By the way, how about combining this statement with line
of program 2-7? In this case, a program to fetch one ct
another from SAS$ is required, since the |F statement p
character code comparisons. i
The other method is to use the INKEY$ function in an |
order to obtain a one-character code and at the same tin
associated hexadecimal character. This process is repeat

Comparison among several diffe )gram
C rent |
will reveal programming defects which would



program is created. This will help you :

Now, let us create programs US;:\; thet?\::)e;it:f:r:\?':ned it
above: one is using INPUT (pattern 1) and the oth 'eth?ds ere o
b eris using INKEYS
At various stages of programmin

pare ease of operation, executiong’timi,s}::n:g:; tri;e ikl =
order to create better programs. i e
You are advised to write a program for yourself by referring to th
grams presen'ted below. If your program meets appro rgiat(; Fitaris
(various rcqu[reme.nts, checkpoints, etc.) and proves va!idpil willcr;?'-l:;
you great satisfaction. If your program proves better thar; our t -a "
grams (see below), you will have a third effective program i

fi Pattern 1: Programming using INPUT

First, we shall study various problems involved in our programming
work using the following sample program.

We add line number 90 of program 2-7 at the end of this program as
follows:

w let us check the prob[erhs- mvo!ved in the program Shownam

(1) It is necessary to use the CLEAR statement a ﬂmmdﬂn
program since the FP-200 variables are common among all pro-

( grams loaded in d’mredeﬂS] and & A@'N(’Si:iﬁ Gl et

2) Itis necessary to include E$(5) and AN(3) inDIM.

(3) In program 2-7, characmrdatamustbewimﬁ? m“w}‘
This can be done in several different ways. Thm o e,

are shown below.




Of these, the last one, using a compound statement, seems
since it consists of a single line, requiring the smallest memo
and offering the highest execution speed. < et
(4) The FOR statement on line number 40 has no NE;
associated with it to form a loop. Hence, we §
number 105 NEXT I.
(5) Here is an elementary question. s it possible to w
B$, C$, D$ in order to input one character afte
In practice, this method is not recommendab
pressing the [RETURN/ key each time a character
two-character data is input, the program accep
unwanted question marks (?) to be displayed.
When this program is executed, the CRT display

Then, how about using the following program? T

When this program is executed, an SN e
(6) As for line number 50 MID$ (SAS$, I
In order to prevent this, I + 1 shoul
;:r;be'd in the Reference Manual, the v

28



Having studied the abaye.mgfr--'--- Gt

shown below. Execute this p
inserted between numbers. f

Program 3-1

[ o cLEAR

20 DIM E$(5)sﬁ$(3);ﬂNC33:D(3)sD$(3)

30 ES$(B)="A":ES(1)="BU: Egcry=npu, PE$(3
)="D":E$C4)="E"IE$(B)=FH

4@ INPUT"START ADDRESS=";sas

50 1F LENCSA$)=4 THEN N 6@ ELSE 4p

680 FOR 1=0 TO 3

70 ASCID=MID$CSA$s T+1,1)

80 IF ASCI)>"/"THEN IF A$CI)C": "THEN
120 ELSE IF ASCID>"Q"THEN IF A$CId<"G" T
HEN 9@ ELSE 4@

92 FOR J=0 TO 5

130
110 NEXT J o
1280 ANCI)= UﬁL(H$KI}3‘?ujﬂ
130 NEXT I D e
148 FOR 1=0 TO 3
150 -
160
170
180
190
200
210
220
230
240
250 P
260 Eb

100 IF H$(I)=E$(J)THEH-ﬁﬁt;}?1*1géaﬁTqu 1%




30

e

#&: Pattern 2: Programming vsing INKEY$

LR ]

3 ¢

The sample program used for discussion is shown below.

i@ CLEAR

20 DIN E$(5):H$(3),HN(3)

30 E$C@)="A".ES$C1)="B":E$(2)="C"IES(3
)="D":E$C4)="E".ES(BI="F"

40 FOR I=8 TO 3

50 HECI)=INKY$: [F H$C(I)>="" THEN 5@

68 IF H$C(I)>"~" THEN IF H$CIX<":" THE
N 108 ELSE IF H$C(I)>>"3@" THEN IF H$
CIX<"G" THEN 78 ELSE 58

780 FOR J=8 TO 5

80 1IF H$CI)=E$(J) THEN HNCI)>=J+18:G0T
0118

98 NEXT J

10@ HNCI>=UALCHS$CI DD
118 NEXT 1
120 END

The problems involved in this sample program are as follows:

(1) This program does not display anything. When used properly, the
INKEY$ function is very useful (it does not cause a question mark
(?) to be displayed).
However, we should insert a PRINT statement so that the desired
data can be displayed. Inserting a PRINT statement in this program
is relatively easy, since the data to be displayed is contained in the

array.

(2) The PRINT statement shown above is not recommended, since no
data is displayed until all data is input. This means that errors which
may occur during data input cannot be detected. It is therefore
advisable to separate the PRINT statement into two statements,
one consisting of the prompt portion of the original PRINT state-
ment and the other within the FOR—NEXT loop. Thus, the program
appears as follows:




T Ty

R,

[he routine using an IF statement (afyer -
line number 50) to cause the lYitim wt:‘:l:’fg‘rEYi function on
necessary. Since line number 60 discards unnece
50 causes the syistem Lo wait for key inpyt, ssary codes, £ S
(1) Now, let us review how to convert a hey | _ _
},,..1| number. Converting a °"°'dl"mc:$:,'£umb"m““"
A-F) to a decimal number is easy. Then, how 4 number (0-9,

hexadecimal number of two or more digits to a deci:i-ar:umgt g

(3)

A decimal number, say, 2534, can be expressed as follou
1 534 :f:*ltl(}(}--l-5$100+3m1-g+4

11 2534 is a hexadecimal number, it can be expressed as fb!l‘é%*
258 4 Z*Iﬁ/3}5*16A2+8*t:%h1+%"i-ﬂ"‘ﬁ

(5) Now, a memory dump can be done by D
However, since D is always a decimal
mal conversion is required. -
This conversion is performed b-r'
available with the FP-200. So, let
forms the same function as HEX, |
process performed by line number
value of D will not exceed three di
number will not exceed two digits.

We now have the program
execution are shown at the
contents of address 0 are 3
inserted between the digits
ters seem all right.



Program 3-2

START ADDRESS=0003
3E

START ADDRESS=0004
CA

START ADDRESS=0000
A

1@ CLEAR
20 DIM E$(5)H$(3)sHN(3)>:D(32,D%(3)

30 E$(@)="A":E$(1)="B":E$(2)="C":ES(3
.):“Dll;E$<4>:I|EII:E"$(5>:IIFI|
4@ PRINT"START ADDRESS=":

50 FOR I=8 TO 3
60 H$C(I)=INKEY$: IF H$CI>=""THEN 60

78 PRINT H$CI);
80 IF H$CI)>"/"THEN IF H$(I><":"THEN

120ELSE IF H$CIX>"@"THEN IF H$CIX<"G"THE
N S@ ELSE 60
89 FOR J=B TO 5

100 IF H$CID=E$CI>THEN HN(I>=J+10:G0OTO

130

110 NEXT J

128 HNCID>=UAL(H$CI2)

138 NEXT 1

140 AD=HN(@)X1673+HNC(1)X1672+HN(2)X16+
HNC3)

150 D=PEEKCAD>

168 D(1)>=INT(Ds16>:D(B>=D MOD 16

170 FOR I=0 TO 1

188 IF DCIX<1@ THEN 232

188 FOR J=8 TO 5

200 IF DCI>=18+] THEN D$CI>=E$(J)

218 NEXT J

220 GOTO 240

230 D$C(I1>=STR$(D(I))>

240 NEXT 1




25@ PRINT
260 PRINT DEC1)+Dscpy
278 END

oo J o f

® Comparison between Pattern I and Pattern 2
At this moment, both programs patte

o B L e S AP 2
let us modify those programs so that they can continusys! ance. So,
from a given memory area, y read data

This modification will prove usefyl since i o :
for memory dump. » since the function it offers is used

Continuously reading data from a given memory area c _
varying the value of AD in AD = AD + 1,D= PE_"EI( (AD;‘?F?} ‘:ﬁ;‘:ﬁi

may be used, depending on the amount of data to be read,
Programs 3-3 and 3-4 are modified versions of programs 3-1 (pattern 1)
and 3-2 (pattern 2), respectively., ;

Program 3-3. Pattern 1 program

10 CLEAR s S I |

28 DIN A$(3)5AC3):D$(3);D(3),E$C5) s H$

30 E$(@)="A":E$C1)="B":E$(2)="C":E$(3 B o
)="D":E$(4 )z"'g'.‘.; (=3 el 5 O] -‘._;_'ﬂ-.‘:i e o g h

a,

49 T1$=TIMES
50 INPUT"START |
60 HA$=SA$:N=3:
70 IF LENCS
5 Sy

118 356

EN
189 s




120 ON M GOTO 190,138
130 ED=HD:P=0

149 D=PEEK(AD)

15 N=3:G60SUB 358

168 PRINT o
178 PRINT D$(2)+D$(1)+D$(2)+

188 N=1:G60SUB 350
199 PRINT D$(@)+D$C1)+" "
200 P=P+1:DD(K)=D:K=K+1
218 IF AD=ED THEN T2$=TIMES: PRr
T24:END ELSE AD=AD+1
220 1F K>7 THEN P=@:K=8:GOTO 14
D=PEEK(ADY:GOTO 180 Farsss
238 ’HEX-DEC CONU.SUBRUTIN
249 FOR 1=0 TO N ikl
258 H$CI1)>=MID$CHA$sI+1,1>  °
268 IF H$CI)»>"/"THEN IF H$CI :
N 309 ELSE IF H$CI)>"@"THEN IFHB_H
HEN 278 ELSE M=1:RETURN
278 FOR J=8 TO 5
288 IF H$C(I1)=E$(J)> THEN H(I
T0 310 :
298 NEXT J
388 HC(I)=UAL(H$C(I)) s
310 HD=HD+HC(I>¥16~¢3-1>
320 NEXT 1 s 3
338 RETURN o rE
342 ’DEC-HEX CONU. SUBRUTBM Ltf'
358 IF N=1 THEN 378 RN
368 D(B)=INT(AD/4263):DC1
16:D(2)=(AD/16>MOD16: D(3)=
380 B
378 D(BY=INT(D/16):D
382 FOR 1=80 TO N
3% 1F ou)ma THEN qw;- e

920 WENTL - e
439 RETURN




nm,wm3Jalhﬂll3'n... 3

42 ESCLI="A"I1ES(2)="g"

5@ PRINT“START
6@ Ti$=TIMES
78 FOR I=1 TO ¢
8@ HS$=INKEYS$: IF Hg="»
SUB 260
90
100
110
120
130
140
NC(4)
150
168
170
1808
190
2$:END
200 P=P+1
218 PRINT D$C1)+D
220 AD=AD+1 |
2302 IF N=8 THEN

ON M GOTO 80,100
ASCID)=H$: ANCI ) =H
PRINT AS$CI);
NEXT 1

PRINT:P=0

PRINT AD
PRINT ASC1)+ASC2)+

N=1 i@
D=PEEK(AD) :K=2:6
IF P=4@ THEN T

%

SE IF Hsrfa

. ﬂ—fug_.____________j

[ 1@ CLEAR

20 OPTION BASE 1

3@ DIM ASCA), ANCH) , DS ¢
DA DRSSy DU

421E$¢6),008¢2)

y="D": E$(5)‘"E" ’ES(G)'“F’ ;

AD=ANC1)X4096 +ANC2) X3!

‘f‘?§3i‘t“:es(4

THEN 80 ELsE 6o




r=1:RETURN
288 H=UAL (H$): N=2:RETURN

J=1 T0 6 :

ggg HIJ:E He=E$C(J) THEN H-S*Jimﬂ m

310 NEXT J 3 u

320 M=2: RETURNONUERT Yoy

'DEC-HEX C

gig DC1)=INT(D/40867} D(2>~{D/256)ﬂ@ﬁg
6:D¢3)=(D/16M0D 16:D(4r=D HOD 15:&@%
68359 DC1)=INT(D/167:D(2y=D MOD is g

362 FOR 1I=1 TO K

370 1F D(1)»9 THEN 390

380 DS(I)*RIGHT‘(STR&(DCI)):U:G@T@
29

398 FOR J=1 TO 6

49080 IF D(I1)=9+] THEN Dscl>-E$£Ja §

418 NEXT J y

420 NEXT 1

430 RETURN

Characteristic features of the two programs are discussed by

(1) Features of pattern 1 program using INPUT
This program has useful subroutines, For example,
pression on line number 310 permits converting
addresses and hexadecimal data to decimal numbers r
the number of hexadecimal digits. Merely by calli
once, it is possible to obtain the appropriate decin

Another example :sthecharac’wr convian i
number 400. This subroutine employs the table
for character conversion.

(2) Features of pattern 2 program using INKE T
Simplicity is the major feature of th
number 140 performs simple calculati



rules given .in the Css —BASIC Refe, v
will o et nﬁ’iﬁi},ﬁ:ﬁg}: this, i
fo pe ulation vl e heed
and 256 for 16 2. s by substituting 4096 for 1. 3

another example is line number 340, |¢ also

1ations for decimal to hexadecimal convemionp-’_rfﬁrm, simple calcu.

It seems, however, that th : _
ber 340, ere is room for improvement in line num-
Now, let us compare programs 3-3 and 3-4

For purposes of comparison, assume the st;ﬂ; add Y

First, let us dump 40 items. Since P=40 in pa mdmgutgf 0,2& dd
ress in pattern 1 should be 0028, £ 10 Rt TR g

s Result 1 e AR T
st time 2nd time "SSE
Pattern 1 26 seconds 25 seconds i '
Pattern 2 21 seconds 21 secon

45 shown, the execution time of pattern 2
| What happens when the number of items to
| ¢t us change the value of P on line number

sram to 128 before executing the program
.ddress in the pattern 1 program should be
® Result 2

1st time 2nd ti
Pattern 1 59 seconds )
Pattern 2 62 seconds

You will find that this time the e
than that of pattern 2, although the d
cant the second time. o
et us further increase the numbef‘ef it
Assume the end address in the pat
of P in the pattern 2 program is 51
® Result 3 2

1st time
Pattern 1 3 min 24 sec
Pattern 2 3min5

From the abov&menﬂoﬂﬁd .
for character conversio [
faster execution speed. ?"'



38

- of dati are to be dumped, 43
‘;'rlrrl:ur::'m:_:ry requirements far.bmh pm;m?o--m.-m»
with the SYSTEM statement, The pattern prw
bytes and pattern 2 program requires 1%9 bymi Alth
program requires more memory, the difference In mer
will become minimal when the pattern 2 prasrmm
ment to Input the number of items to be dumpld_.

fo conclude, It can be seen that the pattern 1 pr
better than the pattern 2 program, By carefully review
problems we have discussed thus far, you will find
for creating better programs,

i
wmmmto wrtie machine language in memory

Using the above-mentioned programs as a base, let us create a
using the POKE statement, to write machine language in me:
Since addresses and data handled by the POKE statement ¢
numbers, it Is necessary to convert them to hexadecim
before they are Input, It is also necessary to provide an errc
facility. In short, the program we are going to create is a ma
has a memory write function,
Requirements for the program are listed below, _
(1) The start address Is keyed in as a 4-digit hexadecimal nur .
(2) Data to be written is keyed in as a 2-digit hexadecimal
(3) After one data item has been written, the next addres
automatically and the program waits for the data to |
(4) 1t is desirable, if an error occurs, to be able to return te
ated “address by inputting the character “S" in ords
writing the correct data, o N
(5) A check of key input must be performed, If an
the correct data must be re-input,

o

Once the program has been created, it permits writis
ing data from memory, At the same time, you can
first steps to master machine language, A



Disassembler TP NI D) 2y N[0 1

‘ 14 CLEAR ,4@7@3

20 OPTION BASE 1 -

30 DIM ASC4) 1 ANCA) ,DSCH), ESces . mme.
1DC42,DUSC2)) DHC2) ) ADS (258 VEALe soastes

40 E$C1)="A":C$C2)="B": g TN
urOn i EBCBI L EnCErmapn DT ERCs
58 INPUT"MEMORY READ OR WRITE RAI" i MR

)

U
6@ IF MRUS="R"THEN L=1:
F MRUS$="U"THEN L=2:G0TO 7a‘gzgs73 s 5,
7@ PRINT"START ADDRESS"
80 FOR 1=1 TO 4 s
90 HE=INKEYS$: IF Hg=''7
SUB 390 THEN 89 gLst g0
18@ ON M GOTO 99,110
118 A$Cl)=HS$:ANC]T ) =H
120 PRINT A$Cl);
13@ NEXT 1
140 PRINT
158 AD=ANC1)%4096+ANC s
s (2)%256+ANCII X1 6+A
168 PRINT AD
170 PRINT AS$CID+AS(2)+AS(II+ASC4I+" Iy
180 LPRINT ASC1I+A$C2)+ASCII+ASC4)+n
19@ N=1
200 ON L GOTO 21@,31@
210 D=PEEK(AD) :K=2:GOSUB48@
220 PRINT AD,D
230 PRINT D$C1)+D$¢2)
24@ LPRINT D$C1)+D$¢2)+" ";:GOTU 26@
25@ H$=INKEYS$: IF H$=" "THEN 260 ELSE I
F H$="S"THEN 280 ELSE 250
260 AD=AD+1:0N L GOTO 27@;318@ L P
270 IF N=8 THEN 290 ELSE N=N+1:G0TO 21 Al
o (;fﬁul Eﬁ?#
280 AD=AD-1 ORI o 1
2908 D=AD: K=4:GOSUB 470 B¢
300 asc1)-osc1::as¢2>upsc2?tn$tseuptWﬁf'-,gjﬁﬁ
):A$C4)=D$(4): LPRINT:GOTO 170 : ..u“ﬁ‘ (g

318 FOR 1=1 TO 2 RL
320 H$=INKEYS: IF HS!”"THEH 320
0SUB 390 Al
33@ ON M GOTO 320,348 A58
34@ D$C1)=H$:DUCII=H S
350 NEXT 1 : e
360 DW=DH(1)X16+DWC2>
378 POKE AD)DW PR
380 GOTO 238
390 'HEX-DEC CONUERT
40@ IF H$>"/"THEN IF
SE IF H$»"@"THEN IF as&
M=1:RETURN 3 s
410 H=UﬁL<H$J'ﬂ=ﬁasE!uﬁg,
420 FOR J=1 TO 6
430 I1F H$=ES$CJ) °
44@ NEXT J
450 n-zznafunn




I

A look at the inside of the
FP-200

In this chapter we shall touch upon the hardware of the FP-200. Let us

look inside the FP-200. . ¢
Be careful: rough handling may destroy your expensive mac.:hlne.
First, turn off the power. You are advised to make it a habit to turn off

the power whenever handling the hardware of the FP-200.
Loosen the four screws at the bottom of the FP-200 and push the case
and the case will come off.
Figs. 1-3 and 1-4 show the printed circuit board around the CPU. The
part about 1 ¢cm square located in the center is the CPU (MSM80C8S5).
Located to the right of the CPU are custom ICs such as the
uPD65010G012 1/0, key decoder, etc.
The RAM can be seen in the bottom left corner of Fig. 1-4. As shown
in Fig. 1-5, the RAM consists of four TC5518BPs.
Fig. 1-6 shows the printed circuit boards for the cassette tape controller
buffer, printer controller bus buffer, etc. They are different from the
main printed circuit board.
Figs. 1-7 and 1-8 show the liquid crystal display and the back of the
keyboard, respectively.
The IC to drive the liquid crystal display can be seen at the bottom
right corner of Fig. 1-8. Fig. 1-9 shows an enlarged view of the IC. Fig.
1-10 shows the power supply components.
The CPU on the main circuit board is housed in a 44 pin flat package
for industrial use, and is very compact in size. Normally, CPUs are pack-
aged in 40 pin dual inline packages which are somewhat larger. (Both
types are available for the 80C85CPU.)
The code “MSM” is used to indicate that the product is manufactured
by Oki Electric Co., Ltd.
The characteristic features of the FP-200 hardware are the following.
(1) The MSM80C85A s a silicon-gate CMOSCSO0. It is an 8-bit 1-chip
parallel processing CPU, compatible with the Intel 8085A. Al-
though the MSM80C8S5A is based on the 8085A developed by Intel
and offers the same throughput as the 8085A, it consumes much
less power (approximately one tenth). The MSM80C85A can
operate on a battery. :



Fig. 1.3 Inside of FP-200
m’ T

Fig. 1.5 Four TC5518BPs

Fig. 1.9 Detail of Fig. 1.8.

=" _1

> - .,_.—-—-‘-‘—'_-—_

Fig. 1.10 Power supply components

s 1



(2) The Fi!-’:‘?go une; a ssm\!‘sp v wl;lt’l‘i%l‘ll m’i'ﬁ'.
cycle is 1.3 us when a . 8] RLE
(3) The FP-200 has a built-in clock escillatar, enabling to
using an external crystal oscillator o 4
(4) Four vectored interrupts are available
ing to a particular memory address far interrupt p
When the CPU receives an interrupt request signa
current job being processed and then perfarms interrup
at a particular address, By previously pmtdln’ ap
rupt processing program for that address, it s possible t
the Interrupt processing program whenever required, and
resume the interrupted job, The one non-maskable interrupt
vided to permit processing a program for sav nd
important data, etc., in case of emergency or power
(5) Built-in serial 1/O ports (one for input and ene for
(6) Direct addressing of 64K bytes of memory, Up to
addressed using 16 address lines, & of which are she
Addresses are not confused with data, since diff

established for them,

The description of vectored interrupts given above may be
difficult to understand, These interrupts are a high-level pr
technique and will be discussed in more detail in a later chap



Basic principles o
operation of computer

_’_———\

In this chapter, we shall study some of the b
operation, which will help understand the ma’c‘;“’gimdmm

ﬁ Logic circuit functions

we have already learned that the computer operates on she

Lystemn using the digits O and 1, How is this binary system used mm
computer operation? How does the computer perf ition
using the digits 0 and 17 PRTIr 100 4 8
Perhaps you have heard of the term ‘logical circuit’, An AND

OR circuit, a NOT circuit, ete,, are logical clrcum.mmzm
can be combined to form an adder circuit, (As a matter of fact, it is
possible to create not only adder circuits, but also subtracter circuits,
multiplier circuits, and divider circuits, by using the three types of logi-
cal circuits in various combinations.) | ' SAREEE

[he symbols used to represent AND, OR, md"’%‘j .
in Figure 1-11. Although each of these logical circe
cented in different ways, its basic operation is the

srragravesEn

Figure 1-11. ANDclrwlt,Oﬂdfﬂlﬂ,mm\ :
AND OR

............................... FPEsTRITRL

(1) AND circuit
A circuit whose output F is 1 only
(2) OR circuit RS
A circuit whose output F i$ 1
(3) NOT circuit
A circuit whose output F is O
when A is 0. ;e
These circuits are combined
assuming that A and B are ir
four possible results, Thus,




A=0and B=0 0000 F=0

A=slandB=0 , .00 f‘:‘*1
A=0andB=1 ... 00 F=1
A=landB=1 .o F=0—=——Carry 1

Any circuit which produces output F from inputs A and B is called an

adder circuit, Figure 1-12, shows an adder circuit consisting of three
AND circuits, one OR circult, and twe NOT circuits. Check output F
by inputting 1 as A and 0 as B,

Bo—y

Carry signal
S o

Actual adder circuits are more complex. An 8-bit CPU has eight opera-
tional circuits such as shown above. The CPU processes eight bits in
those circuits at a time. Such processing is called parallel processing.
Formerly, when transistors were very costly, there were computers
which processed eight bits using a single operational circuit eight times.
Such processing is called serial processing. Today, most microcomputers
employ a parallel processing system because of its higher processing
speed.
AND and OR circuits are otherwise called AND and OR gates. They are
so called because they perform the function of a gate. For example,
assume that input B — one of two inputs to an AND circuit — is used as
a control to open the gate of the circuit: when input B is 0, it does not
open the gate, and when input B is 1, it opens the gate. Then, as far as
input B is 0, the gate is kept closed regardless of whether input A (the
other input to the AND circuit) is 0 or 1, hence output F becomes 0.
When input B is T and opens the gate, input A can pass through the gate,
hence output F becomes the same as input A (whether it be 0 or 1).
Thus, the AND circuit can be used as a control gate.

!ncid_enta!ly, about 20 years ago, the authors and several colleagues paid
a visit to a factory of IBM. In those days, IBM was engaged primarily in
thg _manufacture of accounting machines, An IBM man who had been
guiding us around the factory suddenly stopped in front of a machine.




He started inserting nume
poard, shaking his head

the W
To our s
few secon

patchboar

ired board to the si bk
urprise, a ;;;;E;: the m
ds. In retrospect, Arg|

d, rather than ..




46

Eventually, this patchboard system was replaced by the stor
system because of difficulties involved in programmrl_ng

modifications.
The stored program system, otherwise called the Von Neuma

(Von Neumann is the developer of this system), is empl
all computers of today.

the digits 0 and 1 are handled in its storage unit, control _
cessing unit; and any instruction and data can be .eXPTBSSEﬂ_-_b}% a
ate combinations of the digits 0 and 1; then, it must be po
previously store a set of instructions (a program) n the storage in
form of a combination of 0’s and 1’s, to read and decode them seq
tially, and thereby, to execute the instructior]s one aft_et 101
By using this approach, instructions can be m'odlfietizl_r_r_leralyf
ing the digits 0 and 1 in the appropriate positions in the stor
the processing speed can be appreciably improved. fy %
By the way, you may suspect that storing both instructions and

the storage causes a confusion. There is really no fear of th
however, that if an instruction to write data in the machine lan
written to the same area in the storage as that in which
tions are written, you cannot tell how the computer will
causes a so-called program overrun. Once a program ov
there is no alternative but to turn off the power supply, turn it
and press the RESET button. A
As described in more detail later, there is no fear of conft
instructions and data, since a register called a P-counter
ter) is provided. This counter indicates the address in
instruction to be read by the computer is stored. Each ti
tion is executed, the address in the P-counter is incr
that the next instruction can be read for execution,



I \
Functions of registers and
counters

AN

Before starting an in-depth study of the machine language, let us review

he internal structure of the CPU. Figure 1-15 is a CPU internal block

diagram,

Figure 116, CPU internal block diagram e
“l ] n* acjv 39| 38 37* 35+ 35+ 3
- o [ o o - e =
® %A 2 83 ; ¢
o ere ki el
11s] S g
: 5 READY]33
— TRAP
2 RSTYS Y
e 31
3] RsTes s,
4 o -ﬁ—ﬁ 30
| S8 Internal bus line .
WA |29
S INTR
ALE |28
51 WNTA
7
- h‘)‘
N
-y AD:
s
”——-wg
QIB__I ADs
".m
§ AD, ADs AD¢ AD: GND Yu Ag Ag Ag A Ne

e e A A A e

RERRRECS




48

Ad yis aie, (B Aie vl ne eiiniers 4l reglaers, Fram the saftware
VIEW PRI, R e R W@n.ﬁﬁﬁv stack painter (SP),

Abit flag i-'anlrm (), and BRI warhing egisters (A, B, --'aﬂ..,E,H,:Li o ke
I TR T T N T R R : . Bt i i g b
Ot hey Venlqwrr Iil-lttii an eglatein Woaml £ and femparary 'mlmm_t _ ;
provided G e 0P ey canim be manipulated by the user (or soft-
ware), Compuier proveasiig (o, atier all, the transter of data between
fwe feglail, etWRR A4 FEglater ane memary, heiween a register and an o8
/O duviee, wte, tvilviing the AL Far the rplrll'll‘ﬂiﬂ_ﬁf eamputer pra- <o
cossiig, VAOUS (b ine are pravided, These instruetions can be
combined f 61 T compiier perinim varaus iypes of processing auto- 9,?3
matieally. ST
Phe e feglator’ may B nierpreted da d reearder ar a device to hold

WU A ey s, o e .-
Now, let (s see (e (i tions ol indivisal registers in more detail,

wi Working register _'
Iete are sever wiol ki l-vrihlwu- A B €D E H and L Bach working
Feglater has efhit bite AL these reglaters are independent of one anoth

hey can be ussl as emporary storage devices by ’Fl‘ﬁ\?ﬂm'__
working reglstor i given an integer namber as shown in Table 1-2,

Fabhe U2 agieter name | Bi '
A 1t BT
ERENIAT 0Q8. |
el LEEY
)i ~hie
E vt e I
M late 100
Lt | G
M Ry 110

.

[t is interesting to note that the A-register is given the num
register the number O, the Cregister the number 2, and
re?lslzer (otherwise called the accumulator) has more
other registers, and s deeply involved in arithmetie processir
tion, there are relatively many fnstruetions associated with the
All this may be the feason why only the A-registe ique

There s one more entry —M- {n the table, This is not a re
assigned a code of 6 (1hits) when an instrugtion a

is handled, e



\_L::::\;f ;"’“"S "_"‘355""'5_ (B and C, D and E,Hand L, A and F) may be
‘\N\_;‘:itfulr:?‘!!urm " lb-tzit register. Again, the A-re’gister is assigned a
o runction. The A-F pair is named the PSW (Program Status Word)

.]_ vl i ax i ~ 3 3 "
m_l:e ";:’h;' FeBISter pairs permit indirect addressing. Indirect addressing
cate a m::I:-:it.d,dm N tWo concatenated registers, say, B and C, to indi-
Althou *ht e ii'}: address, by which an access to memory is performed.
t‘\!rx‘mi‘l\ mf irect .uigircssgng IS a somewhat complex technique, it is
di:'t\-{I: . “ﬁtl‘ll' While filrect addressing specifies a memory address
it el |:1n “1“:' addressing specifies a memory address by data in a
SBICT pair. Indirect addressing will b i i il usi
. : é e descri

illustrations. g described in more detail using
]\‘h“f"‘ S another register called a scratchpad register. This is used to
retain information from programs for execution.

& Program counter

Any computer employing a stored-program system has a program coun-
ter. Since most computers today adopt this system, program counters
are very widely used.

The program counter is a register indicating the address in which the
NEeXt instruction to be executed by the CPU is stored. Since the content
of this register is incremented by 1, 2, or 3 each time an instruction is
executed, the name ‘program counter’ rather than ‘program register’ is
given to this register.

Normally, the content of the program counter (PC) is incremented each
time the CPU executes an instruction. In the following four cases, how-
ever, the content of PC can be changed to specify a particular instruction

to be executed.

(1) Input a RESET signal
Pressing the RESET switch sets the program counter to 0. In this
case, the CPU executes instructions sequentially from memory add-
ress 0. When the power supply is turned off, the POWER ON/RESET
button also causes the CPU to execute instructions from address 0.

(2) Execute a UMP instruction.

(3) Execute a CALL instruction.
The jump address (calling address) enters the program counter, and

the CPU executes the instruction stored in that address.

(4) Execute a PCHL instruction. . .
A memory address specified by the content of the H-L register pair

(this address is an indirect address) enters the program counter, and
the CPU executes instructions from that address.



It is interesting to note that th
mumm.m




el

Instruction formats

e ———

in this chapter, we shall discuss instruction formats. Various INSLrUC tion
formats ar Gevised &) many CPU designers. Each instruction format
has Hs own merits and demerits.

In the case of an 8-bit machine, it is possible to provide 256 (2%) diffe-
cntnstructions if all the eight bits a

_ re used for this purpose. Although
'Sooanstructions are more than eno

. : _ ugh for computer operation, dedi-
cating all the eight bits to the Instructions is inefficient when performing

Jata transfer between memory and the CPU, since memory addresses
should be specified in the instructions.

in the case of 80C8SA, approximately 64K (2'®
Jirectly specitied. In this case, each machine instruction requires 3
Ovie, or 24-bit. Using 24-bit for each instruction is wasteful, since a
cuister-to-register transfer instruction, for example, requires only eight
hits. Besides, a 24-bit instruction requires accessing memory three times.
In order to solve this problem, the 80C85A permits varying the length
ot instructions (1-byte, 2-byte, 3-byte) as required,‘theroby minimizing
wastetul use of memory. In this case, it is prerequisite that 2-byte and
v by te instructions are stored in consecutive memory addresses.

) addresses can be

! byte instruction | _OPcode | [ D:f De| Dsf Dof Os | Daf D4] B}
2-byte instruction | [_OPcode | [ D:[ Ds| Ds] Du]Ds | Daf D] Dy
[ Operand | [ D:] De] Ds| Dal Ds | Daf D] Eﬁ]

3.byte instruction | [_OPcode | [0:] 0¢] Ds] 0.1 0s ] D] Bul D .D D2l D41 D
Low-order address —| [_Operand | (D] Dc] 0] Du]Ds ] Da] D1 Dol 55
High-order address —| E?E[“_d__' E_L_I._'-l-—-l—l—tLJLidD’ De] Ds] Def Os :

ly indicate the
You may wonder why the program ‘cou.n:e;::m;tm with
next instruction to be executed, ?13‘0'; ned quite deliberately. Let us
data. In this respect, the computer is desig -

Hlustrate this. : pmuﬂﬁﬁﬂoﬁ
There a: a machine language .opel‘ati?tl;i:c‘:;ﬁw_ ﬂm@g
asume that a 3E is stored in a i:\e ory, the program counter
tetches the 3E for OP code from i




52

automatically advanced by 1 and indicates the byte follo“:ing the Op

code (3E). The 3E thus fetched is subject_ed to the instruction decodey

in the CPU in order to decode the operation code 3E. The CPU identj-

fies this operation code as the IMMEDIATE instruction (_a 2-byte instryc.

tion to transfer data in a memory directly to a specified register) ang

reads the contents of the memory address indicated by the program

counter. After reading the contents (data), the CPU increments the pro.

gram counter by 1 to prepare for the next instruct‘ion. Now that the
CPU is ready to execute the 3E instruction, it immediately executes the
instruction. As a result, the 1 byte data following the 3E is transferred
to the A-register in the CPU.

By the way, what happens if the 3E instruction is immediately followed
by an OP code ‘76’ (HALT instruction)? In this case, the CPU, after
encoding the 3E instruction, transfers the OP code 76 as data to the
A-register, Thus, the CPU places the HALT instruction (OP code 76) in
the A-register as data and proceeds to the next instruction.

This should be kept in mind when creating a program. You may think
that the HALT instruction always stops the program when it is execut-
ed. However, if the HALT instruction is placed in a wrong address des-
cribed above, it is completely ignored by the CPU. It may even cause a
program overrun.

It must be remembered that instructions in a program or memory have
no special mark to discriminate them from data. Special attention
should be paid to the JUMP instruction. Specifying an incorrect address
may cause the CPU to interpret an instruction as data, or vice versa.



_.4 
[he 14 machine language instructions

ones that permit writing machine lang
[h(‘ "’P'?OO.

Instruction |
™ Symbol Ex
1) REGISTER-TO-REGISTER TRANSFER instruction MOV rl, 2 ( MTBO) OP;,O“
2) IMMEDIATE instruction :

(A)=<B2) 3E
3) LOAD instruction (A)e(M) 7E
4) STORE instruction Wi (a)eim)
5) ADD instruction I j____-_EE.;’wg'.‘.gﬁj_i__(B) 80
6) SUBTRACT instruction s ‘-‘ P ﬂi)*iB) 90
7) INCREMENT instruction e

8) DECREMENT instruction

9) UNCONDITIONAL JUMP instruction
10) CONDITIONAL JUMP instruction
I1) SUBROUTINE CALL instruction
12) SUBROUTINE RETURN instruction
13) NO-OPERATION instruction
14) HALT instruction
The following describes each of the 14

CA, C2
on

LT
tng
L) = o

k. REGISTER TO REGISTE

LT

The operation code is as follows:

TTToTsToTs [ 1s0




54

DI represents the code of a destination register, and S5S represents

the code of a source register, For the register codes, see Table 1-2,

for example, when transferring data from A to B, DDD is the B-register
f3-register code is 000 and the A.

anc §5% 15 the A-register, Since the
peglster code 15 111, the operation code becomes as follows:

o 1o Lo fo ]
By dividing this aperation code into two 4:hil’- pafts: it is possible to
represent it In hexadecimal natation. In this partfcuiar f:xample, the
ame manner, it is possible to obtain

operation code hecomesl47),In the s _ ! -
the oparation code for i particular register-Lto-register instruction (A to

C,AtoD, o A,ete),
The REGISTER- TO-REG /
instruction and requires fout clocks for e

I5TER TRANSFER instruction is a one-byte
xecution,

%ml IMMEDIATE instruction

Fhis Instruction fetches a numeral directly from memory into a CPU

register, The contents of the byte following the OP code stored in a

specified reglster,
I'his OF code s expressed as follows:

o Jo o ]ololi[r]o]
DOD represents the code of the destination register, and the code 110
indicates the memory operation, Assume, for example, that data is to
be stored In the A-reglster, Since DDD (the A-register code) is 111, the
operation code becomes 3k as shown below.

0 0 Y A O W

3 |
Similarly, the operation code for the instruction to store data to the B-
register becomes(06],since DDD (the B-register code) is 000. Also, when
the destination reglster Is the C-register, the operation code becomes

(0E] (because DDD §s 001),
The IMMEDIATE instruction is a 2-byte instruction. Seven clocks are

required to execute this instruction,

gml LOAD instruction

This instruction transfer the contents of a certain memory address into
a specified register. This Instruction is expressed as follows:

CRERCRCACRENERTY
The upqratlnn code becomes [7E| for the A-register, since DDD is 111
and[46/for the B-register because DDD is 000.



wait a minute! Where is 2 memory address ifi

member that 16-bit are required when accessyo s v ol 75 Yoy
In this case, the registers H and |_ are used t :
through indirect addressing. Thus, befo

about five bytes, since data should b
when executing this instruction,
LOAD instruction in this manner, it i i

' : IS possible to f i

sion starting from a certain addres;. / RICLAREE piccos
The ’LOAD mstruct;or] ils a one-byte instruction, Seven clocks are
required to execute this Instruction. Note that this instruction really

requires about ﬁve' bytes, since data should be stored in the registers H
and L when executing this instruction.

& STORE instruction

The STORE instruction transfers the contents of a specified register
into a certain memory address.
This instruction is expressed as follows:

loft[iTiJo[sTsTs]
The operation code becomes (77)because the A-register code is 111.

olvrfifrfofejrfr)
7 7

Here, the problem is the term ‘a certain‘ memory z'lddress.’ How is it
specified? As in the LOAD instrgcti_on, it is spe:cif:ed by data in the
registers H and L, that is, through mdlrect. address:mg.
The STORE instruction is a onq-byte instruction. Se\fen clocks :?;,
required to execute this instruction. As is the case with the L(i ;
instruction, the STORE instruction requires two to three b):jtei taking
into consideration the need to enter data in the registers Hand L. )
In general, after a data transfer instruction is executed, the contenfst !(:e
the destination memory or regi§ter changes, while thf: gor}tentitgm 5
source memory or register remains unchanged. .Also, 1ti is impo b
note that the flag does not change after a transfer instruction is exe :

55



4% ADD instruction

Normally, the ADD instruction and other arithmetic instructions handle
data using the A-register. The OP code is expressed as follows:

Lt [oJofofo[sTs[s]

In the case of A+B, SSS is the B-register. Hence,

[tJoJoJoJoTo o ]0]

I'he operation code is 80 in hexadecimal notation. The result of A+B is
stored in the A-register. Similarly, the operation code for A+C—A is 81

and that for A+D—A is 82
The result of an operation may cause an overflow, may become zero,

etc. The occurrence of such a condition is indicated by a flag in the

F-register.

FETERANS
M
-

ﬁ SUBTRACT instruction

IIIIIII

The SUBTRACT instruction is expressed as follows:
LifofoJirJofs]ss]

In the case of A—B, SSS is the B-register code. Hence,
[t foJofrJofofoJo]

Therefore, the operation code is (90 .
The result of execution of this instruction is stored in the A-register, and

the flag changes accordingly.
As is the case with the ADD instruction, it takes four clocks to execute

this instruction.

’# INCREMENT instruction

The INCREMENT instruction may be considered as a special form of
ADD instruction to add 1 to the contents of a specified register. This

instruction is used in programs very frequently.
The INCREMENT instruction is expressed as follows:

[oJoJo[pfoft]ofo |

ARAXNANAN

In the case of A+1, DDD is the A-register code. Hence,
[oJo i JrJitfifofo]

L E—— N —— A

3

The operation code is 3C. The result of A+1 is stored in the A-register.
The flag changes according to the result obtained. Four clocks are re-

quired to execute this instruction.




W' DECREMENT instruction

Fthe DECREMEN Instrug LHon m
SUBTRACT instruc HOn 1o sulyyy
register, This instruc Lon s e

fn'n[wllilllll [0 ]T]

Fhe operation code IS (30D for A

% h I o A A i
ay b Considered ag 4 special form of

WL T from the ¢ '
contents of a specifie
Apressed as follows: g

1A, [05)for B 1=

dl(18 ) > : )| | =B, 0D/ for C— 1=
and (1 5]tor | 1D, In contrast wnhtlwlN(iRlM[-’N'l instr .,(' I=C,
result of execution ol the Dy CREMEN e Jistruction, the

. , -NT Instruction i esepcs
4Ppropriate register. Four clocks are S ayStored In e

‘ Fequired to execute this inctror
ton. The flag varies ac ording to the result obtained A
. - .

........

SN UNCONDI TIONAL Jump instruction

........

Fhis instruction is expressed as follows:

SN B I I8 [ N O

Hence, the operation code is (C3]

[his instruction requires a jump address, which indicates a memory

address to W'?ilh ajump is to be made. This address is specified by the
2-byte lollowing this Op code,

It should be noted that the first byte inidcates the low-order part of the
memory address and the second byte indicates the high-order part of
the memory address. For example, if a jump is to be made to memory
address 8000, you should specify (C3), (00, (80]. Note that you should
not specify [C3], (80], (00], which causes a jump to memory address 0080,
Ihe UNCONDITIONAL JUMP is a 3-byte instruction. Ten clocks are
required to execute this instruction.

L td
N

14} CONDITIONAL ZERO JUMP instruction

*
LR

I'his instruction is expressed as follows:

L [iJoJoTiTo i o]

I'he operation code is [CAl. ;
['his ifa 3-byte instruction. As is the case with the UNCONDITIONAL

JUMP instruction, of the 2-byte follov\./ing this OP code,hthe firsdt
byte specifies the low-order part of the jumpdgddress and the secon
i j S

byte specifies the high-order part of the jump a dress.

InylthZ:aSta' of the CONDITIONAL ZERO JUMP xns'fliuitlo;tréoowe;r:gr,iﬁ
condition called ZERO jump is ;tt:cl:;g.sgdeacr;?‘lez,a|ddtreess £k g
he F-register is 1, a jump is made to . HAEeS 1 A
:-cjéognrift:igc;; that the result of the preceding operation '[Snoi’s aer:i c|uted,
ZERO flag is 0,a jump is not made and the next |nstrut:t1tc;'iS e
since the resul t’ of the previous operation is not 0. Thus,

is used as a conditional branch instruction.

57



The execution time is 10 clocks when a jump is made, and 7 clocks
when the next instruction is executed (a jump is not made).

There are several other conditional branch instructions (e.g., the |[NZ
instruction — OP code[C2] — which causes a jump when the result of the
preceding operation is not 0). For the moment, try to master the use of

this CONDITIONAL ZERO JUMP instruction.

------- -
fEgEdngn
.

H:¥: SUBROUTINE CALL instruction

When using the machine language in BASIC on the FP-200, it is neces-

sary to use various subroutines stored in the FP-200 ROM for input of

data from the keyboard, for display of data on the screen, etc. The

SUBROUTINE CALL instruction may be used to call a desired subrou-

tine from the ROM.

The operation code of this instruction is [CD. This is a 3-byte instruction,
and the second byte specifies the low-order part of the address storing
the desired subroutine, and the third byte specifies the high-order part
of that address.

As a matter of fact, a subroutine cannot be used if its entry address
(start address) is unknown, since the entry address should be specified
in the 2-byte following the operation code of the SUBROUTINE CALL

instruction.

HERENENS
e

¥ SUBROUTINE RETURN instruction

When using the machine language in BASIC on the FP-200, the BASIC

CALL statement is used to call a machine language instruction. The

SUBROUTINE RETURN instruction is used to return control from the

machine language instruction to BASIC.

The operation code of this instruction is (C9l.

When a subroutine stored in the BASIC ROM is used, the user need not
worry about executing the SUBROUTINE RETURN instruction, since
a SUBROUTINE RETURN instruction must be included in that sub-

routine.
It takes 10 clocks to execute this instruction.

FAEFNEEF

4% NO OPERATION instruction

This is a ‘do-nothing’ instruction. You might think that such an instruc-
tion is unnecessary. Nevertheless, the NO-OPERATION instruction is
really useful.

In mathematics, we use the number O to indicate nothing. Without the
concept of 0, modern mathematics cannot be complete. There is, how-
ever, a controversy as to whether or not a no-operation is absolutely
required in the same sense as applied to 0 in mathematics.



As a matter of fact, th
nature from the other In:tmgt:ggsgl?m fli?m“ O Is different in

already learned, the CPLU e Al Pter, As we have

when fetching it, Whe the ‘capdﬁ'f:?‘ﬁ:.“:d. by the l_ﬂ“ﬂmﬂﬂﬂ decaoder

increments the program counter ang Procesds to the nlortu]ov code, it

|“ I':'t:"' :‘;zf ;:"3::;&:!‘ l':\ckCI':J 1o complete this bpor:nnonm'lsmf 'fa?é';
nter O lake Il Ve : )

several number of NO.Op lnit-ruT:-?l.’-'l:l?Tl'ls:wa?ct)?in:::ﬁg n:ueut_llng
:“‘ “““‘a::; ":“b'*;n'ﬂl " r;;lchllln language program, s
For ex i A machine language _ .

nstructions are inserted svery 18 g{'h.rp ::f{:ghm:f'l?dﬁ}:; :io'l?':
bug (Lo, program error) is detected Indicating that an instruction need
be added, t_hnt Instruction can he Witten In the place of 4 NOOP .
struction. This will eliminate the need o rewrite JUMP instructions
:'I;t ~nsuch acase, the usefulness of the NO.OP instruction makes itself
eIt

Fhe operation code of this Instruction fs [00], The
when this instruction is executed. flag doss not change

Wil HALT instruction

Phis instruction is expressed as follows: e
KO I I A N S N

I'he operation code s [76], it
The HALT instruction s used to stop the program
not be released from a HALT state except when a
the RESET button is pressed, el AL

Five clocks are required to execute the H.
remains unchanged when this Instruction s ex

We have thus far studied the basic machine
next chapter, we shall learn how to use

programming.




=)

Writing programs in machine
language

In this chapter, we shall study in detail how to create machine language
programs, how to use subroutines, and how the machine language is
associated with the BASIC language, with the aid of the sample pro-
grams used in the early chapters to compare the execution speeds
between BASIC and the machine language.

HERE
&
2,

% Creating machine language programs

)/
Vi

In chapter 2, we used sample programs to draw the entire liquid crystal
display and then clear the display in order to compare the execution
speed between BASIC and the machine language. We used the POKE
statement to write the machine language program in decimal notation,
In this chapter, let us write 2 machine language program in hexadecimal

notation,
ADDRESS | 0P ADDRESS
9F 00 | £ | Betting number of 9FO0C
tirmes

01 0A | 10 times 0D
07 0E| Cedf 0E C 2 JNZ
03 3 0F 04
04 06 B3 I 0 9F
065 | 3] 15 Zr A+~ A
06 cD Subroutine |2 ] et
07 8 E | | 3 P JNZ
08 02 | 4 02
09 06 -~ | | 5 9 F
0 A CZ . INZ | 6 G araerd RETURN
08 06|

As for the BASIC program, a TIME$ function may be placed after the
CLEAR statement and before the END statement for the measurement
of the execution speed,




10 CLEAR, 40701
20 CALL 40704, 268
30 END

Let us first look at the machine language Program
[he OP code [1E]is stored in the address 9F 00 'lﬁis i5 a 2-byte i
’ -byte instruc-

tion to enter data directly into the f.re
‘ s ec ' E-register, In the next s :
code _()A is stnrml_. Fhis represents the decimal numbflldl';jdres?' th’e
transferred in the E-register, | ¢ A
I'he same applies to (OLI(3F|in the address 95 06/
. 1o 0K address 9F02 and (06113 '
9F04. Namely, 3F (decimal 63) I8 stor s i dddrew

: ely ed in the Coregis
(dm_mml 19) is stored in the Beregister, These v.aluesgreterre’s;ntd :13
ordinate and abscissa of the liquid cryst Fequired by

. al display, They are i
a subroutine described below, A ; g

The 3-byte from the address 9F06 are 1 S5U tn
struction, [CDJ [8E] (02). Pay attention to the aacﬁgs?l:g;gﬁcftﬁﬁﬂﬁ'e
Sl‘lhl'(l)l_!l'll'lfl 1o .('lmw the liquid crystal display is stored in the address
028E. (8E indicates the low-order part of the address and 02 indicates
the high-order part of the address.)

The instruction in the address 9F09 subtracts 1 from the content
of the B-register. The Zlag turns 1 when the result of the subtraction
is 0, and it turns O when the result is not 0,

The JNZ instruction in the address 9FOA determines the jump address
according to the status of the Z-flag after the preceding operation
(subtraction). Namely, when the result of the subtraction is not 0,
a jump is made to the address 9F06; and when the result of the subtrac-
tion is 0, the next instruction in the address 9F0D is executed.

The instruction [2F] in the address 9F11 reverses the contents of
A-register. (This instruction was not included in the 14 basic instruc-
tions). The RETURN instruction [C9) in the address 9F16 which causes
a return to BASIC. :
By the way, the JNZ instruction (C2, 06, 9F) in the addresses starting
from 9FOA was not included in the 14 basic instructions, either. This
INZ instruction can be replaced by a JZ (CA) instruction. It should be
noted, however, that using a JZ instruction requires three addoitaonal
bytes for the jump address, Helj;:f’ tihatuse tc;f a JZ requires changing the
addresses for the subsequent | nstruction.

In creating a machine language program, address calculations for JUN:)P
instructions often involve some co‘;npledxiltvt;d addresses will have to be
changed when instructions are added or deleted. |

Here,g the usefulness of the NO-OP instruction makes itse’l; :::tih\:?ﬁi
deleting a particular instruction, it is only necessary to re

struction with a NO-OP instruction. _ ) BAT e A AP
In this respect, it is advisable to insert an appfmmﬁﬂm?;;‘g&g 4
instructions at some appropriate positions in a WW . o

67



Pﬂ’ﬂm

!g‘_’f“:‘t’-_.‘m P : g ‘ - 'l I‘I
gijoa _FE&M 11lee 21 jca 13!-2"'
| o2lee]llc—r 1202} e ERE
FREYA 13los] B-1 23| 9F ||
pe|06]|] B—I3 1ajlcall sz 2ajcytl) s
osfi12}] isfia 25|04
s6]00 16)arF]] 26| 9F | .
9700 v71c3]] s 27f10] E-1 }
FENT 1810 22 LCALL :
99{00 i9feF]l 29|33
oaloo 1aloo FREL
s8{o0 18|00 2B|3¢c| A+t
ocloon icloo aclecatl
opfoo ip|oo 2pl02|
oeloo 1|00 2eloFl]
oFloo 1Floo 2F 36;1;
sF30jc3|]y
31jo2}/!
22 BF}
33|co

Now, we have a program using only basic instructions. The pi
NO-OP instructions in the program shown above will enat
stantial modifications. If you prefer, you may write the
10, 9F from the address 9F06. In this case, theN%P

mwawmﬁ9ﬂﬁamwhmwd §

By the way, what is the function of the instruction
ress 9F2B? This is somewhat technical. A decimal
¢kamdIIIkdﬂmﬁunﬂmﬁﬁﬁ&ﬁnbywwﬂﬁﬁm:
Since all the eight bits are 1, if 1 is added to the
register, awwsnmdecmsmallﬂsebmm 2C
ZERO flag becomes 1. Thus, the next time the
ecuted, ﬁwmmofﬂzeafeg:sterbecomeﬁ "



onmwwmmmmmmm
® Conaitions, (RINGE « i T s
o mlfilml = RINGT
® Poriorms sy sttrsrs SERONInG, If 8 key is prasssd,
Wsﬁnmm!mmunkw
Lo
& Conebition:
gsx'zﬁuz,xwmmu
(7 77 #r arick FLINGP s updated.
RINGE: 830 H
RINGG: 82414
HINGT 82284

| GETRG | OFSCH -ummmumwv.mfhﬂmakwm
. frmmmwwmm,wm

Foragsinr, snd upastes RINGG,

Cosrdtionr.

ZAlng = 1 ., , Mo ey cods,
ZAiag =0, Avsgistar = kay cods; RINGG
% igiaan,

| INTK 003CH

1 -

(2) Liquid crystal display subroutines

® Displays the coments of the A-register.
BITOU e o Conditions:

m#mmmm-m

® Feads eight horizoms! bits of display data,

BITIN 0z78% o Conditions:
Sarme 5 for BITOL,

XCLS 02FTH ® Clears the display.

WWM&A
OUTAC 0BF A4 S E giey oo, T comr somtion

Oungrats the ASCII code charsctar in the A-tegister
PRLCD G2ALH ‘w.w%m.mwwm
rerraing unchangsd,
Ca. w"d”" = charscter X-coordinate (0-19)
Cregister = charactar Y -coordinate (0-7)

.




64

& ROM maP

As you get accustomed to progr
instructions, you will wish to use
tions and to know more about BASIC subr
the map of the FP-200 ROM MAP is shown below.

amming using basic machine language

many other machine language instruc-
outines. For your reference,

® ROM MAP e

0000H — Initialization

0148H — 10CS No.1 (control of keys, Centronics interfaces, etc.)
036EH — Key samples

047CH — Key code table

061EH — FP-200 system main routines
1051H — Error messages

123AH — Opening message

1282H — Subroutines for initialization
14F6H — CETL commands

1B5CH— CETL command messages
1C5DH— CETL command subroutines
29F7H — BASIC commands

3888H — BASIC commands for numeric expression processing, function
processing, etc.

5FOCH— IOCS No.2 (control of FDDs, MT, RS-232C, etc.)
7508H — BASIC graphics commands
773CH — Service routines

77C3H — Object code table

7C17H — PRINT command control
7C57H — Error message table

7CBDH— FP-200 BASIC command table
7CFEH— CETL commands
7DAAH—Function processing

7EOQ0FH — Numeric functions

7E10H — Literals

Much can be learned by examining the contents of ROM. For example,
the contents of the addresses starting from 0000H are initialization

routine. When the RESET button is pressed or th i
turned on, the CPU starts the program from 0000H.e FOWER siiltet



0000 31 S P«-8 3 | 0 Sets8310 in the stack pointer.

1 10
83
3 & A Bl
CA
c3 J P~ To address 0081
81
00

~N o U s W N

savane

You will see many instructions not included in the 14 basic instructions.
Once you have mastered the basic instructions, you will be able to get
a rough idea about the operations of other instructions by referring to
the 80C85A instruction code table.







P i

&

permits communicating data with a per
cormmurication fine, :

In the fallawing chapter, we shall discuss data communications between the
atid aihier personil computer via a direct connectian cable. ¢

Wa shiall discuss the methods of exchanging programs and data, handiing data

nal storage devices (camette tapé and floppy disks), and accessing ddfa on

ot age, 5
At the same time, we shall explain the RS.232C protoco! and connections b
§ 1200 and personsl computers in order 1o provide the reader with accurate |
of RE232C, You may for the moment skip over topics difficult to und
miay concentrate on the subjacts which are of interest to you, In any case
abis 1o have batter understanding of the FP-200 and RS-232C by reading ¢
chapter carefully, >




e - S— e ———— et
e

lhe RS-232C is one of the protocols established
. A e by the Electroni i i

(ion ){l) IA). R};~232L speuflcs one of the protocols for Serialicdlantc;uitrles A.sspcna-
5-422 and RS-423 provide other protocols. ot iet oo
Ol these protocols, the one specified by RS-232C h 2

: s : ¥ as the longest h
has been widely applied to serial data transmissions not only bygcom[:l)sut‘f:err’;’ 33? at;:t;‘(tzae\,:
many other (_h):vlccs. In Japan, JIS C 6361 has been established based on EIA:’S RS-232C
Since ,”-!U ”-20,0 employs the RS-232C protocol, once you master the FP.20(§
RS-232C, you will be able to apply the knowledge to other hand-held computers and
personal computers.
In the following sections, we shall discuss the RS-232C protocol as reflected in JISC
6361 compatible with EIA’s RS-232C.
(JIS C 6361 is ti_tled "lnterfac_es (25-pin) between Data Communication Equipment
(DCE) and Data Terminal Equipment (DTE)’ and based on CCITT Recommendations
V.24 and V.28 that are compatible with EIA’s RS-232C.)

§ | RS-232C connection

The RS-232C protocol is applicable to the scope shown in Figure 1. In the figurg, the
data terminal equipment (DTE) represents any device connected by an RS-232C inter-
face (e.g., the FP-200, any other hand-held computer, persona-i computer, printer). The
DTE must be provided with a data transmission or reception facility, as well as a

communication control facility.




( Figure 1. Scope of application of R8-232C

Conneotor

Connection cabls GCommunication
| line
re———— W Gata cam Data com: o Data terminal
Dita ...m.lnmr : munlcation "..\ | munication [ equipment
WU i\l squipment .0 equipment | | (DTE)
OTE) W (DCH ) (DCE)
 ——— — (]
- -
[ Within the |
range ruled
by AB-232C 1

Baundary (for electrical and physical characteristics)

N

the DCE  (data communication equipment) represents modems and acoustic
couplers. It must be provided with the function that permits code or signal conversion,
As the definitions of the DTE and DCE imply, the RS-232C protocol is concerned with
serial data communications over a telephone line. This means that data must be trans-
mitted serially. When we connect the FP-200 directly with another hand-held com-
puter or personal computer, we are connecting two DTEs together. Therefore, we have
to change the line connection. We shall discuss the methods of line connections in
detail later, Ay
There are various methods of line connections. However, when determining the line
connection method, the electrical characteristics of RS-232C interface and other appli-
cable conditions must be taken into consideration. The RS-232C electrical characteris-
tics are shown in Figure 2, and the applicable conditions are shown in Figure 3. 2

RS-232C electrical characteristics

The voltage used for signal transmissions by RS-232C is in the range +5 to +15V o
to —15V. Data signals are 0 (low level) on the positive side and 1 (high level) on
negative side. Timing and control signals are on (high level) on the positive side and’
(low level) on the negative side. Thus, the on/off levels of data signals are reverse
those of timing and control signals. s ek
The overall effective capacity of the receiver-side impedance is 2,500 pF or less, ir
ing the capacity of the connection cable used. Since the connection cable length :
the overall effective capacity, care should be exercised when determining the
between the DTE and DCE,

The cable capacity varies according to the cable type (cable size, shielded
shielded) and the signal rate. As a rule of thumb, 10 to 15m is recommendec

data transmission speed is low, the cable capacity is not so critical factor a
normal data transmission.

70



Figure 2. RS-232C electrical characteristics

e e

Recei i d (i DC resistance Min. 3k§2, Max. 7k ¢
eceiver impedance (impression voltage: o VR T IR s | e bl et M o I O |
| positive or negative 3 to 5V) 9 \ gg:g“:;;:::ﬂw Max. 2800pF —
L . Reactance component Non—indﬁctlu;— ST
| Signal generator: open circuit voltage e ——— M“ -ié;—-—w —
’ Signal voltage (fo(; receiver open circuit
voltage O and load resistance of =
[ 3k to 7k§2.) BV — 16V (positive or negative)
L Receiver: open circuit voltage T W RS ;Ula_xh o
Signal voltage Min. +3V Max. —3V
Signal identification Data signal 0 1
Timing and control
signgls ON OFF
a w

Signal identification
Signal voltage  Noise margin voltage

1BV pmmmmm e TR, S -
ON
BV [mmmmm e d e —emmmmeas e
] BRI st 2 i (e GH: Pl iten, A
ov
_3v s e i il e ———— - e -
_5V ———————————————— —vgq—-—;—-—-—]-—-ﬂ.nmnuﬁm

OFF

o e —— s i

--Isv o e - -

19

igure 3. RS-232C applicable conditions _




R .
B Mode of synchronization

One of the applicable conditions is the mode of synchronization: synchronous g
asynchronous. The mode of synchronization specifies how the timing is taken to iden.
tify the beginning and end of a data signal (both the sending side and the receiving side
must interpret a particular character in the same manner).

In synchronous mode, a synchronization signal is transmitted before data is transmi.
ted. The data is transmitted after the synchronization signal is transmitted. The recejy.
ing side uses the synchronization signal to take the timing and starts receiving the data
In asynchronous mode, a start bit and a stop bit are provided for each character at the
sending side. These bits are eliminated at the receiving side. When a parity bit is also
provided, it is eliminated as well. Thus, the bits with a start bit, a stop bit, and a parity
bit, are assumed as the data.

Like many other hand-held computers and personal computers, the FP-200 employs
asynchronous mode regardless of whether it is used as a sending machine or a receiving

machine,

‘® Data transmission rate
The data transmission rate is the speed at which data is transmitted to or from the DTE,
The data transmission rate is expressed as the number of bits transmitted in a second.,
The unit is BPS (bits per second). The unit ‘baud’ is sometimes used in place of BPS,
Baud represents the modulation speed, which is the reciprocal of the transmission time
per bit.

Strictly speaking, BPS is the right term. However, in an application where two DTEs
are connected to each other, baud is interchangeable with BPS. The data transmission
rate is otherwise called modulation speed or communication speed.

As for the data transmission rate, JIS C 6361 only specifies that it must not exceed
20,000 BPS. In the section ‘Pin Layout’, it is stated that 200, 300, and 1200 BPS are
applicable to asynchronous mode, and that 2400, 4800, and 9600 BPS are applicable to
synchronous mode. In general, 75, 110, 150, 300, 600, 1200, 2400, 4800, and 9600
BPS are used as data transmission rates. In the case of the FP-200, the data transmission
rate is 300 BPS. Therefore, the data transmission rate of a hand-held computer or a
personal computer communicating with the FP-200 should be set to 300 BPS. A

Character configuration

In performing data communications, it is necessary to make clear the configuration of
data characters. The character configuration varies according to the mode of synchro-
nization. The following describes the character configuration for the FP-200 and other
hand-held computers and personal computers operating in asynchronous mode. g
In asynchronous mode, each character consists of a start bit, data bits, a parity b’lt,(q
and stop bits. The start bit is a low-level (0) signal. The data bits are a 5- to 8-bit
character code expressed by a combination of 0 and 1 (high-level) signals. Th@-pﬁfﬁ;i!?jé
bit is either 0 or 1 depending on which of the even parity and the adﬂpﬂi&?‘ﬁwﬁ
and on the data bit configuration. i

i




Some hand-held computers and person
checking is not performed). The stop
level of the stop bit is 1 (see Figure 4).

al computers need not attach a i i
parity bit (parit
bit may be 1, 1.5, or 2 bits in length. The Iogi‘::

fﬁgm 4. Character configuration T
0
l L — v | - T— |
_(LsB) (MsB) iy ¥
T T T ——— - o
:?;ti:n Data bits & Stop |
: 3 Bite - |
: g

Character:  ASCII code (41)1 s

Data length: 7 bits Example of serial data
Parity: Even parity transmission

Stop bit: 2 bits

In asynchronous mode, a synchronization signal is transmitted each time a data charac-
ter is transmitted. This signal is the start bit. The data is sent following the start bit.

The data bit length varies according to the type of data to be transmitted. If the DTE
and DCE communicating with each other use a different data length, the :
differs from the data transmitted. The FP-200 uses 7-bit code chara

the data length of the hand-held computer or personal comput
with the FP-200 should be set to 7 bits.
When the data length is 7 bits, only alphanum
a special character (character code (80)16 or

bit is dropped (interf
numeric character (cl
In order to ensure th

When it becor
(OF)1s, called

as0anda




(_E xample

------------

/ ;

’-.'OF-"_);._H(_-@T}',._ i'4'2','-_., (43) s (OEr (68) 15 (69)1s (6A)1s (OF;)I.G (44) (45) (siumrinns
| -
\_ S| code SO code S| code

In the case of serial data transmission, data is .transmitted sequeqtially fmm_
significant bit (LSB) to the most significant bit (MSB). The receiving side ls
up the data sequentially from the LSB to the MSB.

Data transmission may be performed between two locations close to each otk
less) or between two locations far apart from each other. In the latter case, ¢
transmitted over a telephone line via modems, acoustic coupler, etc. In the
long-distance data transmission, data being transmitted may be affected by
noise, causing a 0 bit to change to a 1 bit, or vice versa.

Assume, for example, that while the character A (7 bits) is being tra
changes from 0 to 1 due to external noise. In this case, the receiver
character as | having a character code of (49)16. A parity bit is used
occurrence of such a change in bits being transmitted.

(Figura 5. Serial data transmission
Character A (character code (41)1¢)
Parallel '
Parallel — ggmlg' —  Serial ;;s::-:m"gr_,pm.;
— sion sion LA
(MSB) be| | -7 1
bs|01-6- | (MsB) (LsB) ©-0
by 0 GE)- bsbs by baba b, by ®-0
Transmitter D3| 0 -@- 1[0]0]0]0]0] I @‘?
b .E@- : @.? /
b| 0 : 'E’ .
(LSB) bo| | Ml
a4 _ D}
The bits are sequentially transmitted from the least significant
to the most significant bit (MSB). Th AcourTilstae
the LSB to MSB. °Yars thien acouraulsssciseiy
\.

Parity checking is performed in two different ways: one is
odd parity. In the case of even parity, the total of logic leve
of odd parity, the total number of logic level @'s is odd (see F
A parity bit of logic 0 or 1 is attached by the transmitter T|
the same parity as the transmitter for parity 3

74



regardless of whether it is used to transmit or receive dat
data communications should use even parity a
Note that all errors in parity cannot be dcl;':cicd

bits changed at the same time or if the parity bit i,
from cannot be detected.

a. Hence, the counterpart of

For example, if an even number of
self dropped, the error arising there-

Figure 6. Parity check

Character A (character code (41)4)

(MSB) (LSB)
(1) I bit 3 of the data bit Wil b B W
ata bits
changes ' [ @ 0 & 0 o0 | (a1)
0 ¢ 1 0 o0 | (49)
* Data bits g
(LsB) (MSB)
bo b1 b2z by ba b by, |
(2) In the case of even parity 0 0 0 0 0 | 0 Thenumberof logic 1's is 2 (even). |
In the case of odd parity I R & 0 | | Thenumber of logic 1's is 3 (odd), |
(3) ]: bit 3 changes in even parity 0 0 | 0 0 | 0 Thenumberoflogic1sis3 (odd). |
¥ bit 3 changes in odd parity I 0 0 | O 0 | | Thenumberoflogic1'sis4 (even), !

|
= , "
ﬁ Stop bit
5HHE
A stop bit is used to indicate the end of a character. The stop bit is 1, 1.5, or 2 bits in
length. The FP-200 uses two bits for the stop bit. The stop bit length must be the same
between two computers communicating with each other,
The voltage of the line has a logic level of 1 when no data is being transmitted over the
line. In asynchronous mode, a start bit is transmitted before the data bits. This start bit
has a logic level of 0. Then, the data bits are transmitted from the LSB to the MSB,
Then, if parity checking is performed, one bit of logic level 0 or 1 is transmitted accord-

ing to the method of parity checking and the number of logic level 1s in the data bits.
The stop bit is sent at the end of each character. The receiver identifies the end of a

character when it receives a stop bit.

| Connection cables

ing the DTE and the DCE is provided on the DTE side (}1S C 6361).
}C;:%);gc; ";;;E?gwnnecmr, abbreviated the D-sub, is used for connection \Imth a
DCE. The fact that the RS-232C connector shape and pins provided on gf"sf":h“"g:
puters and hand-held computers have not been standardized is a§crlbal.e t? nseh:ve
sence of standard DTE connectors. As for the pins, only the ::lrcm;;i :gp ications
been standardized. The voltage (logic level), etc., have not been ;pzc fter RS-232C con-
This is due to the fact that the RS-232C standard was establishe ;ms ettt
nectors had been disseminated in the private s'ector. Makers ofhoo-mﬂ’;omecﬁo he - Slroiste
devices use pins of their own choice for their connectt_ars.lT_ (: giol; il weclﬂ;;atidns-
voltage, etc., established by individual computer makers are C 8],

£




The fact that the circuit voltage is not standarc.iized isa bottlt;snt;eck mﬁh u
nal computers and hand-held computers for serial data transmission in the fy _

Connectors 5 Ve
A 25-pin connector is provided at one end of the RS-232C connection ;
a standard connector used to connect a DTE and a DCE. This connectorg\

known as the D-sub. , i
There are various types of connectors (soldered or crimped to the connection

For example, the socket DB-25S and the plug DB-25P are available on the

Connectors are shown in Figure 7, and the shapes and dimensions are sho:
8. i
rFigure 7. Connection cables and 25-pin connectors “'ﬁ
Connection cable o
o / | 58
.r iL:I 24
S
The method of connection  25-pin connector plug and I
of this connector has not  socket specified in JIS C 6361. R
been standardized. J el
Local specifications Male 0 |
AR - .
.._!{*’.v," v
R 5
FP-200 RS-232C connection - g
cable e
RS-232C connection cable . e ’ 1l '
using flat cable = == | A
J Sy
23 '?.‘?ﬁl i




Figure 8. 25-pin connector shapes (plug and socket)

DCE side connector (socket)

Connection cable side connector {plug)

Max. 47.17
Min. 46.91

.é“ Max, 8.03
Min. 7.77

\\Zﬁ Max. 2.62 1
"NMin. 248 | \ o_r Max. 2,69
10° Pi \ Min. 2.59
in (female)  Shell 10 Pin (male)  Shell
‘ J

Pin layout

The pin layout varies in the meanings and the uses of pins according to the mode of
synchronization and the data transmission rate. Since the FP-200 operates at 300 BPS
in asynchronous mode, we shall explain the pin layout for the data transmission rate of
300 BPS and asynchronous mode operation. Figure 9 showsthe pin numbers, pin names,
and signal directions. The pin names are those specified in JISC6361. JIS abbreviations
and popular ones are shown. The signal direction indicates the direction of data flow

between DTE and DCE.

Figure 9. Connector numbers, names, abbreviations, and mm

!

| Shield (frame) ground iR Yymal ]

5 6 Cleartosend SRt B s = o
- = 2 PR e : S

8 7

g _

10

I

12

13 Al




= B s == i . —"_j
- e [ o e e e ———————— e e - - - *____,_______-_-_._-
15 !
_— -+ — S —— e — - - - PO
16
17
I PERORFICW RN S S0 0 55— : : PR O
18 Loop-back LLB O e
= - e ———————— e . - —— e
19
- - ~ - - —— - 4 P ————————
20 | Data terminal ready ER . Oy
2| Loop-back/maintenance test RLB 1 O
| 2R Call indication ‘ Ct | ————
23 '
24 , 3
R AP IO hicdan il e v
25 Test indication T S e, -

In Figure 9, a blank in the pin number column indicates that the associated pin is
unavailable with the FP-200. A blank in the name column indicates that the associated
pin is not used for 300 BPS, asynchronous mode operation. A blank in the abbrevia-
tion column (common) indicates that the associated abbreviation is the same as the JIS
abbreviation or there is no abbreviation. A
The signal direction indicates the direction of signal flow from DTE or DCE (marke
with a circle). Pin numbers 1 and 7 are provided to equalize signal reference potent
hence they have nothing to do with the signal direction. There is no }IS abbrevi;
for pin number 1. d

The following describes the pins used by the FP-200. The abbreviations are sh oV
parentheses. =

Send data SD (TXD)

This line sends data in data transmission. Data is sent from this line only
following four lines are on. These four lines can be used for handshaking (i.e
or stop data according to the status of the counterpart). .
In this case, all the lines must not always be turned on: only one line can
handshaking. Alternatively, the four lines are sequentially turned on and
lines are on, data can be output to the SD (TXD) line.

25-pin number FP-200 pin number Name

4 8 Request to send
5 .5 | chrtnund - '

6 5 mum

= : Data ermine ey




-Reteive data RD (RXD)

Data transmitted enters the DTE through this line. The conventi handshaking i
: . ers. ) ’ ention fi

not available with this line. Since data cannot enter the DTE unlg tl(:; DCE is mfa‘ts-

'ng, DR (DSR) and CD (DCD) must be on. (i

The FP-200 receives data when DR (DSR) and CD (DCD

outers and personal computers ignore these two Iinfas. v g -

SD (TXD) and RD (RTS) are used as a pair.

I3 Request to send RS (RTS)

This line is -tu-rned on when the DTE attempts to send data. It must be kept on during
data transmission.

The FP-200 outputs an off voltage during data reception, and an on voltage during data
rransmission. This line is used primarily to control the DCE. When it is turned on, the
DCE becomes ready to send. The fact that the DCE becomes ready to send can be
checked by the CS (CTS) line.

B Clear to send CS (CTS)

This line indicates that the DCE is ready to send. When RS is turned on, the DCE turns
on CS (CTS). When data transmission is completed, RS (RTS) is tdrned off and the
DCE turns off CS (CTS). s
RS (RTS) and CS (CTS) are used as a pair.

Figure 10. SD (TXD) and RD (RXD)

DTE sn(T‘x:ﬁ)' R smeﬁ’J DCE
RD (RXD) oo Bl o




%7 Data set ready DR (DSR)

[his line indicates that the DCE is ready to operate. This line is turned on by the DCE,
When this line is on, it Indicates that data can be sent or received via the DCE. After
receiving the status of the DR (DSR) line, RS (RTS) is turned on when data transmis-
sion is to be performed, With the FP-200, DR (DSR) must be on during data transmis-

sion or data reception,

m Data carrier detect CD (DCD)

When the DCE receives data, it turns on this line, informing the pTE that the DCE is
receiving data, The DTE starts receiving data when the CD (DCD) line turns on.
he FP-200 cannot receive data unless both DR (DSR) and CD (DCD) are on.

B9 Data terminal ready ER (DTR)
ER (DTR) indicates that the DTE is ready to operate. When the DTE is going to send

or receive data, ER (DTR) must be on.
With the FP-200, ER (DTR) turns on the line voltage when the power supply is turn-

ed on. This condition is retained until the power supply is turned off.
ER (DTR) and DR (DSR) are used as a pair.
| Figure 12, ER (DTR) and DR (DSR)

DTE ER(DTR) ER (DTR) DCE
DR (DSR) tj DR (DSR) et

ON
When ER (DTR) is on, it indicates that
ER(DTR)OFF the DTE is ready to operate.
o When DR (DSR) is on, it indicates th
en is on, it indi at
DR (DSR)OFF the DCE is ready to operate. x

The timings of individual lines during data transmission are shown in Figure 13,
the timings of the individual lines during data reception are shown in Figure 14.

on




Figure 13. Data transmission

FP-200

[ oTE SD(TXD)
ER(DTR)
DR(DSR)
RS(RTS)

CS(CTS)

s

ON

| BB(Txni Béka;L; W;i

ER(DTR) S A

—{ DR(DSR)

—= RS(RTS) . i
~5 B(OTB) . i

ON

DR(DSR) OFF

ON

RS(RTS) OFF
ON

CS(CTS) OFF
0

SD(TXD)




Figure 14. Data reception

DTE RD(RXD) O RD(RXD) DCE
ER(DTR) ¢ =0 ER(DTR)
DR(DSR) o= » DR(DSR)
CD(DCD) g < ©D(DCD) |
ON
mfmmace_mm
ismadvtcopm

ER(DTR) OFF
DR(DSR) OFF
#*

CD(DCD) OFF
0

RD(RXD)




._—'—_‘I'_._-_-_ ?

" Basic information about
communication mo

* —

* RO LY

Data communications are performed in either half- or fulldu
The FP-200 uses the half-duplex mode which alternates transmission and reception;

that is, FP-200 receives while the other computer transmits and the FP-200 transmits
while the other receives. Half-duplex communications can be accomplished by two
transmission lines. See Fig. 15.

Full-duplex communications require four independent lines, Each of the two computers
requires two lines; one each for transmission and reception, Thus, transmission and
reception can occur at the same time. See Fig. 16,

The above discussion stated that a full-duplex communication requires four -Indm

plex communication mode.

dent lines. However, it may be accomplished via only two lines by using different
modulation frequencies for transmission and reception, _

L]

(15) Conceptual half-duplex communication block diagram
DTE L o

Trans- 2
mitter

[

Receiver

Controller




(16) Conceptual full-duplex communivation block diagram

Dre
Parallal 1o Commurnic
Trans Lot sorial |- DCE thons DCE
mitter GONVertar milfl:ir:l.l;’ -
f I s |
Serlal to 2
Recalver [~ parallel s
aonverter Jau |
]
W R
Controllar pe—d
Control glgnals




B e e

| 4

- Preparationfor Fp-200
serial data COMmunication

-
i —

As you have learned through previous discussions, the FP-20 32Ci '

forms to the JIS-C6361 standard. Detailed desc’riptions ha?e%i-ggig;:::gace co;-
RS-232C protocol. Its protocol defines everything required to use it i g
You are now fully prepared for the following discussions. .

ﬁ RS-232C terminal on the FP-200

(]

The hardware connections, including the signal cable connectors, etc., are sumlmarizéd_
here. '

Fig. 17 shows the FP-200 RS-232C interface signal terminal connector.

It should be noted here that a special AC adapter (model AD-4180) is ,,‘.,qu;',ed_ o
using the RS-232C interface or a printer or floppy disk drive (FDD) because the inter-
nal battery supply is insufficient. : : MR

g
(17) FP-200 RS-232C terminal connector

DIN 8-pin connector
(as viewed from the ?ari :

S

The FP-200 RS-232C ter

adjacent cassette tape rec
one. If you connect the (
damaged. If the RS-
May be damaged by
COnnected external de




P

:t Connection cables

fhe F 1200 RS-232C signal cable is available as model FP-280RSC. It is highly
1 o0 want to asmemble the cable by yourself, however, the following partsare

ﬂm; Parts for RE-232C signal : . " |”
cabls avsembly ’ '" T —
6 3
) 2
Parts Hnmarkl_ =
DIN B-pin plug 3 séloct co_rract size model
o 76 connsctor cover feridncads 2
DBE26P connsctor AL
4 Bwire shislded cable 1 to2m
The assernbly roquu soldering at both the DIN 8-pin and DB25P ¢
.

7% Communication protocol

Communicstion -. Half d_uplex =%
Gynehronization i _Aﬂ'_—‘ " —
Transrmission speed !  3008Ps

Btart bits  1oi
Transmission Osta charscter length 7 bits
g:mion Parity check Even parity

Stop bits T 2bies

g Data transmission/reception timing

Refer 1o Fig. 13 for the FP-200 data transmission timing and Fi
timing.
When transmitting, the FP-200 monitors the state of tlu Qﬁ
lines each time it transmit a character, These These signals, re
:hat the DCE is operating and that the FP-200 may |
f the receiving computer wants to mpm )
thsreforo, either signa M be de
of the signals g
When a tranmllﬂm ﬁm the F

signal may be mmmﬂum |

trsmmhﬁon.

#



.« 5T o

& -
X
B gl

s 1 Preparation for serial data communication (hardware)

Fig. 19 illustrates the components required to use the FP-200 for serial data communi
insert the DIN 8-pin plugof the signal cable (the FP-280R¢ U a -
into the RS-232_C terminal co-nnectgr-re*cefbtacle at thssrga?'-rc;? i!{::eF?l,’?goagsehr;‘::ed]
practice of turning off all devices, including the other computer, before cz;'nnec-t?:
them to the FP~20(_). This can prevent damage which may be caused lby a wrong c'ofnneg
tion, and prevents incorrect operation due to faulty contacts between pins and jacks.
Then connect the DC plug of the special AC adapter (AD-4180) to the DC terminal
receptacle at the right side of the FP-200 and plug the AC plug into an outlet. The
FP-200 is now prepared for serial data communications. ' | :

ar

@] Necessary parts for serial data communications.

Connect the FP-280RC connector
cable or the one you assembled to
the RS-232C terminal connector

receptacle. Callak ol 2




S "

FP-200 serial data ;
communication softwa :

.

The FP-200 has the following program transmission and ret:ep.tion con
statements which are used to provide communications capabilities via the
interface: -

SAVE “COMO:", A (ol
LOAD “COMO:"

i rr iNPUT -
PE Al = AS #fil ber
OPEN ““COMO OR OUTPUT ile num

PRINT #file number

PRINT #file number, USING format specifications;
INPUT #file number

CLOSE

MOUNT number of buffers

The SAVE, LOAD, and OPEN commands are followed by the file
descriptor for the RS-232C). The INPUT #file number and subsequ
correspond to the statements used for sequential file processing.
This means that the RS-232C, as well as cassette tape, floppy disk, 2
with sequential data files. That is, you can accomplish serial
using the RS-232C exactly the same as reading from or writil!g to a
created on a floppy disk or cassette tape. Most problems which pre
communications via RS-232C are not attributable to software; there
or errors in the hardware connections. |
No interrupts are allowed during data reception because no sta
which provides this capability. '



i itting a i |
____.?_!Q Transmiiiing a program — SAVE *“COM 0: o

‘he SAVE “COMO:",A command allows the FP-200 u
jf:c:ther personal computer via the RS-232¢C interfa USeT 1o transmit a program to

Cﬂint € same w =
ng 3 program on 3 cassette tape or floppy disk. This command giacss e fECOrd:
which has been stored in the specified program area 1o the RS-232C terminal grqg;am
hy character in the ASCII format. al, character

When recording a program on a cassette tape, you use the cor o,
filename”, A which directs the program to the cMT tem:ii::;lf?r,;:;ntﬁgdtfsu:\ :nﬁvgm:
ences between saf:mg ;[ pro__gr‘a;n"as a hcasset i Prigan ) Niyd _
RS-232C are whether a filename follows ¢ € command word S A\E .

(he program is directed to the CMT or to the RS-232C ;?,;‘dim.v‘:‘ ornot, and whether
It should be remembered that this command always needs to be foliowedioy 4 4
which instructs the FP-200 to send the program in the ASCI| format, ' ) £
When entering a program from the keyboard, you key in line numbers and statemes
exactly as they would appear on the listing which is output to the printer. wﬁm“m"!“ ed"'ts:
in FP-200 memory, a program line number is converted to a 2-byte binary code and a
statement is converted to a 1-byte token (a binary number). When a program : iy
stored in memory is displayed using the LIST or EDIT command, the line numbers and
statements are converted to the same characters which were. RS R
A program requires less memory because it is 1 this
sequence of pairs of binary codes and token _
this internal language varies from one compu
mitted between two different compu
than a block of meaningless data in the
In order for the receiving computer to
other computer, whatever the '

same procedure as if it had been
A SAVE “COMO:” command fo
to be directed to the RS-

ASCI| format
as keyed in

Internal language
in memory



Receiving a program — LOAD *COM 0:”

Programs can be received as well as transmitted. This provides various capabilities, sychy .-.-__:-,11
as debugging a program to be run on another computer by using your FP-200, otc.,ay
well as simply reading an FP-200 program entered at another computer via the RS-232¢.
Programs to be received by the FP-200 must be in ASCII, When receiving an ASCI|
program, the FP-200 stores it in memory by converting each line number to ablnny <25
code and the following statement to a 1-byte token. o -
During this process, the FP-200 may drop parts (i.e., ASCII characters) of the program
because it does more processing than the transmitting computer. This may cause the
next program line to arrive before the current line has been processed,

Our measures to cope with this problem are to wait an appropriate interval between
program line transmissions at the transmitting computer, because there is no way for
the receiving computer to report any character dropouts during reception once it has
started. Actual programming techniques are explained later (from page 98 on),
The point here is that you can receive a program from another computer using this

LOAD ““COMO:"” command.

‘* Data transmission — OPEN “COM 0 : ” FOR OUTPUT AS # n g_

]
=0

A

When transmitting a physical data record (a line or logical record), from the FP-20
you first declare, using an OPEN statement, that you are going to use the serial
communications channel (i.e., the RS-232C). Executing the OPEN statement
the data in the specified sequential file to be accessed and, at the same time, |
(RTS) signal to be activated (or turned on) if you have specified OUTPUT (i.e.,
mission) in this statement. The FP-200 becomes ready for the transmission when
the signal ER (DTR), DR (DSR), and CS (CTS) turn on in addition to RS (RTS). T
signals control RS-232C line transmission and reception, as discussed before, /
#n or PRINT #n, USING statement directs the data specified in it to the R!
terminal. If either statement is not followed by a semicolon or comma, a seque
two characters (0D1s and OA16) is automatically appended to the data,
one line to be fed (i.e., the cursor is moved to the beginning of the new
receiving computer when the data is received, with no extra actions requir:
receiving computer, because OD1¢ represents a CR (carriage return) and
sents an LF (line feed). '
When the PRINT #n or PRINT #n, USING statement is followed by a c¢
colon, the CR-LF code sequence is not appended. Thus, a user is free te
ment terminator codes so as to best suit his particular applications since
situations where the automatic line feed is useful and situations where it is r
After all the data have been sent, the file must be closed. A sequentia
opened for both INPUT and OUTPUT at a time under the same file
COMO:). Generally, only random floppy disk files can be opened fc
output at the same time. If you wish to receive any data from
the current transmission from your FP-200, you must close the
232C channel and then open the input file before starting t
procedure is also required when you transfer from recept

T

a0



|

A Data recephon — OPEN “Cop g, gp

hen receiving a physical data record (a line
" Jeclare using an OPEN ¢ ne or logica recor

fi... *L'; by ﬁse thi S c"’aTmand, similarly tq in.ltlatf) f?m i
kst L[ causes the data to be awra'"Itinmmunlcaﬂms channel ?ﬁs ;ta Cynsmission, that
S ':flj?t::ccss via the RS.232C. ai ;It?‘l;h:ez::s atghysical record in t;mslzﬁeélf? x:cu""l this
¢ TOT ¢ - b . e | i i ¢ 0

. DTR), DR (DSR), and CD (DCD) are activres, 1 Hated when the three s e

, are activ _ ee slgna
:cgc!\':»‘-d datatI TCc:a;: b:i: accessed by your p?_ges‘i J;urg:dug;q ] gnal lines
ne statement. the data is followed by CR-LF cod Ng a INPUT #n, variable
~1ted as the end of the data. The data is stored in th ¢ sequence or a commg it is
~miter discarded. Your program should e e data
.« processing defined by the subsequent
quence of events which is used to receive

ome processing must usually be done wh PR i LY

cceiving the next record. If the next rev".:o:?c‘la gr?'?:ell gﬁ:?n?f: ?{.‘Jt“"_“"f”?’m_”“% before
~o successfully received (i.e., the record is dropped). Thus, the h.’é"‘- processing, it cannot
wust be withheld until the processing is completed, There ar:-t record transmission
sccomplishing this, such as letting the transmitting immpuw w{ﬂ‘s{:v?;ﬂmwﬁ fDl“
nission for the time required for the processing, immmtmﬂ?mmmtwmﬂw
when the processing is completed to let the transmit ng computer tﬂm " oin
data after receiving the signal, letting the computers alternate tfansmis@laﬁ mp _

tion, and so forth. Rt
[he second and third methods are reliable but have t}
load on both of the computers. Furthermore, th
receiving a larger amount of data. The first method
computer has to adjust its wait time. However, the t
on the transmitted data length and the FP-200 p
The FP-200 cannot process all arriving data.
the INPUT #n statement; the data character
“" (i.e., a CR-LF code sequence) and
not preceded by an SO code cannot be 2

The character codes 8016 and above
when they are not preceded by ar
unconditionally followed by an
Then, if any of the subsequent
automatically precedes it.
If the other computer tr
the FP-200 will contir
between two FP-200s,
PRINT #n or PRINT
COmmunicating with F
code, a

o

[ )




When the last data is received, close the RS-232C receive file using a C OSE

If you want to transmit data after the reception, CLOSE the file and OPE|
the sending file.

2% summary of serial data communications

The FP-200 serial data communications commands and statements are -
table 20. It should be noted that FP-200 uses 2 7-bit datadmmlem,u vhetho,
received data are followed by the delimiter CR-LF or not. The other w ik
after transmitting each physical data record, withhold the next |

200 until the latter completes all post-reception processing, and mfolleu h
record with a CR-LF delimiter or a comma.

(20) Summary of FP-200 serial data communications software
FP-200 Origin/Destination — of

SAVE "COMO :* , A i

LOAD "CcOMoO - *




Communication

! iy A

o ) i
et

¥ g s ]

. ot Exigl

s : el -

H.sing completed a basic discussion of FP.200 casint 4. :
crogram and data transmission and . FP??P data co
100/1100 using its signal cables, eception by cony
Fiz 21 below shows the hardware component
«er FP-1000/1100 to the Fp-m.ﬁ?ﬁ
page 87. b
After the FP-1000/1100 pre
examining how to control the
two DTEs without using a DCE

rff“j Components for mm

RS-232C
ada\pter

/’P-toooﬁ 100

K




m Connecting the FP-200 to an FP-1000/1100 ?

Table 22 summarizes the FP-1000/1100 communication P'°‘°°°':_W? r
the signals for interfacing the FP-1 000/1 100 with the FP-200 and the.ff y .. \

assignments.

(22) FP-1000/1100 communication protocol
Communication mode Half or full duplex e b
Synchronization | Asynchronous or start-s1op

Transmission speed | 378,76, 160, 300, 600, 1200, 2_‘00' 4800, B600BPS
| Start bits 1 bit

Transmission | Data character length | 7 or 8 bits

character e

configuration | parity check Even, odd or no parity

| Stop bits | 1,1.6,0r2blts

(23) Interface signals

S—

B ? RD(RXD)
4| RS(ATS) | L O——SiE OFF
e | cs(oTs) PR

g | DRIOSAY - | . sl Tl
A 2 | sa(anp) N
[ s | ooioood | AeO

24 [ ER(DTR) O———s ON

f
(25) FP-1000/1100 data transmission

FP-1000/1100

DTE SD (TXD) ¢ =0 SD (TXD) DCE

i'

ER (DTR) ¢  ER (DTR)
DR (DSR) - DR (DSR)

RS (RTS) &-

o E:cr-s}-;_. _.

CS (CTS)




To use an RS-232C with the FP-1000/1 ok
1035RS) must be inserted in the unlwal- llogérgtoptmnal RS232¢ pack (odel FP.

expansion box.

the rear of the maif uhil ot M the

b | |
on the RS-232C pack and the TERM commong nuon Of the DIP switch asseinhly

Recause a transmission speed of 300 hune i«
can be seen from the figure that you should : .
or OPEN statement with DIP switch ‘e'ttingss‘ﬁ%fg F (Fast) for the TERM commaiid

(Slow) with switch settings of 1=0FF. 2=0F|
« FP-1000/1100 DTE and DTS "~ ) \»and3

© 9T SNV OPS s used in communications with the FP-3

i
A

F, 2=ON, and 3=ON, iy &
haron e ot specify §

The FP-1000/1100 uses interface signals that the FP- {owever, thi
presents gg problem in interfacing with the FP-200. b oadss i
In table 23, only the states of the signals issued from the FP-1000/1100 e Hsted
FP-1000/1100 data transmission or reception, the states of the si Iah are the m& ’
those of the FP-200. The FP-1000/1100 becomes ready for reception when DI (DS
and CD (DCD) from the DCE turn on after ER (DTR) has been tured on. |

(24) FP-1000/1100 transmission speed selection on the R§-232C pack

3 | A F(Fast) | B (Bww)
ON ON L, | 150 a,..i.'._....--.u..-‘-va.-!!-"i;; Ju:&
4 7 e e e ;
"~ ON OFF {7 SHOEED 1 Sinind N0 i
OFF ON ~ ON . aw
OFF ON - f R ek AR
| OFF OFF N |
E OFF OFF

(26) FP-1000/1100 data

FP-1000/1100

DTE




The FP-1000/1100 becomes ready for transmission when DR (DSR) and C§
from the DCE turn on after ER (DTR) and RS (RTS) have been turned on,
When you specify a 7-bit data character length, FP-1000/1100 alphanumeric and
characters can be transmitted or received using the SO (character code OE )
(character code OF16) codes. The procedure is the same as with the FP-200,
= Interfacing between the FP-1000/1100 and the FP-200 4
Fig. 27 shows the interface wiring for connections between the FP-1000/1100

FP-200. '

((27) Interfacing between FP-1000/1100 and FP-200
Signal interface

FP-1000/1100

FP-200
SD (TXD) e (2) SD (TXD)“
RD (RXD) (@ RD (RXD)
RS (RTS) 0= RS (RTS) ! :
Cs (cT1S) (6 ek

DR (DSR)
SG (GND)
CD (DCD)
ER (DTR) ()

\

All the subsequent example programs assume that only the RS-232C pack
is turned on. Turn the switch on here. ;

(39) RS-232C pack DIP switch settings




Lo £ P-200 transmission

cnever transmitting g
arerval between tra

e FP.200. We, _'
«al to be around 550 m

'.iﬂﬂ(’ d‘m‘“‘u on s
1 determine the ¢

wmple programs M s tha

L aeemiesion wall time
1 dsta dropouts and RW
caption st the FP.200

| dets Dyte




Program transfer between an
" FP-200 and an FP-1000/ 1100

o

Let’s begin with program transmission and reception between the FP-200 and the
FP-1000/1100. Exchanging programs between different computers may not seem to be
of any use, but it actually can provide many advantages such as sharing a printer,
unified program management, improvement in program development, keyboard data

entry, program debugging, etc. 3
FP-200 uses the following program transmission and reception commands as described

earlier:
Program transmission: SAVE “COMO0 :”, A
Program reception: LOAD “*COMO :”*

When you use ‘SAVE “COMO0:",A’, to transmit the following program over a communi-
cations line for example:

Sample program:
1000 OPEN "COMO:" FGR ITHEUT AN =0
1010 INPUTEZ I, AS

1020 PRINT AS;
1030 GOTO 1010

It appears on the line as follows:

(OF)s 1 000_.OPEN_"COMO:" _FOR_INPUT_AS_.21 (0D)s(0A)s
010 INPUTH#1, AS (0D)is (0A)s 1020 PRINT..AS; (0D)

b .."'—-H..'\
(0A)s 1 030-GOTO1010 (0D)is (0 A)is (0D)is (0 A
———— e —— e — ——— o

That is, the program begins with an Sl code (OF 6) and a sequence of 0D16 and At
(a CR-LF code) is inserted at the end of each program line, and the entire
followed by another CR-LF code;two successive CR-LFs represent the end of a

Fatel



4
"

' Transferring programs hetween an FP-200and an Fp 1000/ 11
. 00

The FP—TOOO/]1OO haS d progfam tran g L%

program reception command LOAD ucosm‘ns_s‘gfl command SAVE “COMn: —» and 1
Pr?grarj:-s can be successfully transmitted f;om.the FP-200

us:n%; gogror?g:vgsymtahnds. When transmitting a program frct)o tht? Pl e
the FP-200, r, the FP-200 LOAD command requj A FPJ-OOO/“OO o
errors or data dropouts may occur. quires too much time, and RW

e

L=
[
[

3

S F
B )

the communication timing. mat, line by line as measuring
e FP-200 to FP-1000/1100 program transmission

First try to transmit a program from the Fp.

only the RS-232C pack DIP switch is turned onz(otaet?e;?zrstgf?%%ql}lg ?:Pﬁsgg&?l ‘:g?]t
The FP-1000/1100 bec_ome.s ready for program reception when you press the
[RETURNJ key after .ke_ymg in the following command, giving the para-metgrs i the
order of data transmission speed (F or S), data character length. parity, hd nUGBLY of

stop bits:

(FP-1000/1100)  LOAD “COMO: (S7E)” [RETURN
After the FP-1000/1100 is ready, transmit the p(rogra)tm _FP.,200;

(FP-200) SAVE “COMO: ”, A [RETURN) _
After the FP-200 transmits the program, both the FP-200 and the FP-1000/1100 wait
for a command entry. AN SR
® FP-1000/1100 to FP-200 program transmission RN - 5
If a program is transmitted using the FP-1000/1100 SA\
cannot successfully receive it. Thus, you first have t
tape or floppy disk and then transmit i oy line.
(filename 232CPR.BAS) to acc ish 1
This program assumes that the
format. In addition, it provides

Fis - s




(8) Initiate program transmission from the FP-1 000/1100:

Ready ? .— (Press RETURNL) '

(9) Display the line number when each line is transmitted. ;
(10) When the entire program has been transmitted, indicate wh
program to be sent or not: V4

Transferend  (Press RETURNor key in Y if there is another pro

Next file (Y/N) key in N otherwise.)
(11) When Y (or RETURN]) is keyed in at step (10), the program
Otherwise, the program terminates.

(LIST 1

FP-1000/1100 program transmission p

180 'l**la*****u1******************%**{*****i*#*&
11@ RS-232C Port ASCII file Send

1§g = FFP-1000/1120 to FP-200

1 ;

142 - File name : 232CFR.BAS

15@ Computer : FP-1002/1100

16@ - Data signalling rate : 3@@bps

i7@ - wWord length : 7bit {53
1808 ° Farity : Even il
i19@ Stop bit e

Zoo ¢ 3636 2606 I I I I I I IR IR RN AR

1000

1@21@ ON ERROR GOTO 129@

182@ WIDTH 8@
1@3@ PRINT "#% ascii file transfer *="

1@4@ INPUT "Device ",D%
1@5@ INPUT "File name “,F$
1868 °

1@7@ OPEN “COM@: (S7E)" FOR OUTFUT AS #2
1280 LINE INFUT “"Ready 7 ";Z$

1@9@ OPEN D$+":"+F$ FOR INPUT AS #1
1100 Cu=a

1118 °

1120 LINE INPUT #1,F$

113@ IF EOF (1) THEN 1Z@@

114@ CU=CU+1 |

115@ LOCATE @,%:PRINT CU:

116@ PRINT #2,F$

117@ FOR I=1 TO 1@@:NEXT I

1180 GOTO 1120

119@
120@ PRINT #2,CHR$ (@) : CLOSE

121@ PRINT:PRINT "Transfer end": BEEF
1220 PRINT "Next file (Y/N) "3
123@ Z$=INKEY$ : e ’
174@ IF Z$=CHR$(13) THEN RUN
125@ IF Z$="Y" OR Z$="y" THE!
126@ IF Z$="N" OR Z$="n"
127@ GOTO 1238
128@ ° i EET RO
129@ CLOSE:RESUME 1f 1 I




S _

FP-200 key datq
communication

s chapter discusses data communications usin i :
.,': one computer (.Lll'él‘ which has been keyed in gattgi(]:‘fhyetiogc:itijzgrcewe A
KKey data c.umi!lun|c‘ut|on_s are accompflished using the same compute'r hardware con-
(iguration and ‘||'1t;hcrlacc signal connections as with program transmission and reception
Refer to the FP-1000/1100 hardware configuration on page 93 and the signal cable
connection on page 96. Only a display device (CRT display or built-in LCD), key-
board, connection cable, and signal interface are required to try data communication.

mﬂ) Hardware configuration for key data communication j




mission and reception progran

The third program is a key data transmissic . |
real data communications capabilities (this is the “"Key Data Transmissio

Program”’). y _ L
Discussions begin with the FP-200 programs. The equ.wale_nt programs ﬁ LT
1100 and their RS-232C-related statements are explained in subsequent se ,-

l FP-200 key data transmission program A

This program inputs data from the keyboard and transmits the data 1o thi

1100.
The conditions for data transmission are as follows:

(1) Each time a character is entered from the keyboard, the character is
(2) Transmitted data records are not followed by CR-LF codes

Thus, the receiving computer has to append a CR-LF code to sach rece
record. '
A sample program for the FP-200 is shown in LIST 2). It is a very short
sisting of only six lines, but it can accomplish the functions that s
conditions. Key in this progran® in a program area sO that data transmn
tried immediately after you put the appropriate data reception Progri
1000/1100.

The program can be summarized as follows: The OPEN statement |
declares the use of the RS-232C. Data to be transmitted is input d
statement in line 1020. The keyboard keys are actually scanned so
key might be input twice or more during a single keystroke unless
vided to avoid this. In this example, this scan speed is effectively
loop in the middle of line 1020. Each time a key is pressed, the p
character. To prevent each transmitted character from being -
code, line 1030 is terminated with a semicolon, Each transmitted
played at the FP-200 when it is transmitted.
When the =) (RETURNJ) key is pressed, one line must be fed
at the beginning of the new line. This is accomplished by i
tains the LF code. After displaying the character; 18
returns to the keyboard input statement.

(LIST 2)

FP-200 key data t




] Parity

Jon Btop bit t ‘Even
.'l“ Ihkhh.hhl!hihﬁl‘l* Y 2
foew R0 290
fale OPEN "COMB: " FOR QuTP

. UT Aas #y

(020 D®=INKEY®:FOR 1=1 7O s5g. INEXT 1
JO30 PRINT W1,D%; FIF D$="" THEN 1020
jean IF DO*CHRO(lBi THEN D$=
1% PRINT D%y TRHGHINS v
tean GOTO twu2e

W

Ny FP-200 key data reception program

This section discusses a program for recewm

S o shown LIS 5 R 7 o e 0
.'1:1;:?1 000/;:; ]ogé a?m area of the FP-200 so that you can try data reception from the
The required reception conditions can be summarized as follows:

(1) Each time a character is received, the character is displayed.

(2) The CR-LF code processing is done at the receiving computer.

The FP-200 has no statement that inputs a single character from the RS-232C receive
data buffer (e.g., INPUT$). The INPUT# statement would continue to input the data
until a CR-LF code was encountered and the above condition (1) could not be satlsﬂad
This problem is solved by following each transmitted character w :

the transmitting computer. This allows the FP-200 to disp
Condition (2) implies that the FP-200 has to make th
the subsequent display from the be,gmn:ing ﬂf the new lir
CR code is received. | :

The program is LIST 3) looks sim lar tc




jaae - 4
j@i1e OPEN "COMB: FOR INPUT AS #]

1@28 INPUT #1,D%
1838 IF LEN(D$)=@ THEN D#=CHR$(1Z)+CHREC(18)
1848 PRINT D$;
1858 GOTO 1626

As you can see, both the programs in LIST 2) and 3) have no end. One
popular methods for terminating such an application program is to fi
mitted data with a character such as “$"’ which is agreed upon between
puters. The transmission program terminates when it transmits this ck
reception program terminates when it receives the character. Try to
2) and 3) programs so that the above program termination can be used.
This modification is rather simple. You are probably astonished to fi
control the two computers with this simple technigue. This example
agreed-upon character to terminate the reception program at the m:
concept can be easily expanded, for example, to use the first ap
tion mark “?”” as the indicator for redirecting subsequent data
and the second appearance as the indicator for redirecting the st
display. The character “T”’, for example, could be used to direct the
to display the time (TIME$) and date (DATE$). 2
In this way, you can exert a wide variety of control over the re
concept can be applied in the field of home automation in su
automatic cooking appliance timers and air conditioners, etc.,
the phone while you are out.

@ FP-200 key data transmission/re

A program that alternates transmission and reception of dat:
is discussed here. You can, at last, accomplish communicat
The sample program used for the following discussions i
The program is made up of three modules. The first mod
data transmission, the second module receives mmmn,

transmits data. The second and third modules are, respec
tions of the previous programs LIST 2) and 3). Ent
area for later testing.

(LIST 4)

FP-200 key data

108
11e
12e -




Computer : Fp-
Data signalling
Word length p
Parity

Stop bit

LrPEN " COMB" :
ns*"Ready 7 "+CHR$(13
PRINT #1,D%;

PRINT “<Ready ?> send,w

CLOSE

e e e
OPEN "COM@:" FOR INPUT
PRINT "receive > "j
INPUT #2,D%

PRINT D%;
IF LENCD$)><>8 THEN 1898
3 PRINT:CLOSE &

B
OPEN "COM@:"
PRINT "<cend
D$=INKEY% : FOR
PRINT #1,D%;

PRINT D#%;
IF D$=CHR$(132> THEN
GOTO 1160 !

The first module of the ab
the message “‘Ready ?”’ to
munication. When thi
communication is initiate
mitted because it cannc
FP-200.

The second modu

mode (i.e., while

the delimiter or a
record) is receive

When reception h

a line feed ar
transmitted,

line and tk




ion test methods

ata transmission/recept

— Other computer’s ke :
FP-200 key data transmission ::_—D reception mw

prograrm

Key d

- . : Other computer’s key
FP-200 key data reception <:: transmission program

program

reception program

st ] Other computer’s ke
FP-200 key data transmission/ transmissionfmceﬂ?mvs

A FP-1000/ 1100 key data transmission

gty
This program sends characters keyed in at the FP-1000/1100 to
by character each time a key is pressed.
First enter the key data transmission program, shown in list 5, i
then run the key data reception program previously loaded
execute the FP-1000/1100 key data transmission program just |
Now both the computers are ready for one-way communication
to the FP-200. Press a key on the FP-1000/1100 keyboard.
should be displayed on the FP-200 LCD. Press several keys
the keyed-in characters are displayed correctly. Then, send v

If the first test fails, check the RS-232C wiring. Is only swi
1000/1100 RS-232C interface cartridge DIP switch assemb
correct? Check them one by one. L
In this one-way communication from the FP-1000/1100 to |
alphanumeric characters. Character graphics can also b
tions. You can feed one line by pressing [RETURN key.

(LIST _ 5)
FP-1000/1100 key data

1@O 7336596996363 3696 39696 39696 36 2696 %

FAM R T R I s T




.p2@ FRINT #1,Ds .

.@s@ IF D$=CHRS (13) THEN De=Ds+Cim
1358 FRINT DS; e
;@7@ FOR I=1 TO 1@@:NEXT I

;@@ S0TO 1838

i FP-1000/ 1100 key data reception program

AR

Enter the key data reception program, shown in i

; i : ’ list
the FP-2100 key data transmission program and the1 FPGioggﬂ ':I:;) FrP 1000/1100. Run
above. !\_.ow both the computers are ready for one-way COmmum;tOgra? just loaded
200 to the FP-1000/1100. A OO RS P
Press an FP-200 key. The character sh i
iz er should be displayed on the FP-1000/1100 CRT
This program first puts the RS-232C in the receive mode and wai ivi :

: : et waits fi

When the data is received, it is displayed character by charactelr. wz;:n:v::né gg:lae
(CHR$(13), entered by pressing the RETURN key) is encountered in the received data
2 line feed takes place. : i
If any of these tests fails, find the error by checking the interface wiring and the prnr
grams in the same way as with the transmission program.

Both one-way communications have now been achieved. Let’s try two-way ﬁemmmﬁ
cations next.

(LIST 6)

3
el S T R TR R e Bl




& FP-1000/1100 key data transmission/recephi

I'his program accomplishes two-way communications l?etween the P
the FP-200, allowing message exchanges between two different comg
Enter the program from list 7 into the FP-1000/1100 and also la
into the FP-200.

First run the FP-1000/1100 program and then the FP-200 program,
200 program should cause the message “Ready ?" to be transmitted
of the communication. The “Ready ?"' message appearing on the FP.
screen indicates that the message transmitted from the FP-200 was sug
at FP-1000/1100. Then, a request-to-send message “send >" s d
1000/1100. Now send a message from the FP-1000/1100 to the FP-
are also displayed at the FP-200. The message transmission is term
a character with a character code of 1F16 or below, or a comma. Usually;

key should be used.
When the transmission is terminated, the message ‘‘receive >" is di§

1000/1100, indicating that the FP-1000/1100 is now in the recei
FP-200 keys this time. The characters should appear on the FP-10
The [RETURN] key at the FP-200 signals the end of message tran:
1000/1100. “send > is displayed again at the FP-1000/1100,
receive and send states are reversed at the two computers. Thus, the
and “receive ’ indicate whether the computer is in the send or rece
Try this two-way communication using various messages.

(LIST 7) 3
FP-1000/1100 key data transmission/reception

1 @@ 7 % 9% % 9 996969 H 3 36 I 603310 3636 IR

11@ ° RS-232C Port Key to Key

iz@ * FFP-100@/110@ <=> FF-220

15 - .
140 ° File name : Z232CKY.BAS oy,
15@ ° Computer : FP-1002/1100 A
168 ° Data signalling rate : I@@bps

188 Word length = 7hit

18@ - Farity : Even

19B Stop bit 2%~

R e e e T
i@ - o
121@ WIDTH 8@

1220 OFEN "COM@: (S7E)" AS #1

1030
104@ D$=INFUTS(1,#1)

1040 FRINT D$;
1@87@ IF D$=CHR$(13) THEN FRINT CHR$(1@);"send
1080 _ _

1@9@ D$=INKEY$: IF D$="" THEN 1@9@
110@ PRINT #1,D% # rauad
111@ IF D$<" " OR D$="," THEN PRINT:PRINT *
1128 PRINT D%;
1132 FOR I=1 TO 1@@:NEXT I
1140 cavo @98

e e aias z __,__-




(&)

e
RS-232C

signdl interfgce

o

There are often cases where, as discusse '

et e HIEH coritested in applicat?oiirllﬁirr’}thtehmgnal cables of the two computers
RS-232C signal is determined by how the Signag e 35-232(:. Tho eliress
cross, return, or open, of a signal |ine performed by p
mented in order to connect two DTEs (personal com y DCE
It is not desirable to rewire within the 25-pin puters).
because it deprives the cable assembly of compatibili

computers only. Signal lines are rewired between ’E
cost and simplest to build, it is not universally applica




__ Signal interface 2 : Connector with alligator i

Prepare two female connectors with leads which have an alligator c
soldered to their pins, each housed within a protective case. This m
increases universality because signal lines can be rewired as desired b
clip connections. Leads may be easily identified by assigning differ
leads or putting numbered labels on the clips.

ﬂ Parts
\/‘6’_—@ 25-pin female connector (DB-25S) 2 PCS
B (F®  Connector case 2 PCS
Lead wire - 15 cm/each
f Alligator clip ~ As many as
J Leads terminated wit)h
%, alligator clips Tools

Female connector
Soldering iron, solder, nippers, knife, radio pﬂm

asynchronous communications, the eight lead wires requu"ed for th&
for any computers. A

which has jumper jacks on the top. Signal lines can be rewired us
which have plugs at both ends. Inside the chassis, the connector
jacks. The chassis serves as a strong protective case and this int

as well as most universal. However, it requires the most _
the connector mounting holes and many jumper holes nee u:zi e
The following is a sample structure: VI3




ik Sl : )
M Borrngls ot (O 765 }'f.s

;‘i:"* i 0Cs
.:w gy At many e
. s As many LT
1c
A F T cfasra
Pow et g R “Po cfigonie M“ﬁl -
Wore (B Bmpe lemh As many " touired, 5 o

lead wires (Lo, 14 pairs of jumper facks) are ENOURh for
T rsonal computers. |1 this interface i used for : OW
4 LY “
M£ :; e'h‘ JRTTVNT Wiy wsed 'uf l'w "P.m are wmw
“”::W Ground, pin 1) and SG (Signal Ground, pin 7) may be Mh.
Fﬁfﬂ‘m(hn ' Y Wired
::‘M example has two jumper jacks for each signal line on “._“‘ ”*~

$G fine jumper Jacks in order to provide ground points for an oscilloscape, ere.







