Casio FX-870P
Casio VX-4

BASIC, CASL, C, ASM, FX Statistik, F.Com, DataBank
FX-870P = 64Kb, VX-4 = 8Kb Standart RAM

8-Bit-CPU HD61700 Cross Assembler from Hitachi

Dooooo
Cooooo
| jlabaonc
EODEO0O0E0 oo
ovooEnooeon O8O3
Tooooooonooo BEBEGEA

el z < JcfvIsInImE T-IxB@] - |E] EXE

OE=ELHM

® R I/ RELEN

i —
® AEBMET. ABBRAMIUPERDBN KDz ® /{UIBASICEDERIEERHDBASICHER
| SEEHEOFEEHILTERCES oM @ USSR A, CASL SIS
| SMEMLIRET/\T DT —SEBES T, Uit E2AORE 8 JOJSAPT —SORECRECEE
| @S [CEIE, AN © B} BT R GUR (T2 (OB R B
h ——

URLR alittw M i

Table of Contents

Casio FX-870P Casio VX-4

TABLE OF CONTENTSuiiiuiiieiiitieerrenierenserrenerensssseasessnssessnssssassessassssenssssssssssnssessnssssassssenssssenssssnsssssnssssnnsessnssesansassnnnes 2
INTRODUCTION ABOUT FX-870P [VX=4ccettrrriieirreeennnnssssieesesseseeeeeesssssssssssssssssssssesessssssssssssssssssssssssssssssessssssnsssssssssns 5
. BASIC OPERATIONccuuiiiiniiiennieteenerenseresseesesserenssssensassnssessassesensessessssenssssenssssnssessnssesensssesssssensssssnssssnssessnssssansasannnns 6
S 07X To NV U PUPRRPRPOE 6
1-2 BATTERY REPLACEMENT ..ettttttuutusuuseuunuunssasesesesesseesesesesssssssssessssssssssssssssssssssssssssssssssssssessesssssssssssssssssssssssssnsnnsnsssesesesssssssaaans 7
1-3 POWER ON / OFF AND CONTRAST ADJUSTIMENT ...uvveeeieiurereeieueeeeesistereesessserssssssssessssssesessssssssssssssssssssssessssssssessssssssessssssesessnns 9
L1-4 VX-4 - FX-870P = IMIODI c.eettieiiieietititeeteee e e e sessctereeeeeeeesessesuastaeeeeaeeeesasssnsssaraeeeeeessessasssssnneaeeesesanssnssssnnneeeesssessnnssnssennens 10
1-5 CALCULATION IN CAL- OR RUN-IMIODE. . cttiiiiiiiieiiiiiiiteeteeeesessesiurteeeeeeeesssesssasssnneeeseessssssssssnssnneeesssssensssssssssesseessssssssssnssnnnees 12

R ST 1 17N T RPPPRPUPRIN 15
Display 4 Lines and Virtuell DiSPIAY 8 LINE@Suuieeeueeeeeeiiiieeeeiiteeeeitee e ettt e esstteeessitaaasssatseessssstsessssssseesssssseessnnans 15

RY =] =2 OO 15

1-7 ACCESSORIES FOR THE FX=870P / VXt eeeeeee ettt ettt ettt e e ettt e s et e e s s ettt e e s sbbe e e s e abaeeessbaeeeesasbteeessnraesessnneneens 18
FP-O: ...ttt ettt et e e e e e e e e ———————taaeeaeiaa ———————aaaeeeaaaaaa———————aaaeaeeaaai—a———aataaaeeeaaaartbarataaaaaaeaaias 19
FA B ettt e e e e e ———————eeeeeeeaa ————————taeeeaaiaa . ———t———taaaeeteataa————etttaeeaeeaaaa—t——aeataaeeeeeaanrtrarataaaaeaeaains 19
100 OSSR PPUPPRN 20
PSSP PPPTPRRN 21
Y 37 OSSP PPURPRN 21

RP-8 = 8KD, RP-33 = 32KD RAM SPEICRET :cooeeneeeeieeeeeeeeeee ettt ettt s ettt e st e e e sttt e e e sssasessssasnaassssseaasnnans 22
USB-Interface-Kabel for FX-850P t0 VX-4 (IN€1 2020)ccoeeueeeeeeeieeeeeeeieeeeeeiieaeessteaaeesitseaaeesasaaaessssaaesssssssessssnes 22

1-8 ROMAII— TABELLEN (SHIFT CAPS & ...)ueiiiiiiieeeeiiiiee e ettt e eette e e ettt e e e ettaeeeeeaataeeesastaeeeeasstaeeeaasssaeeessssaeaeaasssaeeeannsseeesanrenens 24
Il. BASIC - REFERENZciteiiiiniiieeiitniiieniiienieitasistenssssnsssssnsssssssessnsssssnsssssnssssnsssssnssssssssssssssssnsssssnssssnsssssnssssnnssssnns 26
TABLE OF CONTENTS ettttttururersrususuusnsssnsssssesesseseseesesesessssssssssssssssssssssssssssssssssessssseessesesessereessssnsnnnee 26
THE FX-850P, FX-870P, FX-880P, FX-890P, VX-1TO 4, Z-1 AND PB-1000 SERIESevvteeeeeeieeiurrrineeereeesesssirnenneeseessssssssssnsnneees 29
2-01 THE BASIC TOKEN ..t teeiuttititttteeteeeseesuittetteeeeeeesessassastaaeteeeesssassssssaneeaaeesessssssssssssnseeesessssnssssssssseeeeesessssnnssnssesseeeeesssessnnnsen 30
2-2 HOW TO ENTER BASIC IMIODE ... cieieieieieieee e ettt e s e s e s e e e e eeeaeeaeeeeaeaaaea e e s s e s s e sssese s ana s saasasesasaaaaeaseesessssensnsees 31
2-3 GRAMMAR OVERVIEW ..tttutuuuiuieieieseseseeseeeesesesesesessssssssssssssssssssssssssasesesesssssssssesessssssssssssssssssssssssnssssessssesssessssseessesesssssssnreee 31
2-4 BASIC IMIANUAL COMMANDS ...eieieieietteeteteteteteeestteressssssssssasasasssssssesesseesesesessessssssssssssssssssssssssssssessssseesesseseesesesesesssssnnees 34
2-5 BASIC PROGRAM COMMANDS. .. tetetetttttetetetetetetetereresessssessssaasssssssasesessestesesesessssssssssssssssssssssssssssssmsssesesesssseeeeeereeessessnenee 37
2-6 FILE DESCRIPTOR .ttvvutvuuuuuuuuuunsasasesesesssseesesesesesesesessssssssssssssssssssssssssssssssssssesssesessssssssssssssssssssssssnsssssssessssesssssssssssesesssssnsnsees 47
2-7 BASIC BUILT-IN FUNCTIONS ..uueieieieieieeeieteteteteteteteteresessssssssssaaasassssaseseeseeseseseseesssssssssssssssssssssssssssssssessssssessesseeesesseesssssnenes 48
2-8 BASIC LOGICAL OPERATIONS, ETC. 1ieteesuurrerreeeeesesessasssnsseresessessssssossssssessessssessssssssssssesssesssssssasssssssseessssssssssnnsssssesesesssessansses 53
2-9 ARITHMETIC PRIORITY 1. uiutititttteeeetesessuatueeteeteesssessassusseeeeeeeesssassnsssssesseessssssssssssssnseeesessssssssssssssesseesessssnnssssssseseeessssssannses 54
2-10 BASIC ERROR IMIESSAGES. ... ueieieieieieeeeeeeeeteteeeseseterssssasssnanannnasaaaaeseeseeseseseseesesssssssssssssssssssssnnnsnsasessesesesessssessesesssssesnsens 55
2-11 CHARACTER CODE TABLE ...uuuueieieteieieeteeeeteteteteteseseresssassesesaaaaasssaaasessesassesesessssssssssssssssssssssssnsnsssssasessssssessssssessesssssssssnnene 58
I1l. INTERNAL INFORMATIONcuuiiiuuiiiineiiieniiieniereasisisnssssssssssssssssssssssssssssssssssssnssssssssssssssssssssssnsssssnssssnsssssnssssnnssssnns 60
TABLE OF CONTENTS ttteteututttrteeeeeeessassunsussseessesssssssasssssssseessesssasssssssssessssssssessassssssesssessssssanssnsssssesesesssssssnnsssssenseesssessnnnsnssnnnnes 60
3-1 MACHINE LANGUAGE RELATED ..utvtttetieesiesieuuurteteeeeeesssassassesseeesessssssnssssssssseeesesssssssssssssssseeessssssnsssssssssessesessessssssssssseeeeessnes 61
IMEIMOIY IMIOP...c.ccccoeeeeeeeeeieieieeeeeee e e e e e et et e e et e e et et et ettt ettt essasaassasasasasasaaasasasssesesatssssssssssssssssssssssesasssssasssesarens 61

R XTI V=t {27 K) S 63
ROM ROULING ..ottt eeeeeeeeeee e e e e e e e e e e e et ettt ettt sttt e e s aaaaaaaaaaaaaaaaesessseessssssstssssnssssssannasasasssesasasseseeseserees 68

32 BASIC RELATED tuuuuiiiieieieieiteteee ettt eeeeeettetatatasaeaa i aaesasesesasaeaaaeeeesesesesssesessssssssssnsssnsssssssssesesesesesesesesesssesesssessssssssnnnnnnnnnns 83
HidA@N BASIC INSEIUCTIONS ..o eeeeee e e et e e et e e et a e e ettt e e e aeatseaaeesssaaeeaassaaaeanstssaeasssssasesssssnaseassssaananes 83
BASIC Program and (Text) File StOrage FOIMQLueeeecuuieeeeeieeeeecieeeeeeeteaeeestataeseitasaaeasttssaeessssssaesssssssessssssaenanes 83
Storage FOrmat Of VAriQDIE DALQeeeeeeeeeeeeeieie et e ettt e e ettt e e e et e e e st a e e e st eeeeesasaeaesaasssaae e stesaeesssssasesssenes 88

33 APPENDIX e eeuuutuvtreeeeeeesessasuursaseaeetesssessasssassareteeeeessassasseeteaeteeeeeesanssnntaareeeeeeeeeeaaaha——taaeeeeeeeeeaaataatreeeeeeeeeeaannrrraraeaaeeeees 96

ST Y (O 10T R 100

file:///F:/120_Geraete/120_Geraete_gekauft/Pocket_Taschenrechner/Casio/FX-870p_VX-4%20%20%20%20%20%20%20%20---%23/Casio_VX-4_BA_A4hoch.docx%23_Toc35251536

O 1 35 72 104

4-1 SIDES FROM THE ORIGINAL IMIANUAL .cctteetiieiiiittttteeeeeeeeseeaaste bt e eeeeeeeaa s asaabeeeeeeaeeesaaaunsbeseeeeeeeesesaaannnsbeeeeeaeeaesesannnsnnaeaeeas 104
4-2 THE C-CODE IN ORIGINAL IMIANUAL.cttteeteieiiietttt et ee e e e e ee ettt e et e e e e e e s nbeabe et e eeeeeesaaaannbbe b et eeeaeeeesaannnsbeeeeeaeeeesaaannnrenneeeeas 111
V. FiCOM.ciiiiiiiiiiieiiitniiiieniiiianieieesssiesssresssssessssssssssssssssesssesssssssesssssssssssssssssssssssssssensssssssssensssssssssssssssenssssenssssnnsssannsss 127
Y TR - 130
VII. HD61700 CROSS ASSEIMIBLERcciituuiiiinniiinniiiiniiienieiianisiensisisssssssssssssssssssssssssssssssssenssssssssssssssssnsssssnsssssnssssnnsss 132
TABLE OF CONTENTS 1uuuuutttttttteeeeesseauuuseateeeeeeessssaaussseaeeeesessssssassssesaeessesssessasssssseesseeeesessnssnssssseeseesssssssssssseseeeeeesssessnsssnseeeees 132
LIST OF PSEUDO INSTRUCTIONS ..eveeteieeieuuurrereeeesessssssessssssseeessessssssassssssesseeessssssssssssssssesseesssssssssssssnneseesssssnsssssssssesssessssssnsssnnes 133
LIST OF REGISTERS ..eeeeteteitittrtererususuuusauasasasaesesasaeaeeeseeseressessssssssssasasssssssssssasssessseeeseseseesesesssssssssssnnssnsnsssssssasesesesseseesesanesennn 133
LIST OF IMINEIMONICS ... tttttttteeeeeee st bee et eeeeeeseesaussbe et e eeeeaesae s anbae bt e e e e aeeaesaaaaansseateeeeeaeeesaaassnsbaaeeeeeeeeaasaannssnbaaaeaeeseesannnnren 134
7-1 HDB1700 CROSS ASSEMBLERcetteeeeeeiaauunrerreeeeeseaaaaaauuesateeeesesesaaaaunseeseeaeeesssasaaansssseeeseeessesaaaansseneeesessssansansssseeeeeesesaennn 137
ASSEIMBIING METROM..........ooeeeeeeeieeeeeee ettt e e e e ettt e e e ettt e e et e e e e s ataeeeeastsa e e s asssaaaaassesaseasssssssasssaaansssseneenanes 137
ASSEIMBICT OPTIONS......coeeeeeeeeeeeee ettt e ettt e et e e e et e e e e et e e e asseaaeeataeaeeasseeaeasssteaaeaassesasessssesanassssnaessssenannnnes 138
Execution of Output Format and MacCRINe LANGUOGEceeeeuueieeeeiieeaessiieeeessieseessseaeesssstessssssteaessssssessssssenaeens 139

L o] 1YL =Yoo = PPN 141
7-2 IVIPU ARCHITECTURE. ...t ttttuttteeeaureressaunneeessnreeesaassetesansseessaaseeeesassetessasnaeeessansenesaanseeee s s nneeeseanseeeesassaeeesannnneessanranessann 142
= LY L =X SRS UPPINS 142
REGISEEE CONFIGUIGLION.oeeeeeeeeeeeeeee et ee et e ettt e e e ettt e e e ettt e e ettt a e e etse s e e eatseaaeasssaaeeaatsaaaeasssaaeeassssaaeasasssaaaas 142
7=3 ASSEMIBLEReettettteeeeeeeeaaitete ettt e eeeeesaa ettt e e e eeeeaa s aaae b et et e eeeeee s e nanbeeee e e e e e et ae e nhanEeeeteeeeeeeaannnbhenet et eeeeeea e nbarreaeeeeeeaaan 148
Y XX =100 o] (=3 gl o g Lo | USRS 148
PSEUAO INSTIUCTIONS ...veeeeeviieeeeeiee et e ettt e e e et e e ettt e e e ettt e e e st e e e asteaeesasseaaeaasteeasaasssaaaaasssaaeanssseaeesnsnnassssssnaanns 148
PrOGIAMIMUNG POINTS.......vviiieeeieeeeeeeeeetteee e e e ettt e e e e e e s s ettt e e e e e e ssssassstb e aaaaaaeesssssassstaaassasasssssssssstsananesssssssnnns 152
IMINE@MIONIC FOIMQL c..oevvveveieeee et eee e e e et ettt e e e s e s e e e aaaaaaaaaaeea et aeaeate s e tatatssssassanssasaaasasasasaaaaaaasesees 153
T4 IVINEIMIONIC ...ttt eee e e e e ettt ettt e e e e e s ettt e e e e e e ae s aase b ettt e eaeeeesaaasasbe e e e e eeeeeeaa s nnssseeeeeeeeeee s e nnnsbeeeeeaeeeesanaannsnraeeeeaaesaaan 155
7-5 INSTRUCTION SET TABLE ..eeeieitieeeeetetetettttttrerestssesas e seseseeeeeeseaeeseaaesesataesassssssasass e aasaaeeaesesasaesaseseeseseeeessnsssnsnnnnnnnns 221
776 APPENDIX . uuuttettteeeeeeee et eete et e eeeeesa e aa b aee e et e eeeeee e e aaantet et e eeeeeeaananteeeeeeeeeeeaeaanhaaeeeeeeeeeeeeaaannnbeeeeeeeeeeeeaaanherreaeeeeeeaeaan 221
(011 o TV s oY g Te 1o 14 o [Moo Lo [= OSSR 221
7-7 REFERENCES AND LINKS ...etuuuuttttteeeeeeeeeiesiuetsareeeeesessessassessaseeesesessasasssssssesesesssassansssssssseesssssssssssssssnnessessssnnsansssssenseesssesss 226
T8 FIGURE ..eeeeieitttee et ee e sttt e e e ettt e e e se e e s sas et e s e ms et e s aane e e e e e abe e e e s e s b et e e s ame e e e e e s b e e e e eanne et e e e neeeeeeaanbeee s e nseeee s nneeeeeanraeeeeann 227
7-9 REVISION INFORMATION.uuutetttttteeeeessasuunrarteeeeesssssssasusssaeeseesessssasssssesteseeesessssansssssesseeessssssssasssssseeesessssessansssseseeeeesesss 228
VL CASL....eiieeiiiicreiicreecrteeiereneeseeeserenesessassssnasesenssssessssenssssensssenssssenssssesssssnssssenssseensssenssssenssssnssssensssnensesennsesennnns 229
8-1 WHAT IS CASL / COMET? ..ttt eitiee ettt ettt e ettt e ettt e eeteeeetbeeeetaeeeabeaeeseeesbaeesbeaesseeeasbaeesbeseassaesataseasseesabasesbeesnbeeesaraesnsaeas 229
8-2 JAPANESE CASL WIKIPEDIA ARTICLE ..ttt iiieiettteeeeeeeeeseeiiebtteeeeeesesseuanbeateeeeeaesassaansasbeeeeeeeeeesaaannnsbeaaeeeeeessessannssrseaeeaeesansan 230
OVBIVIW.....cceeeeeeeeeeeeeeeee sttt et e e e e e e s e ee e e e e e e e e e et et e e e e et e e tatatss s e s s sasaasaaaaaaaaaaasssssasssstetstsssssssssnsssnssssssasasasanaaaaaaasens 230
(000] IR T=el ol L1 o] £ U US 230
The following Data TYPES Qre SUPPOILEU:...........eeeeeeueeeeeeeiieeeeeeeee e etee e e ettt e e e ettt e e essteaaeasstesaeessssasessssseasasssesannanes 230
THE REGISTEIrS Gre QS FOIOWS:..........eeeeeeiee e et e e ettt e ettt e e e e ettt e e s et e e e ettt eaasaassteaeeaasseaasassenasenasteeessanneees 230
INSTELUCTEION FOIMQT:...coevvveieiiieeeeeeeeeeeee e e e e e e e e e et et et ettt e e e s e aaaesasaaaaaaaaeaesetesssssstssssssssnssnnsanasasasesasasaasaesesesens 231
INSELUCTION SET SUMIMIQIY: ..ottt et e e ettt e e e e e e ettt et e e e e e e eeassbstb e e e e aaeeaesaassstbtneaeaaeesanaaas 231

(0 Y AR o T=Tol] Tole [o] £ PO OSSR 233
CASL supports the following PSEUAO INSEIUCTIONS:ccuveeeueeesiieesiisesieee ittt eetee sttt e e sttt esseaesttaesssesesstaestesessseesseasssses 233
CASL includes macro instructions for INPUt AN QUEPUL:ccceeeeeeeeeieeeesctieeeeecieeeeetceaaeestteaeestaseeesiasaaeesssaaaans 233
ETTO N IMESSOGES..c.cceveveeeieieiaiiiiisiseeteeeeeeeeeeeeeeeeetetetetet ettt tata sttt e s sssssasasasaaaaasasesasssssstetststsssssssssssnssssssssasasassaeaasasens 234
(R B 1 =1 1 PSP PURPPN 234
COMET MENU cvvvveeeeeeeiiieete e e e e ettt e e e e e e e s sse sttt e e e sesssssssssbteaasaeassssssssssstsaaeaasssssssaassstbaassassssssssssssssnnanssssssssnsns 234
EXQIMNPIE PrOGIGMS. ...ttt ettt ettt et ettt et e ettt e st e ettt e et e st e e sateseaaneenateeeanes 236
8-3 CASL FROM THE ORIGINAL IMANUAL ... eettttteee e e e e e e ettt ettt e e e e e e sauasbe et e e eeeaesaeaaansasseteeeeaeaesaaaannsbeaeeeeeeeeaaaannnbsrbeeeeaeesaaan 240
G CASL PrOJECE ,,JOZANoeeeeeee ettt e ettt e e ettt e e e ettt e e e e ettt e e e ettt e e e e atsssaaeaatsssaeasssaaaaastsaaaeastsasensssssaaesssssaaaans 241
The CASL Code in the Original MANUQIccccueeeeeeeeieeeeeeee e eeee e et eee e et etee e e ettt aaeestasaeesstseaeesssssaaeassesaeaanes 244
8-4 CASL FROM INET-SITE: HTTP://WWWSA.BIGLOBE.NEJP ... cuvvereeiireeeeeesstereeisueeeessssteressesssssesssssessssssseesessssssssssssssseesssssesessnns 256
The CASL introduction COrner — TADIE CONTONTS...........eeeeeeieeeeeeeeee e eeceeeeesteeeeettteeeesteaaesstesaeessseasessssseaaessssesannnnes 256

1. BaSiC SrUCEUIE Of CASL I PrOGITOM.....ccc.eveeeeeeieeeeeeeeeettee e e ettt e e ettt e e ettt e e e e sttt e e s s ansteasssasseaassassteaassnstaassssssenaaas 257

BB oo To I AT (o A =R 1 K11 40 Lol 1o ¢ AT UT TR 258

3. OPEIALION INSEIUCTION ...ttt ettt e et e e sttt e s e sttt e s e tn e e e s st e e s s aitseeesssnneeesannnes 259

4. COmMPAriSON OPEIratiON INSEIUCTIONcccevevvveieieiiiieeeeseteee et et e e e e e e e e e e e e e e et et et tettt s e ssseasssasesssaaassssssssssssssssssssssnnns 262

N = e T Lol g (Y (Y Lot 1 Lo IO 263

6. SRIft OPEIALION INSLIUCTION ...ttt ettt et et e ae e eae e sat e s ateeasteateeaseeteeaeesas 265

7. SEACK OPEIALION INSTIUCLIONSeveeeeiieeeeeee et e e et e e et e e e et e e e e ettt e e e e e e e e e eatseaaeaasssaaeeassssaseassssaaeasssssaenssseas 267
E R 0o 1 =V L T Ky 1 g0 Lot o Lo B SR 267
L RN 01 o T=T g [X 1 4V Lot Lo KOS 268
WOV Lo Tol g N [R 1) or o Lo) ¢ ISP UUSPPN 269
O R Y=t] o] (=Tl Ty 1) o o o] £ SR 270

NI = JF CASL - C-LANGUAGE @

uwu -u»u-m\-

L 5 am"‘ con""
LChbhbad
HEXSL FACT

[E@‘B

= oo e e EE BS| ERK
iOFF’ leMﬂ, .'N] [ouﬁ [cﬁ] (| [ﬁ (—| |=:>j lle E

) @) O G &3 62 ©) @D 1 @@ B e
au e -
DO06E6E 06 0o

RAN#H
AINT ~ SYSTEM CLEAR CONT RENUM AUN EDIT

@Wanﬂﬂﬂnmnamcuum-l

P4 nPel nCrl

.“ (\ﬁ ®r

CASIO»

RATING:DC6V, 3V =—=2SUPPLY 0.08W
use BATTERY 1.5Vx4,3Vx1

MADE IN JAPAN

. CASIO COMPUTER CO.,,LTD.

Introduction about FX-870P / VX-4

FX-870P / VX-4 is a Model Developed from PB-100 Series.
8-bit CPU Hitachi's HD61700

Caution: This content is centered on the manual included with Casio Computer Co. Ltd. VX-4.
Furthermore, there is no German or English manual for the Casio FX-870P and the VX-4.

!! This manual is based on the Japanese article and Pages from the original manual !!

http://luckleo.cocolog-nifty.com/pockecom/VX-4/HTML/fx-870p_manual_jp.html .

It ist only written in japanes languarge. Its was translated with Google-Translater in english and
manual corrected (the german translation was to crazy. e.g. Basic words was translated
incorrectly, Sentences have been translated incomprehensibly). Errors cannot be rulet out ! In
some cases there is information from the original jap. operating instructions.

However, since the release date of information is often old, please avoid making inquiries to
Casio Computer Co., Ltd.

S

Because the internal calculation accuracy is higher than that of other companies, more
accurate calculation is possible in complicated calculations and financial calculations.

10 program areas and 10 file areas,

Formula function,

Data Bank function,

Statistical processing function,

A relatively powerful BASIC that can use labels in other dimensions, but can use variable
names of up to 255 characters,

C language interpreter,

CASL,

With an 8-bit CPU called Hitachi's HD61700 and an operating frequency of 910 KHz and
many instructions of 10 to 20 clocks, the power consumption of the Pokécon is 0.08W with a
processing performance of less than 0.1 MIPS. Time is secured (0.08W is estimated to be the
maximum rating in the calculation)

©OEQ @LEEE)

This is a feature.
On the other hand, as a disadvantage,

@ Execution of self-made machine language programs was not officially supported (executable
with hidden instructions),

The liquid crystal is 191 x 32 dots, and the dot interval is perfectly uniform and suitable for
graphic display, but it does not support graphic-elated instructions. Graphics are only possible
through machine language,

Inconvenient because labels cannot be used in BASIC,

Program execution speed in C language is 10x faster than BASIC, and C language can only
be used for learning.

The VX-4 with only 8 Kb of memory consumes about 3.3KB in the system area, so an
optional RP-33 or an additional memory upgrade is required to execute the appropriate
program.

@ GO ©

Seite 5

— Mode
Power IN

Symbols Display

PRINT SYSTEM CLEAR CONT

Bl%)

I. Basic Operation

1-1 Casio VX-4

Display Languages

CASLC-LANGUA

R B T R o
lir :5-_,

.

B-Eﬁﬂﬂ“
ALL QLSH

S 1=1011c,

RENUM RU EDIT

H-.-@AMEE-B
BE-

Shift Key
CASL / F.COM
Fx/C

Mode Select/
Contrast

mm
™ o
ll m
o
0
~
|

RAN#

-E$

|'|— All Reset
CAPS / jp. Romaji

— RS232C Connector
L— MEMO / Line Search
‘— OFF

— Formula Storage Keys

Table 1-0. FX-870P / VX-4 Modi with Mode Key

L L

Cursor Keys

Alphabet Keys

Execute J

Break / ON —

Mode Key & Methode Overview of Modes
0 CAL Mode Selected when power ist switched ON
1 BASIC 10 programs writing / editing
4 DEG angle unit = degree
5 RAD angle unit = radians
6 GRA angle unit = grads
7 Print ON
8 PRINT OFF
9 MEMO IN Data Bank function

Seite 6

Kapitel: 1. Basic Operation

1-2 Battery Replacement

The battery used by FX-870P / VX-4 is

Battery for operation : 4x AA Batteries
Battery for data storage : 1x CR1220 Backup
Batterie

The battery does not start when the ON key ("BRK"
key) is pressed , or the battery needs to be replaced
when a low battery message is displayed after the ON
key is pressed.

As a precaution when replacing batteries,

e If the operating battery and data storage battery are removed at the same time, data such as
programs will not be saved.

¢ When the operating battery and data storage battery are removed at the same time, it is necessary
to press the P button on the back of the main unit and the ALL RESET button on the front of the
main unit in turn with a thin stick like a toothpick.

Is mentioned.
Replacing the operating battery (AA batteries; AA batteries)

1. Turn the three metal pig screws of the main unit with a
coin to remove the metal pig.

2. When you remove the metal pig, there is a slide switch
engraved on and off on the back of the main unit. Turn
that switch off.

3. Slide the battery slide pig while pressing ¥ to remove the
battery slide pig.

4. Take out the old battery and set four AA batteries (AA
batteries) according to the instructions on the inner electrode.

5. Refit the battery slide pig.

Set the slide switch to ON.

7. Insert a metal pig and tighten the three screws.

o

Replacement of data storage battery (CR1220) Since the life of the data
storage battery is 24 months, it must be replaced once every two years.

1. Turn the three metal pig screws of the main unit with a coin to
remove the metal pig.

2. When you remove the metal pig, there is a slide switch engraved
on and off on the back of the main unit. Turn that switch off.

3. Loosen the small screw that is tightened and remove the retainer
plate, because the bottom of the circular retainer plate with a
diameter of about 1 inch (2.54 cm) near the slide switch is where
the CR1220 is set.

4. Set the battery with the + electrode of CR1220 facing up (the side
closer to the pressing plate when the pressing plate is fitted).

5. Fit the holding plate and tighten the small screw.

Set the slide switch to ON.

7. Insert a metal pig and tighten the three screws.

o

R
1-2 Battery replacement Seite 7

Kapitel: |. Basic Operation

As a precaution when replacing AA batteries (AA batteries) or CR1220, leave the slide switch OFF during the
replacement.

Note that if the FX-870P and VX-4 fail to start normally before replacing the battery, for example because they
have not been used for a long time, the P button on the back of the main unit and the front of the main unit
Press the ALL RESET button sequentially with a stick with a thin tip like a toothpick. After pressing ALL RESET,

When the "BRK" key is pressed and the above message disappears, all memories are initialized and all stored
data can be used after being erased. In the above message, the first number following "RAM:" is the RAM
capacity of the main unit, and the latter number is the capacity of the additional RAM such as RP-33. Check the
memory capacity of FX-870P / VX-4. it can.

The = P button on the back of the main unit

e | was shocked by strong static electricity,
o Executed machine language and run out of pocket

Used when it does not operate normally due to the above.
e The P button and ALL RESET button are not obtained and analyzed, so they are speculated from other
sources, but they seem to be CPU reset and key interrupt, respectively. Therefore,

e The P button resets the CPU, performs the CPU initialization routine, and performs the minimum CPU
settings (for example, assigning constants to registers $ 30 and $ 31), but does not initialize the RAM.

e Pressing the ALL RESET button is detected by the key matrix standard input routine, and the RAM
initialization routine is executed.

| guess it is a two-stage configuration.

Low battery display When the battery is depleted and the battery needs to be replaced, a low battery
message is displayed as shown below. In that case, AA batteries (AA batteries) must be replaced as described
above.

It can be used even if this display appears, but the power is forcibly turned off after about 1 hour. In that
case, the FX-870P / VX-4 does not turn on when you press the ON key, so you should replace the battery as
soon as the low battery indicator appears. Leaving the battery without replacing it may cause battery leakage
or data corruption.

If an error occurs during programming and the battery is depleted, "Low Battery !!!" appears and then an error
message is displayed.

R ——
1-2 Battery replacement Seite 8

(note)
The button battery model number is determined by the international standard IEC60086 so that the battery

specifications can be understood. In the case of CR1220, C means that the battery system is a manganese
dioxide / lithium battery (nominal voltage: 3.0V), and R means round. 1220 represents a diameter of 12 mm
and a thickness of 2.0 mm.

1-3 Power ON / OFF and Contrast Adjustment

Power on

The right "BRK" key on the right also serves as the ON key, so press this button. If it starts normally,
the CAL mode is entered, the cursor blinks and the input is waited.

If there is no response when pressed, the possibilities other than failure and the corrective actions are
as follows.

e It is operating normally, but the LCD contrast is 0 and the display is not visible. = Adjust the LCD
contrast.

e Continued use with Low Battery, or the system is in some sort of runaway state. - Press the P button
on the back of the main unit with a stick with a thin tip such as a toothpick. If this happens, the
program or file may be safe. If you are worried, press the ALL RESET button again to initialize the RAM.

e The AA battery for operation has run out. - Replace the AA batteries and, in some cases, replace the
CR1220 for data storage.

Power off

Press the OFF button in the upper left to turn off the power.

In addition, if the computer is left waiting for input, that is, when FX-870P / VX-4 is not performing
calculations, the power is automatically turned off in a fixed time (several minutes).

This is called an auto power off function . When the power is turned off with auto power off, all mode
settings such as the number of digits are cancelled, but files such as programs, mathematical formula
storage, and materialized variable values remain saved.

Contrast adjustment
e Press the "CONTRAST" key, that is, the "SHIFT" key and then the "MODE" key.
e Contrast up with the “” key just below the LCD and contrast down with the “J{,” key. When you want

to finish, press any other key.

If this still does not display correctly, it is likely that the battery has run out.

Seite 9

1-4 VX-4 - FX-870P - Modi

FX-870P / VX-4 has 6 modes besides CAL mode like scientific calculator.
Table 1-1 shows how to enter each mode and a brief description of each mode.

Table 1-1. FX-870P / VX-4 Modes and Transition Methods

Mode
CAL

Databank /

Migration method

Default mode when power is turned on.
Press "SHIFT" (red "S" key), then press
IIOII'

Press "SHIFT" (red "S" key), then press

Memo-in Mode "g",

FX (Statistical
Calculation)

F.COM

BASIC

C Language

CASL

Press the "FX" key at the top.

Press the "F.COM" key, that is, the
"SHIFT" key and then the "CASL" key.

Press the "MODE" key in the upper right
and then press "1".

When the numeric key (0-9) is pressed
after pressing "SHIFT" (red "S" key) in
CAL mode, if a BASIC program exists in
the program number of the pressed
number, execute it. Start.

Press the “¢” key, that is, the “SHIFT” key
and then the “FX” key.

Press the “CASL” key.

Formular Storage |Keys ,IN“, ,OUT", ,CALC"

function

CALE—R

Overview of Modes

Scientific calculator-like function and formula
memory calculation function.
see FX-880P manual ...

Data (memo) input and search.
see FX-880P manual ...

Statistical calculation and training board (not
covered).

Input / output of files including BASIC
programs to external devices. File operations
such as editing / deleting.

BASIC mode.
No grafical Funktions inside

Clanguage mode.
10x faster than BASIC
see Z-1GR and PB-2000 C-manual ...

CASL mode. Only japanese manuals.
see also Sharp PC-G850V manual ...

Store often used formulas in memory for
calculation. This funktion is applied in CAL-
Mode. see FX-880P manual ...

BELXONIcT5L, HicCALE—FicL) 27,
fhDE— F»LCALE—FIZAZIZIE, X —iciiFT@*F -2 L 3

CAPS
BASIC || T
DEG
RAD
GRA

Seite 10

T—=INV T/ XEAVE—R

CAPS
BASIC
DEG
RAD
GRA

1)

Fx (#EtEt8) E—R

CAPS
BASIC
DEG
RAD
GRA

(

)
Board

Fx menu)

F.COME—R

CAPS
BASIC
DEG
RAD
GRA

[RS232C]

33558
Copy
Device

BASICE—RK

CAPS
BASIC
DEG
RAD
GRA

2 345667889
PO

33558

(

F21HE34586 78289
F2>Run/Load/Source/Cal

c)

33558

CASLE—RK

CAPS
BASIC
DEG
RAD
GRA

(CASL)

F Ol 2345678289
F1>Assemble/Source/Cal

33558

Seite 11

1-5 Calculation in CAL- or RUN-Mode

In FX-870P / VX-4, for example, you can calculate in CAL mode or use PRINT statement in BASIC.

PRINT A

Even if is executed, the mantissa part displays only a maximum of 10 digits, and values in the range of
Oand + 1 % 10 7 to £ 9.999,999,999 x 10 *° seem to be the limit, but FX-870P / VX The numerical
value of -4 is expressed and calculated internally by BCD with 13 digits for mantissa and 2 digits
for exponent (0 and £ 1 x 10 *° to + 9.999,999,999,999 x 10 *). Saved.

For example,

A =1.123456789012 and enter
PRINT A

Even if you do

1.123456789

(The SET statement only drops the number of display
digits). However, using the PRINT USING statement,
PRINT USING "#. ##HHHHIHIHIR"; A

If you execute

1.123456789012

Is output, confirming that the internal precision is up to
13 digits.

Also,

PRINT USING "#. #HHHHHHHH"; 1/9

Run

O0.111111111111100

It is confirmed that the internal accuracy is 13 digits.

FX-870P / VX-4 performs rounding after the four arithmetic operations by default (at initialization)
and MODEI10 . The rounding method is

e When the 11 to 13 digit number is 049 or less,
e Round up when 11 to 13 digits are 950 or more

It is. Also, rounding after the four arithmetic operations can be disabled by MODE11 .
To check the rounding process, first enable the rounding process with MODE10,

A =1.123456789049

PRINT USING "#. HHHHHEHHEHHH", A

And run continuously. At this time, A = 1.123456789049 is displayed, and it can be confirmed that the constant
substitution is not rounded even if the rounding after the four arithmetic operations is valid .

next,

A=A*1

PRINT USING "#. #tHHHHHH" A

And running continuously,

A =1.123456789000

Is displayed and it can be confirmed that rounding has been performed by four arithmetic operations.
Here, the following table shows a summary of operation examples in the vicinity of the rounding threshold.

B ———————————————
Seite 12

Table. Example of Calculation results when Rounding is enabled after four Arithmetic
Operations (FX-870P / VX-4)

Assigned value to A A value by A = A * 1 after MODE10 Rounding
1.123456788 049 1.123456788 000 Round down
1.123456788 050 1.123456788 050

No rounding
1.123456788 949 1.123456788 949
1.123456788 950 1.12345678 9000 Round up

Here, in order to clarify the effect of rounding up and avoid confusion, the value of the 9th decimal place of
the numerical value substituted before the calculation of the table is 8.

Also, whether the FX-870P / VX-4 is enabled or disabled can be checked by the value of RNDFL (old name:
MODED, address: & H1133) in the system area. If the value of this address is 0, the rounding process at the
time of arithmetic operation is valid, and if it is 1, the rounding process at the time of arithmetic operation is
invalid. In particular,

DEFSEG =0
PEEK (& H1133)

You can check the contents. However, the command DEFSEG = 0 is not necessary unless a DEFSEG instruction
has been issued.

For details on the format of numeric variables, refer to A-2. BCD floating-point format and internal format in
12. FX-870P / VX-4 Internal Information.

Finally, the successor FX-890P / Z-1 has a different rounding method,

e If the 11-13 digit number is less than 007,
¢ Round up when the 11 to 13 digit number is 990 or more

And the rounding conditions are getting stricter. The rounding conditions for models prior to FX-870P / VX-4
are unknown because the authors do not have them.

(note)

In the case of Sharp's pocket computers, PC-E500 series models such as PC-E650 support double precision and
can store 20 digits with 24 digits of computation (basic is single-precision and almost the same as conventional
models), but most The model is 12 digits for computation and 10 digits for storage. The 11th and 12th digits
are rounded, and the last byte of the 8 bytes stored in the memory as a variable value is 0, and the information
is damaged (PC-1350 and PC-G850V have been confirmed to work). For this reason, Sharp's pocket computers
are designed to easily accumulate errors when performing complex calculations. This is in contrast to Casio's
Pokémon, which basically stores 13 digits of precision as described above.

Therefore, Casio's pocket computer seems to be superior to Sharp in terms of calculation accuracy.

Seite 13

use ENG

FIRE 1234567890 % 0.123456789 235K THRKD 7 X\,
BIF .2
ORBEAEEREE]E) 1| 12345687890_
@ | g @ | 12834667890
® | [nd ®| 1.234587B8E+09
® oOCnEEeEEBsE@ @ |@®.123456878B9_
ElE])
® | Exd ®| ©.123456789
® | (g ® | 123.4587B9E-03
fFIEH 0.12345X0.00001 DHER 2IFH THRDH 7% E 1,
B1F R
O gONEEBEXE M |@.12345%0.00001 _
REE) =) =))
@ | (2 @®| ©.0000012345
® | [®| 1.2345E-08

iz, REEO DB OMEEZEZ 5ICIIKRD LY ITBRIELE T,

BR{E FR

@ | [~ @| 1234.5E-089

® | [® | 123450@E-12

® | (g ®| 12345000@0E-15

@ | msS @ | 1234500E-12

fr) == 1234.5E-09

® | s @| 1.2345E-06

@ | s @| @.0012345E-03

(DR = | @.000001234E+00

@| s @| ©.000000001E+Q@3

Angle Modes
% # gk | BeESS H {E
3 (7 7)) — W) | DEG . W@ | ANELDE@E
MR (327~ WD) | RAD o HE @ ANEDEMOE
75 kWi GRA | grad =26 @ ANEDODE
— A L@EBEEDILRYERO
% Fr 15

R (7 7) — B

0" 30° 45° 60° 90° 120° 135° 150° 180°270° 360°

MEFE(Z 7 » W)

0 =6 m/4 n/3 m/2 2x/337/45%/6 = 3x/22m

77y FRAL

0 100/3 50 200/3 100 400/3 150 500/3 200 300 400

Seite 14

1-6 Display

Display 4 Lines and virtuell Display 8 Lines

11111111'IH'IH'IHH'IH]'I'I'IH'I'IH

. ppRR
. 3333
1
t laaaa
ﬂ@gz:ff 5555 ®REBIBT &
s 6666 AN
7777
¢ igsss S
_______________________________________ e
0.0)
ABCD X“\ZZZI"" T
3] TUKL h
MNOP
(0,31) : (190,31)
Selftest:

(BASIC) SYSTEM* / ENTER

CASID it P =L1 CASL+C-LANGUAGE

Seite 15

&
B
it

“%@ﬁ

TSR R

= HREE B

& E R AE

coefabhil
LU ERE

CDEFGHIIE

Bx%
ux%

nxﬁ

Ex

%
i
2

-EEE R

%%EEEE
TEEODE G

% %% I

ERLDR Nl

Seite 16

Seite 17

1-7 Accessories for the FX-870P / VX-4

R 2 MEnEkr —7ILSB-60 £ 12 ($SB-62

s
u
SB-60 (ﬁ-at:ﬁﬂ) ‘
TF4ARZ =+ 3.54FFDD n 18 7x—2A s
] BKB MR 32KBH 3% o4 VX-4
(MF2-DD) (MD-1108) RAM/ S RAM/Sw 5 =7 b (FA-8) RS-232C4 — 7L
(RP-8) (RP-33)

F——]| T>%7x—2A

F—&La—4— Ry R AT
(FA-6(5)) ;

; 5 TT1 n) N=YFNaAE21—5%
Pol|i v b4 —7 LSBT RS-232Cr —7

LE1-]
3
e bR FTY LS =TI : EFLNHhTS—%
PK-178) —

¢ |
, sa-u@%j q:] SB-43
S ;i (s
.= H | g
(FP-100) (FP-40(D) P —
d&70v57) s Fr3o8—7yL%

Kyoros Room Blog:

B ———————————————
Seite 18

FP-40:

T Tales

0) (= &9 (@) ()) (Be)

FA-68
T MTH RS-232CH
Axsy— AR I— .
ACPT¥75—HR g:i;gf
w2

=0)}

MT/RS-232CHN WA 2 1 v F
BEA1 v F

—

i

i

Seite 19

FA-605) ey b F—-FLa—¥-8F

e @ |ICT
[

EARREMMIC

DIN(8 E>)
M 77 A\ 0 f)

&y
.;, b4 —7 I (SB-7: BI58)
EAR—HA (A k) -BVWTSY F) VE—- I EFOLEVAEY FTF—7LO
REM—UE—}Parybta—n-Run735% ‘ —5—-B/ER. VE-FTFIREZ
MIC—AHB(ZAL2)FWTFY CH2E&EFHA,
MD-110
P N
\E aAxo s —
fa ol i Sl R i A &
TT /MD~|10®0):|$75’-
BaeocE

NN _-@g%@@'
TWERANNwOo® es BB £33
i@ o o0 e DRBHE
B DROOBmMO e 0))E (ExE)

Seite 20

FA-8:

Ao X
=N
(sB-60)

GBEs 1)

SB-60F 7~ (&. SB-62(BI5E) TVX-4EL A#FERL T. 7O ¥ S LT — % #RS-232C
OHESAEERBLTEXTZI A TEET,

LED

RC-232Ca* 24—

¥FA-8(IFA-6Q L R4 Y . RTS-CTSH LUDSR-CD-DTRIZ>a—FahTuanNT, ESOHBEEITEEHA,

RS232C:

BASICTns L7740z)7~{P B 1 2 3 4 5 6 7 8 9 [RS232C] |«M&F/\12
FRE-FENOTIFLIU7-|F x 1 2 x 4 5 6 7 8 8 29488

W& 771v— PO>RS2323C / MT / Disk / Switch |71z

BPS [MEXMY] Parity [E] Data [8]
Stop [T1T] CTS [OFF] DSR [OFF]
CD [OFF] Busy [ON] SI/SO[O0OFF]
End [ON] MTphasel@] MTspeedl[F]

e
Seite 21

Kapitel: 1. Basic Operation

RP-8 = 8Kb, RP-33 = 32Kb RAM Speicher:

L et

<

I

04703 HUApd Gl

wanf b 30N

1-7 Accessories for the FX-870P / VX-4 Seite 22

Kapitel: . Basic Operation

USB-Interface-Kabel for FX-850P to VX-4 (Inet 2020)

e
1-7 Accessories for the FX-870P / VX-4 Seite 23

1-8 Romaji — Tabellen (Shift CAPS & ...)

7 5 15| ™ 5| 5| =+ 5|
- F 4 7 3 *
AT A I U E 0
pe 7 KA * KI Z KU o KE 2 KO
T CA cuU Co
bk # ¥ o y o
vk R ek s GU GE G0
il S A o & i A SU * S E Y S0
BT SHI
o CE
e + ZA > 21 x ZU + ZE o Z0
T
31
55 z TK ¥+ T'] v TE -3 TE ¥ T
(&) CH I TSU
o 2 F W 7 K
TIT DA DI DU DE DO
. + = X Hr /
+ 17 NA NI NU NE NO
N 2 HA = H I 7 HU ~ HE N HO
E) FU
' 3y e Wi ~ ¥
INTT BA BI BU BE BO
e ’% e 7 i A
INFT PA PI PU PE PO
— - 2 A A x
7 MA MI MU ME MO
e +* 4 = 4= 3
+ Y A Y 1 YU YE YO
e 7 RA y R I v RU v RE = RO
Z LA L. LU LE LO
i 7 04 v Y =
et WA Wi WU WE WO
Pl g
v N, X
sem < 2B 4 ¥a ¥ o
F v T KYA KY I KYU KYE KYO

Seite 24

7 5| A 5 * 5| x5 + 5]

¥ ¥4 ; ¥ ¥ ¥
GYA dyr =] gyl b= g¥E =1 @¥h

27 24 Z 9 7 7 *
QA QI ou =1 QE QO
x| SYA |¥4]| sYI |[¥=2| sYU |¥=| SYE |[¥=3| SYO
SHA SHU SHE SHO
x| zva |¥4] zv1 |P=2] zyu [F=]| zYE [¥=2] zvo
JA JU JE JO
JYA i JYU JYE JYO
Fx| tya |F4]| Y1 [F=] TYU |F=| TYE [T2] TYO
CYA CYI CYU CYE CYO
CHA CHU CHE CHO

Fx F4 Fa Fx F 3
DYA DY I DYU DYE DYO

B T4 ¥ a F vaE- |
THA THI THU THE THO

_— - |1F* 7" 4 T 7z 7 3
7 DHA DH I DHU DHE DHO

_ = =4 =2 == =3
= NYA NYI NYU NYE NYO

¥4 ¥4 ¥a ¥ ¥a
PYA PYI PYU PYE PYO

k¥ k4 B kx =]
HYA HY I HYU HYE HYO

'y k4 E'a. Ve t =
BYA BYI BYU BYE BYO

77 74 P 7
FA FI FE FO

7+ 24 72 e =
FYA FYI FYU FYE FYO

3 34 Ia Iz Ig
MYA MY I MYU MY E MYO
Y% RYA |[Y4| RYI [Y=2| RYU [Y=]| RYE |Y=3]| RYO
LYA LYI LYU LYE LYO

vy v 4 7 v v %
VA VI VU VE VO

Seite 25

Kapitel: [l. BASIC - Referenz

II. BASIC - Referenz

Table of Contents

How to enter BASIC mode
Grammar overview
Manual commands
Program commands

File Descriptor

BASIC Built-in Functions
BASIC Logical Operations
Arithmetic priority

BASIC Error messages
Character code table

O ooNOUAEWNE

=
o

= LINE Function Memary F.TOP — F.END — L.TOP — L END —— DEL.
- - @ - @)L L) IE]
EB W) E El - U '

| aa |

e
Table of Contents Seite 26

List of Manual Commands

LIST, LLIST RENUM NEW PASS RUN
SAVE LOAD MERGE VERIFY EDIT
DELETE SYSTEM CONT LIST # SAVE #
LOAD # MERGE # NEW #

Note that the commands for VERIFY, SAVE #, LOAD #, MERGE #, and NEW # have been deleted
on FX-890P and Z-1.

List of Program Commands

ANGLE BEEP CLEAR DIM ERASE

END DATA READ RESTORE FS%I}{E;]TPNEXT
GOTO GOSUB RETURN oo THER INPUT

LET ON-GOTO ON-GOSUB PRINT, LPRINT PRINT USING
REM SET STOP READ # WRITE #
RESTORE# CLOSE CLS DEFSEG LOCATE
DEFCHRS$ POKE TRON TROFF VARLIST
INPUT # LINE INPUT# ON ERROR GOTO OPEN PRINT #
RESUME FORMAT FILES KILL NAME

CHAIN STAT STAT CLEAR ~ MODE

There are no graphic-related commands such as LINE and DRAW, CALL, SWAP, WAIT, REV,
NORM, OUT, and OUTPORT supported by FX-890P and Z-1GR.

List of Built-in Functions

SIN COS TAN ASN ACS

ATN HYPSIN HYPCOS HYPTAN HYPASN

HYPACS HYPATN SQR CUR A

EXP LOG LN ABS INT

FRAC FIX SGN ROUND (RAN #

m, PI DEG (REC (POL (FACT

NPR(NCR (FRE DEGR DMS
SUMX, SUMY,

CNT SUMX2SUMYZ Iriy' spusphy LRAVLRD

COR EOX, EOY & H DMS $ (LEN (

MID §$ (CHR $ (LEFT $ (RIGHT $ (STR $ (

VAL (HEX $ (ASC (VALF (EOF

Seite 27

ERL ERR PEEK DSKF TAB
INPUT $ INKEY $

The functions INP, INPORT, POINT, and TIMER supported by FX-890P and Z-1GR are not
available.

Logical Operations

NOT AND OR XOR ¥
MOD

Although not described in the BASIC manual, it is described in the operation text, but logical
operators are provided.

Error Message List

OM error SN error ST error TC error BV error
NR error RW error BF error BN error NF error
LB error FL error OV error MA error DD error
BS error FC error UL error TM error RE error
PR error DA error FO error NX error GS error
FM error OP error AM error FR error PO error
DF error

In FX-890P and Z-1GR, LB error has been deleted.

Seite 28

The FX-850P, FX-870P, FX-880P, FX-890P,
VX-1 to 4, Z-1 and PB-1000 Series

These machines have a new implementation of BASIC, called JIS Standard BASIC by Casio. The PB-
1000 has a RAM file system while the FX and VX systems retain the ten program areas of the earlier
machines. The internal encoding is ASCII but the BASIC keywords and line numbers are encoded
differently (line numbers can now reach up to 65535, not only 9999.) The extended character sets
differ between the PB-1000 and the other machines of the series. The PB-1000 shares the PB-700
character set with special graphics while the FX, VX and Z systems show math and science symbols
instead. The Z-1 and its sibling FX-890P lack the tape interface.

All machines except the PB-1000 connect to the FA-6 interface. This interface offers a higher
transmission speed of 1200 bits per second. The data block format is a variant of the PB-700 scheme
but the encoding of BASIC programs is different. It is possible to load a file saved with SAVE, A on a
PB-700 into the FX-850P, and the other way round is possible, too. You have to restrict the speed to
300 bits per second (SAVE" (S) " and LOAD" (S) " on the FX-850P.) I could only partly test the tape
interface with the VX-1 or FX-870P because I could only write but not read programs or data through
the FA-6 interface with these machines.

The FX-850P/FX-880P systems can read tapes from the PB-100 series with special commands
(PBLOAD, PBGET).

The PB-1000 has a similar connector but mechanical and electrical differences inhibit the use of the
FA-6. The PB-1000 uses the FA-7 interface which offers even higher transfer rates (up to 2400 bits per
second, selectable by DIP switch on the interface.) The Z-1 and FX-890P no longer support tapes but
can still be used with the bas850 source text translator and a serial or USB interface.

Memoire Gra[:.lh I"c.lh Lib o Kata Nb | RP
Base | Max | Basic |Lig, Kana

FX-840p 3536 (36 304 ® 2 | FaE ASh [CASL] « 0] -
FX841p 3536 (3B 304 " 2 | Lib? | STAT|TABLE v 11 -
FX-850p 3630 36 304 (" 2 |Lib116 ® 11 -
FX860p (21 456|564 224 x 2 (LB 1B d o] -
FX860pvc (21 312|154 050 " 3 |LibtdE CASLl B
FX880p |21 45b(54 224 " 2 [Lib 116 ® 11 -
FX890p (51 180|583 945 v 4 | Exd 3 Ash [CASL] 11 -
Z1 18 412151 180 v g | Fx3 Co| ASM JCASL] 1 |33
Z1GR 18 412|151 180 v g | Exd I Axh [CASL] 11 -
VX-1 ® 2 B -
VX2 3352 |36 160 " 2 | Bx i CASL] 11 -
FX870p (17 179149 D47 ® g | Eud E CASL| 1| -
VX3 3 385 36123 ® & | P i CASLl 11 -
VX4 4 891 (37 B&Y " e S CASL] # 1 |=a

Seite 29

2-1 The BASIC Token

ABS FACT ON TAB
ACS FILES OPEN TAN
ALL FIX OR THEN
AND FOR QUT TO
ANGLE FORMAT TROFF
APPEND FRAC PASS TRON
AS FRE PEEK
ASC Pl USING
ASN GOSUB POKE
ATN GOTO POL VAL
PRINT VALF
BEEP HEXS$ 5 B VAR
HYP VERIFY
CALC RAN#
CHAIN IF READ WRITE %
CHRS INKEY$ REC
CLEAR INPUT REM XOR
CLOSE INT RENUM
B RESTORE
CNT KILL RESUME
CONT RETURN
COR LEFT$ RIGHTS
COS LEN ROUND
CUR LET RUN
LINE
DATA LIST SAVE
DEF LLIST SDX
DEFSEG LN SDXN
DEG LOAD SDY
DEGR LOCATE SDYN
DELETE LOG SET
DIM LPRINT SGN
DMS LRA SIN
DMS$ LRB SQR
DSKF STAT
MEANX W
EDIT MEANY STOP
ELSE MERGE STR$
END MID$ SUMX
EOF MOD SUMX2
EOX SUMXY
EOY SUMY
ERASE NAME SUMY2
ERL NCR SYSTEM
ERR NEW
ERROR NEXT
EXP NOT

NPR

Seite 30

2-2 How to enter BASIC Mode

(1) Press the MODE key and '1' in succession to enter BASIC mode. Below the LCD screen is a table
showing the combinations of the MODE button and numeric keys.

(2) In BASIC mode, pressing the SHIFT key (red 'S' key) and the numeric key in succession selects
the program number of the number that was pressed and becomes the target for editing and
execution.

(3) In CAL mode, if you press the SHIFT key (red 'S' key) and the number key in succession, if there
is a program in the program number of the pressed number, that program is executed.

2-3 Grammar Overview

Here, basic knowledge of BASIC is omitted. The features of FX-870P / VX-4 BASIC are as follows.

e There are 10 program areas PO to P9 that can be stored. Therefore, there is no problem even if
each program has the same line number. However, there are no scoping rules for variables, and
all are global variables. This is a major feature of CASIO BASIC.

e There is a data bank area (file area) FO to F9, and BASIC allows input / output via WRITE #,
READ #, etc. Therefore, the calculation results can be output to a file and saved.

e In Sharp, the label that was implemented in the initial pocket computer is not implemented, and
it is specified by the line number or program number. Casio's last Pokémon FX-890P / Z-1 was
the first label to be mounted.

e Sharp's pocket computer BASIC can execute machine language with the CALL instruction,
where as Casio cannot execute Machine language except for a few models such as PB-1000
and FX-890P / Z-1. FX-870P / VX-4 does not officially support machine language execution,
but can execute machine language routines with the hidden instruction MODE110 (execution
start address).

2-2-1 Structure of sentence Each sentence (line) is composed as follows.
[line number] Command (Instruction) Operand [: Command (Instruction) Operand; [: = - -]]]

The Line-Numbers can be 1-65535. The Line-Length was 255 Chjars.

A sentence consists of a command and an operand, separated by a colon (:). If a line number is added
at the beginning of the line, it is interpreted as a program and stored in memory. If there is no line
number, it is executed directly after pressing the EXE button.

2-2-2 Variables Variables are classified into four types depending on whether the data type is
numeric or string, single variable or array variable.

Table 2-1. Classification of BASIC variables

Single variable Array variable

Numeric Numeric variable | Array numeric variables
Data type : :
Character (column) |Character variable | Array character variable

Seite 31

The naming method for variable names and array names is as follows.

@ Must not contain reserved words from the beginning. Conversely, reserved words are a memory-
saving specification that allows delimiters such as white space to be omitted.

@ The first character string must be one of uppercase letters ('A'-'Z'), lowercase letters (‘a'-'z'), or
kana (ASCII code: & HA6- & HDF).

® Except for the beginning, it must consist of uppercase letters, lowercase letters, kana, and numbers
(IOV_|9|)'

@ The length of the string must be no more than 255 characters. The length of the standart string
AS to Z$ must be no more than 30 characters.

Handling of arrays is as follows.

(1) An array is first declared with a DIM statement.
(2) The array subscript is an integer greater than or equal to 0, and the fractional part is truncated.

(3) The dimensions of the array are written in the CASIO manual and the range allowed by the

internal stack, but in reality, 255 dimensions is the maximum in terms of work area representation.
(Note 2)

(4) The maximum value of the subscript is the range allowed by the storage capacity.

The used memory size of the variable is listed in (Note 1) at the end of this chapter.

Notes on variables and arrays are as follows.

(1) Variables and arrays are commonly used for all programs (P0-P9).

(2) Variables are reserved for their first use.

(3) An array variable cannot be used unless an array declaration is made in the DIM statement.
(4) Character variables are stored in the character data area specified by the CLEAR statement.

@ Uppercase and lowercase letters are recognized as different characters. For example, A and a
are separate variables.

(6) Numeric variables, character variables, array numeric variables, and array character
variables with the same variable name can exist simultaneously. For example, DIM A (10) and
A'$ (10) can be used while using A and AS.

Care must be taken because these can cause bugs. VARLIST is a useful command for debugging
because it lists the names and types of variables that have substance when executing programs.

2-2-3 Valid only in a comparison operator program. The result is -1 if true, 0 if false. Since

comparison of character strings is complicated, Table 2-2 shows the operation of comparison operators
depending on the data type.

Table 2-2. Comparison operator behavior

Data Action Example of result
type use
PRINT 123> 45 |
(true)
Numeric Compare numerical values.
0
PRINT 123 <45 (false)

Seite 32

PRINT "ABC" -1

The character code sizes are compared in order from the <"ABD" (true)
beginning. PRINT "DEF" 0

String <"ABC" (false)
When the character string is the same from the beginning and PRINT 0
one i.s included in the other, the shorter character string is "ABC"> (false)
considered smaller. "ABCD"

2-2-4 Character operators Only + (plus) of the four arithmetic operations are valid for string
operations. + Performs the operation of combining left and right strings, and the result must be within
255 characters. For example, "A" + "B" results in "AB".

(Note 1) Variable memory usage Numeric variables and character variables are allocated to memory
when they are used for the first time. The bytes used at that time are as follows.

Numeric (Variable name length + 12) bytes are secured from the work area.
variable:

Character (Variable name length + 4) bytes are secured from the work area, and (String length +
variable: 1) bytes are secured from the character area.

Array variables are allocated in memory when they are defined with a DIM statement. The bytes used
at that time are as follows.

Array ((Variable name length + 4) + (array size * 8) + dimension * 2 + 1) bytes are secured
numeric from the work area.

variables:

Array (Variable name length + 4) bytes are allocated from the work area, and ((array size) +
character dimension * 2 + 1) bytes are allocated from the character area.

variable: When a character string is assigned, the character area is used for the length of the

character string.

Refer to “2-3. Variable data storage format” in “12. FX-870P / VX-4 internal information” for details
of the variable storage method.

(Note 2) Maximum number of dimensions of array variable

The dimension of the array variable is stored in the +1 term in the used memory size of both array
variables in (Note 1), that is, 1 byte. Therefore, the maximum number of dimensions of an array
variable is 255. However,

o It is impossible to define 255 dimensions because of the restriction that must be declared in a
DIM statement with 255 characters per line.

e In principle, 255 dimensions can be realized by directly manipulating the BASIC work area
using PEEK and POKE statements. However, in order to declare DIM A § (1,1,1, ..., 1), a huge
memory of 2 259~ % [Z [& 5.8E + 78 bytes (in short, 255 bits) is required. .

e Declaration equivalent to DIM A $ (0,0,0, ..., 0) can be realized if the memory usage is taken
into consideration. However, the number of elements in an array variable is 1, the substance is
just a variable, and the declaration itself is meaningless. In addition, since a 255-dimensional
index is calculated for accessing variables, the loss is large in terms of calculation speed.
However, FX-870P / VX-4 can declare 0 (though meaningless) as the maximum DIM index.

e
Seite 33

2-4 BASIC Manual Commands

Manual commands cannot be executed in the program.

{} Indicates one of them. However, when executing with BASIC, {} itself is not entered.
[] Can be omitted. However, when executing in BASIC, [] itself is not input.

Commands marked with * can also be used in CAL mode.

Table 3. Manual Commands

SULLELL Format Function Example of Use
Name
LIST {LIST, LLIST} |Display all or part of the program 1. LIST: 'Display from the
LLIST { contents on the screen. When top
LIST is LLIST, output from the |2. LIST 30: 'Display line
e [Start screen is output to the printer. number 30
number] 3. LIST 20-80: 'Display line
[-[End numbers 20-80
number]] 4. LIST 20-: 'Display line
o . number 20 and later
e ALL 5. LIST -80: 'Displays from
the first line to line number
} 80
6. LIST.: 'Display last line
processed
7. LIST ALL: 'Display
programs in all program
areas
RENUM RENUM [new |Renumber lines at regular 1. RENUM 100,10,10: 'Set
line number] [, |intervals. The default values for line number 10 as new line
[old line the new line number, old line number 100, and then
number] [, number, and increment are 10, the renumber line numbers at
incremental]] first line number, and 10, intervals of 10
respectively.
NEW NEW [ALL] Erase the program in the currently |8. NEW: 'Erase program in
specified program area. When specified program area
ALL is specified, all programs in |9. NEW ALL: 'Erase
the program area are deleted. programs in all program
areas (P0-P9)
* PASS Sets or cancels all program areas |10. PASS "CASIO": "When
PASS "Password" and all file areas. executed first, operations
such as LIST and EDIT are
disabled for each area. It is
canceled by executing
PASS "CASIO" again.
RUN RUN [line Execute the program from the 11. RUN: 'Run the program
number] first line or specified line. from the first line

12. RUN1000: 'Run program
from line number 1000

Seite 34

SAVE SAVE [ALL]" |Outputs the program to the file 13. SAVE "0: DEMO1.BAS":

File descriptor " specified by the file descriptor. 'Output the program with
[, A] The target program is the the file name
program in the currently specified "DEMOI1.BAS" in the
program area, or the program in floppy disk.
all program areas when ALL is 14. SAVE "CASO: (S)
specified. However, ALL- DEMO2.BAS", A: 'Output
designated output destinations are the program in ASCII
limited to cassette tapes. When ", format with the file name
A" is added, the output is ASCII. "DEMO1.BAS" at normal
The ALL specification is not phase and slow transfer
available for FX-890P and Z-1 speed (300bps) on the
BASIC. cassette tape.

15. SAVEALL "CASI: (F)
P09": 'Outputs the program
in the entire program area
with the file name "P09"
with reverse phase to
cassette tape and high
transfer speed (1200bps)

LOAD LOAD [ALL]" |Reads the program of the file 1. LOAD"S,E, 8,1,N,N, N,
file descriptor " |specified by the file descriptor. B, N": 'Load the program
[, A] The reading destination is the from RS-232C. Refer to
currently specified program area, the file descriptor for the
or the entire program area when RS-232C settings.

ALL is specified. However, ALL
specification is limited to LOAD
from cassette tape. When ", A" is
added, ASCII format program is
read. The ALL specification is
not available for FX-890P and Z-

1 BASIC.
MERGE MERGE " file | The program of the file specified 16. MERGE "0: TEST.BAS":
descriptor " by the file descriptor is mixed 'Read the program of the
with the currently specified file "TEST.BAS" in the
program area. floppy disk and mix.
VERIFY VERIFY " file |Check the file recorded in the 17. VERIFY "CASO: TEST":
descriptor " cassette file. In FX-890P, Z-1, 'Verify that the file
this command has been deleted. "TEST" on the cassette
tape is recorded correctly.
EDIT EDIT { Displays the program in the 18. EDIT: 'Start editing from
currently specified program area the first line of the
e [line and enters edit mode. program
number] 19. EDIT 30: 'Edit line number
. . 30
20. EDIT .: 'Edit the last line
} handled
DELETE DELETE Delete part of the program by line |21. DELETE 50: 'Delete line
[starting line number. If there is no argument, number 50
number] [- SN Error occurs.

e
Seite 35

[ending line 22. DELETE 20-80: 'Do line
number]] numbers 20-80
23. DELETE 20-: 'Delete line
number 20 and later
24. DELETE -80: 'Delete line
number 80 from the first

line
* Without arguments, printer (PR) |1. SYSTEM: Displays the
SYSTEM |SYSTEM [*] ON / OFF setting, trace mode BASIC system settings

(TR) ON / OFF setting, CLEAR 2. SYSTEM *: Test mode
statement setting, text area free

capacity (FREE), variable area

(V) free area capacity, characters

Displays the free capacity ($) of

the area.

Enter the test mode with the

argument "*" as a hidden

command (Reference (1)).

* Resume execution of a program |1. CONT
CONT CONT that was stopped with the STOP
statement or STOP key.
* Displays all text data writtenin |1. LIST #
LIST # LIST # the data bank area "F0". When
LIST is LLIST, output from the
screen is output to the printer.
* Outputs the memo data written in |25. SAVE # "0: TEST": 'FO
SAVE # SAVE # " File |the data bank area “F0” to the file contents are output to
descriptor " specified by the file descriptor. floppy with file name
HTEST"
* Read the contents of the file 26. LOAD #"0: TEST": Load
LOAD # LOAD # " File |specified by the file descriptor the contents of the file
descriptor " into the data bank area “F0”. "TEST" on the floppy disk
to 'FO
* Adds the contents of the file 1. MERGE #"0: TEST":'
MERGE # MERGE #" file specified by the file descriptor to
descriptor " the memo data in the data bank
area "FO".
* All the memo data written inthe |1. NEW #
NEW # NEW # data bank area “F0” is deleted.

Seite 36

2-5 BASIC Program Commands

{} Indicates one of them. {} Itself is not written.

e [] Can be omitted. However, [] itself is not written. If there are "..." in [], it means that it can be
recursively defined in [].

e | Means "or" and is one of the identifiers on both sides of |.

e Italicized words are identifiers that are not reserved words, and are constants, variables, and

expressions.

Table 4. Program Commands

Command

Format Function Example of Use
Name
ANGLE ANGLE formula Specify the angle unit. | 1. ANGLE 0: 'DEG: degree
2. ANGLE 1:'RAD:
Radian
3. ANGLE 2:'GRA: Grado
4. ANGLE A: Change
angle unit according to
'A value
*360 deg=2 *Plrad =
400 gra
BEEP BEEP {[0]]| 1} Sound the buzzer. 1. BEEP: 'Sound with bass
2. BEEP 0: 'Sound with
bass
3. BEEP I:
CLEAR CLEAR [variable area size] |Clear all variables and | 1. CLEAR: 'Clear variable
[, work area size] allocate memory area 2. CLEAR 1024: 'After
according to the clearing the variable,
arguments. The work 1024 bytes are reserved
arca refers to the entire for the variable area.
work area of BASIC 3. CLEAR 1024,2048:
used for I/ O buffers, 'After clearing the
character operation variable, 1024 bytes and
work, FOR stack, 2048 bytes are secured in
GOSUB stack, numeric the variable area and
data, variable table, and work area, respectively.

character variable data
(machine language is
also used in PB-1000).
The variable area
indicates the data
storage area of the last
character variable
(including array
character variables).
Therefore, the
variable area size
must be smaller than

Seite 37

DIM

ERASE

END

DATA

READ

RESTORE

DIM array name
(maximum subscript [,
maximum subscript ...)

ERASE array-name [,
array-name|]

END

DATA data 1 [, data2 ...]

READ variable 1 [,
variable 2 ...]

RESTORE [line number]

the work area size,
and a certain area
must be secured in
addition to the
variable area.

The default variable
area and work area
sizes are 512,1536
when VX-4 (RAM:
8KB) and RP-8 are
added (RAM: 16KB),
and 1024, 8192
otherwise.

The size of the current
work area, variable
area, and free space can
be determined by the
SYSTEM command
and the built-in
function FRE .

Declaring array 1.

variables. However,
subscript starts from 0.

Erase the specified 1.

array variable by
variable name.

Terminate the program.
However, even if the
program does not have
an END statement, the
program ends when it
reaches the end of the
program.

Used to embed data 1.

read by READ
statement in the
program.

Store the data prepared | 1.

by the DATA statement
in a variable.

Specify the start line of | 1.

DATA statement to be
read by READ

statement. 2.

DIM A (5): 'Declaration
of numeric variable of
one-dimensional array
DIM B § (2,5):
'Declaration of two-
dimensional array
character variable

ERASE A, B: 'Erasing
array variables A and B.

DATA 10,20,30

READ A, B, C

RESTORE: 'Specify the
start line of the data
statement

RESTORE 100: 'Read
from the data of line

Seite 38

FOR ~TO ~
STEP

NEXT

GOTO

GOSUB

RETURN

IF ~ {

« THEN
« GOTO

} ELSE

FOR variable = initial

Repeat the FOR and 1.

value TO final value [STEP NEXT statements from

increment value]

NEXT [variable] (formula)

GOTO {
e Branch precedence
number
e #Program area
number
b
GOSUB {
e Branch precedence
number
e #Program area
number
b
RETURN [{
e Branch precedence
number
e #Program area
number
i

IF conditional statement {

e THEN {
o Sentence [:
sentence]
o Branch
precedence
number

the initial value until
the final value is not
exceeded while adding
the increment value (1
if there is no STEP or
less).

Jumps unconditionally | 1.

to the specified branch

precedence number or | 2.

the first line of the
program area.

Calls a subroutine
starting from the
specified branch
precedence number or
the first line of the
program area. Even if
the program area
changes, variable
definitions and their
values are inherited.

Return to the first line | 1.
of the branch preceding | 2.
number and program 3.

area number specified
from the subroutine.
When the return
destination is omitted, it
returns to the next
sentence after the one
that called the
subroutine with a
GOSUB statement.

* To make the program
easier to read, it is
better not to specify the
return destination.

When the conditional 1.

statement is true, the

statement below THEN | 2.

is executed or jumps to

the destination 3.

specified by the GOTO
statement.

—_

number 100 with READ
statement

FORI=1TO 10
SUM = SUM + A (I)
NEXT I

GOTO 80: 'Jump to line
number 80

GOTO # 7: 'Jump to the
first line of program area
7

GOSUB 100

2. GOUB#5

RETURN
RETURN 20
RETURN # 1

IF A>=100 THEN 50
ELSE 100

IF B=0THEN X =10
ELSEY =B

IF C=1 THEN GOSUB
500: 'GOSUB can be
used in the statement

Seite 39

INPUT

LET

ON-GOTO

o #Program
area number

}
e GOTO {

o Branch
precedence
number

o #Program
area number

§
} [ELSE {

i1

Statement [:
execute]

Branch precedence
number

#Program area
number

INPUT ["message sentence
1" {; |,}] variable 1 [],

"message sentence 2" {; |,}]

variable 2 ...]

LET variable = {assigned
value | expression}

ON Formula GOTO {

Branch precedence
number

#Program area
number

Branch precedence
number

If the conditional
expression is false and
there is a statement
below ELSE, the
statement below ELSE
is executed or jumped
to the jump destination.

Input data from the
keyboard to the
specified variable. If a
message text is given as
an argument before the
variable, the data can
be entered after the
message text is
displayed. When the
comma after the
message text is ";", "?"
Is added to the message
text, and when it is ","
nothing is added and
the input operation

starts.

Assign the assignment
value on the right side
or the calculation result
of the expression to the
variable on the left side.
The assignment
statement can omit LET
itself.

ON Jumps to the jump
destination
corresponding to the
value of the formula
below. The branch
destination is specified
when the mathematical
formulais 1, 2, 3, ...
from the top. When the

4.

1.
2.
3.

—_

IF D <> 50 THEN # 9

INPUT A, B, C
INPUT "X ="; X
INPUT "A"; A, "B"; B,
"CH; C

LETA=10

2. A$="CASIO"

N

X=Y*Z/2

ON A GOTO 100,200,,
300: Jumps to line
number 300 when 'A is 3
and does not jump when
4

ON X +Y GOTO 100, #
6,#7

Seite 40

ON-GOSUB

PRINT
LPRINT

PRINT
USING

REM

e #Program area
number

}...]

ON Formula GOSUB {
e Branch precedence

number
e #Program area
number
P
e Branch precedence
number
e #Program area
number
yororo]
[PRINT | LPRINT] [{
e TAB (tab
specification)
e Formula
e String
e variable
LG [
e TAB (tab
specification)
e Formula
e String
e variable

}]...]

PRINT USING "format
specification"; output
element

{REM | '} Annotation

branch destination is
not defined, the
command immediately
after this instruction is
executed without
jumping.

Calls a subroutine
corresponding to the
value of the expression
below ON. Subroutines
are specified when the
formulais 1, 2, 3, ...
from the top. When no
subroutine is defined,
nothing is called and
the command
immediately after this
command is executed.

Displays output
elements such as
formulas, strings, and
variable values. If
PRINT is set to
LPRINT, the output is
changed from the
screen to the printer.

Display output
elements according to
format specification.
USING and below are
also applicable to
LPRINT and PRINT #

Represents an
annotation (comment)

[98)

ON A GOSUB 100,200,
300: When A is 3, do not
GOSUB, and when 4,
call the subroutine of line
number 300

ON X +Y GOSUB 100,
#6,#7

. PRINT: 'Do line feed

only
PRINT A, B, C

. PRINT "X ="; X;:'Add a

semicolon ";" at the end
to avoid line breaks
PRINT TAB (5);
"CASIO": 'Output 5
blanks and then the
string "CASIO"

PRINT USING "& &";
A $:'A §$ displays only
the length of & &.
PRINT USING "###.
##"; X: '"#HH#. ## displays
a numeric value, and
invalid digits in the
integer part display a
blank. # Includes a sign
and a numeric value. If
the specified format
cannot be displayed, it
ignores the format
specification and
displays a numeric value
with a leading%.

. REM program for matrix

calculation

Seite 41

SET

STOP

READ #

WRITE #

SET {
e F {one character of
0-9}
e E {one character of
0-9}
e N

STOP

READ # Variable 1 [,
Variable 2...

WRITE # [Data 1] [, Data 2
P .]

and does nothing.
Apostrophe """ is an
abbreviation for REM.

Specify the output
format of numeric data.
F specification specifies
the number of digits
after the decimal point,
E specification
specifies the number of
significant digits, and N
cancels the
specification.

Pause program
execution. The program
resumes from where it
was interrupted by the
manual command
CONT.

Reads the memo data
written in the data bank
area into a variable.
The default data bank
area is “F0”, but can be
changed with the
RESTORE #
statement.

Delete or rewrite data
in the data bank area. A
line feed is output after
each data is output. The
default data bank area
is “F0”, but can be
changed with the
RESTORE #
statement.

* An FC error occurs
when attempting to
execute as a manual
command.

When the WRITE #
statement is executed
by the program, the
data bank area is
cleared, but it is not
cleared by the
subsequent WRITE #
statement, and
additional writing is
performed.

2. 'This is comment

1. SETF3:'

1. READ#AS$,X

1. WRITE #: 'Delete
WRITE # "CASIO Z-
1GR": 'rewrite

3. WRITE#A $, B:
'Output of character
variable A and numeric
variable B

Seite 42

RESTORE # RESTORE # [("file area

name")] ["search string"] [,
{0]1} [, GOTO {
e Branch precedence

number
e #Program area
number
311
CLOSE CLOSE
CLS CLS
DEFSEG DEFSEG = segment value

Switch the file area for | 1.

READ # and WRITE
. In addition, the
“search character

string” in the 2.

designated file area is
searched, and the data
read first by the READ

statement 1s changed | 3.

to start from the search

character string. 4.

The third argument 0 or
1 specifies the data
reading start position. 0
is the same as when

nothing is specified, 5.

and the data including
the search character
string at the head is set
as the reading start
position. When 1, the
search character string
is searched and read
with READ # from the
beginning of the line
containing the
character.

When "search string" is
not found, if there is a
GOTO option, jump to
the specified jump
destination. If there is
no GOTO option, a
DA error will occur.

Close the current file
and stop using the [/ O
buffer.

Clear display screen.

Sets the base address 1.

when executing the
PEEK function or
POKE statement
(maybe MODE110
statement).

RESTORE # ("F1"):
'Specify the target file
area for READ # and
WRITE #to F1
RESTORE # "START":
"'START" position is the
data reading start
position

RESTORE # ("F1")
"START":"'

RESTORE #
"ORANGE", 0: Same as'
RESTORE "ORANGE",
the first data read with
READ # is "ORANGE".
RESTORE #
"ORANGE?", 1: 'The
beginning of the line
containing "ORANGE"
is the position of the data
to be read first.

DEFSEG = 0: 'BANK1
RAM (default value). &
H1000 is the same as the
x86 CPU segment
register, and DEFSEG *
16 is the base address.
DEFSEG = & H1000:
'"The base address is the
first (& H38000) of the
30-pin I/ 0 area in the I/
O space of BANK3.
Reading and writing of
& H38000 to & H38007

Seite 43

LOCATE

DEFCHR $

POKE

TRON

TROFF

VARLIST

INPUT #

LINE
INPUT #

LOCATE X coordinate, Y
coordinate

DEFCHR $ (code) =
"character form"

POKE address, data

TRON

TROFF

VARLIST

INPUT # file number,
variable name 1 [, variable
2 ...

LINE INPUT # file
number, character variable
name 1

Move the cursor to the
specified position on
the virtual screen.

Sets the display pattern
according to the
character form of the
specified code. You can
specify 4 codes from &
HFC (252) to & HFF
(255). The character
form is a 12-character
hexadecimal code, and
two characters from the
beginning are assigned
from left to right.

Write data to the
address specified by the
formula. The actual
address is the base
address specified in the
DEFSEG statement
plus the address of the
PEEK statement
argument.

Set the BASIC program
to trace mode.

Release the BASIC
program from trace
mode.

Displays all variable
names and array names
that currently exist.

Reads data from the
sequential file with the
file number declared in
the OPEN statement.

Reads one line of
character string data
from the sequential file
with the file number
declared in the OPEN
statement.

1.

1.

1.

1.

can be executed with
PEEK and POKE at
addresses 0 to 7. &
H1000 and above are all
the same.

LOCATE 10,0

DEFCHR § (252) =
"OFOFOFOFOFOF": 'The
lower half is a black
pattern

DEFCHR § (252) =
"OFOFOF000000": 'Black
pattern in the lower left
half

. POKE & H7000,0

INPUT #1, A:'

LINE INPUT#1,A S$:'

Seite 44

ON ERROR ON ERROR GOTO branch |Specify the branch

GOTO

OPEN

PRINT #

RESUME

FORMAT

FILES

KILL

NAME

precedence number

OPEN " file descriptor "
[FOR {INPUT | OUTPUT |
APPEND} AS [#] file
number]

PRINT # file number, [{
e TAB (tab
specification)
e Formula
e String
e variable
STLEG LY [
e TAB (tab
specification)
e Formula
e String
e variable

}]...]

RESUME [{NEXT | Return
line number}]

FORMAT

FILES [" file descriptor "]

KILL " File descriptor "

NAME "old file descriptor
" AS "new file descriptor"

destination when an
€rTor OCCUrs.

Open the file. INPUT, | 1.
OUTPUT, and

APPEND specify the
input, output, and
additional write modes,
respectively.

Outputs output 1.
elements such as
mathematical

expressions, character
strings, and variable

values to the sequential

file with the file

number declared in the
OPEN statement.

OPEN "DATAI1.DAT"
FOR INPUT AS # 1:"'

PRINT#1,A $

RESUME NEXT:
'Return to the statement
following the statement
where the error occurred
RESUME 100

Return from error 1.
handling routine. If

NEXT or return

destination is omitted,
return to the statement | 2.
where the error

occurred.

Format the floppy disk.
Thereisno/6,/9,/M
option to specify the
floppy capacity like
FX-890, Z-1.

Displays the file name,
attribute, used capacity,
etc. specified by the file | 3.
descriptor in the floppy
disk. * ,? wildcards can

be used for file

descriptors.

Delete the file specified
by the file descriptor in
the floppy disk. * ,? 2.
wildcards can be used

for file descriptors.

The file specified by 1.
the old file descriptor
on the floppy disk is

[a—

FILES
2. FILES "0: TEST.DAT"
FILES "0: *. DAT"

—_

KILL "0: TEST.DAT"
KILL "0: *. DAT"

NAME "0: TEST.BAS"
AS "0: NEW.BAS"

Seite 45

CHAIN

STAT

STAT
CLEAR

MODE

CHAIN " File descriptor "

STAT X data [, Y data] [;
Frequency]

STAT CLEAR

MODE formula

changed to the file
name of the new file
descriptor.

Reads and executes the | 1.

program specified by 2.
the file descriptor in the
current program area.

Enter statistical data. 1.

Clear (initialize) the
statistical processing
function.

Hidden instructions not | 1.

in the CASIO manual.
Refer to the usage

examples for arguments | 2.

and grammar. If the

argument is out of

range, it will be "BS

error”. 3.
4.
5.

CHAIN "CASO: TEST"
CHAIN "0: TEST.BAS"

STAT 1,3; 10

MODE 10: 'Perform
rounding after four
arithmetic operations.
MODE 11: 'Do not
perform rounding after
the four arithmetic
operations.

MODE110 (Addr): 'Call
the machine language at
Addr's address.

MODE {200 | 201} (Tr,
Sf', Sc): 'Floppy disk
sector READ, WRITE
command. 77 is 0-79 for
truck, Sf'is 0-1 for
surface, Sc is 1-8 for
sector. It is unknown
whether 200 or 201 of
the first argument is
READ.

MODE A: The above
processing is executed
according to the value of
'A. However, with A =
110, 200, 201, the
following argument is
required, so "SN error".

Seite 46

2-6 File Descriptor

For the FX-870P and VX-4, three file descriptors can be specified as devices: Floppy disk,
Cassette tape, and RS-232C.

For a floppy, it is "0: file name".

In the case of cassette tape, it is represented by "CAS {0 | 1} ({F | S}): file name", and the
numbers are phase designation when reading from MT: 0: normal phase, 1: reverse phase, in
parentheses The alphabetical characters are F: 1200bps and S: 300bps in transfer rate
specification, and are described as "CASO: (F) TEST1".

In the case of RS-232C, “COMO: communication parameter ~ (for example, “COMO: 6, E, 8, 1,
N, N, N, B, N”).

Communication parameters
Each of the nine settings is represented by one character, and is described by a character string
with a comma inserted between each character:

The first parameter is the communication speed setting, which is 1,2,3, ..., 7. If this is n , the
communication speed is set to 75 * 2 * n bps. Specifically:

1: 150 bps 4: 1200 bps 6: 4800 bps
2: 300 bps 5: 2400 bps 7: 9600 bps
3: 600 bps

The second parameter is the parity setting. One of the three characters E, O, and N represents
even parity, odd parity, and non-parity, respectively.

The third parameter is the data length setting. The data length is 7 bits or 8 bits in either of 7
and 8 characters.

The fourth parameter is the stop bit setting. Stop bit is 1 bit or 2 bit in either of 1 or 2
characters.

The fifth parameter is the CTS setting. CTS represents ON or OFF for either of the two
characters C and N. CTS is an abbreviation of “Clear To Send”. DCE (Data Circuit terminating
Equipment; here, the other party) informs DTE (Data Terminal Equipment; here the Pokécon)
that it is ready to receive. In the 3-wire system with audio mini plugs, only RxD, TxD, and SG
(signal ground) signal lines are required, so CTS, DSR, and CD must be turned off.

The sixth parameter is the DSR setting. DSR is ON or OFF for either of the two characters D
and N. DSR is an abbreviation for “Data Set Ready”. DCE informs the DTE that the operation
is ready.

The seventh parameter is the CD setting. One of the two letters C and N indicates that CD is
ON or OFF, respectively. CD is an abbreviation for "Carrier Detect" and is a signal that
informs that there is data to be transmitted by DCE to DTE.

The eighth parameter is the soft flow control setting. Soft flow control indicates ON or OFF
for either of the two characters B and N. Soft flow control is control in which Xoff is
transmitted to DCE and DCE transmission is interrupted until Xoff is transmitted when the
buffer is likely to overflow during data reception.

The ninth parameter is SI / SO setting. SI/ SO indicates ON or OFF with either of the two
letters S and N. With SI/ SO control, data length is 7 bits and half-width kana is
communicated.After receiving SI (14), the 8th bit is interpreted as 1 and data is received.After

Seite 47

receiving SO (15), Protocol to return to normal mode, receiving Oth return bit as 0. Therefore,
SI/ SO control is not required when the data length is 8 bits.

For example: "6, E, 8,1, N, N, N, B, N" is communication speed 4800 bps, even parity, data
length 8 bit, stop bit 1 bit, CTS: OFF, DSR: OFF, CD: It means OFF, soft flow control: ON, SI
/ SO: OFF.

2-7 BASIC Built-in Functions

Internal functions are classified as follows according to the return value.

Numeric functions
Hex prefix
Character functions
Other functions

Here, there are the following notes.

In numeric functions, except for ROUND (, DEG (, REC (, POL (, NPR (, NCR (), parentheses
() can be omitted when using numerical values or variables as mathematical expressions.

As arule, the accuracy is + 1 in the 10th digit of the mantissa.

BS error occurs when the arguments of NPR (, NCR () are » =0 and » # 0.

In FX-890P and VX-4, calculation is normally performed with 13 digits in the mantissa, and
the result is rounded and the result is displayed in 10 digits for the mantissa + 2 digits for the
exponent.

Table 5. Mathematik-Command's

Command Function .
Format Function
Name Type
N .
SIN umgnc SIN (Formula) Sine function SIN. | Formula | <1440 ° (8 rad, 1600 grad)
functions
N i i i X o
COS umgrlc COS (formula) Cosine function COS. | Formula | <1440 ° (8nt rad, 1600
functions grad)
Numeric Tangent function TAN. | Formula | <1440 ° (8r rad, 1600
TAN . TAN (formula) grad). However, MA error occurs when the argument is an
functions . o . .
odd multiple of 90 ° and the function diverges at oo.
. . 1 _ _ ° =
ASN Num(.erlc ASN (Formula) Inverss sine SIN =, ARCSIN. | Formula | <=1, -90 ° <= ASN
functions <=90
Numeric Inverse cosine function COS ', ARCCOS. | Formula | <=1,
e functions ACS (formula) 0°<=ACS<=180"°
Numeric Inverse tangent function TAN !, ARCTAN. | Formula | <1,
ol functions ATN (Formula) -90 ° <ACS <90 °
HYPSIN (F [
HYP SIN Numeric or HYP S(”\(l)rmu 3 Hyperbolic sine function SINH. | Formula | <=
functions 230.2585092
(Formula)
HYP COS Numeric g:(::igscggrmula) Hyperbolic cosine function COSH. | Formula | <=
functions 230.2585092

(formula)

Seite 48

HYP TAN

HYP ASN

HYP ACS

HYP ATN

SQR

CUR

EXP
LOG
LN
ABS
INT
FRAC

FIX

SGN

ROUND (

RAN #

DEG (

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

HYPTAN (formula)
or HYP TAN
(formula)

HYPASN (Formula)
or HYP ASN
(Formula)

HYPACS (Formula)
or HYP ACS
(Formula)

HYPATN (Formula)
or HYP ATN
(Formula)

SQR (formula)

CUR (formula)

XNy

EXP (formula)

LOG (formula)

LOG (formula)

ABS (formula)

INT (formula)

FRAC (formula)

FIX (formula)

SGN (Formula)

ROUND (formula,
digit)

RAN #

PI

DEG (degree [,
minute [, second]])

Hyperbolic tangent function TANH. | Formula | <1E100

Inverse hyperbolic sine function SINH . | Formula |
<5E99

Inverse hyperbolic cosine function COSH . | Formula |
<5E99

Inverse hyperbolic tangent function TANH . | Formula |
<1

Square root V. Formula>=0

Cubic root 3 V. | Formula | <1E99

Power. ; X, y in the formula, x when <0, y must become an
integer.

An exponential function whose base is the natural constant
e (2.718281828 ...). -1E100 <formula <= 230.2585092

Logarithm with base 10 and common logarithm. Formula> 0

The base is the logarithm of e, the natural logarithm.
Formula>0

| Formula |. Gives the absolute value of the formula.

Integer function. Gives the largest integer that does not
exceed the value of the formula.

Gives the fractional part of the formula.

Gives the integer part of the formula.

Gives the sign of the formula.

When formula> 0, 1 is returned.
When formula =0, 0 is returned.
When formula <0, -1 is returned.

Gives the value of the mathematical expression rounded to
the specified digit (rounded). | Digit | <100 rounds 10 A
specified digits.

For example, ROUND (1234.56, -2) = 1234.6

Give a random number within 10 digits after the decimal
point. 0 <= RAN # <= 0.999,999,999,9

Gives an approximate number of pis. The value of mt takes
3.1415926536 internally.

Converts a hexadecimal number to a decimal number. DEG
(a,b,c)=a+b/60+c/3600
| DEG (a, b, c) | <10 ~ 100

Seite 49

REC (

POL (

FACT

NPR (

NCR (

FRE

DEGR

DMS

CNT

SUMX
Sumy
SUMX2
SUmy2
SUMXY

MEANX
MEANY

SDX
SDY

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

Numeric
functions

REC(r,)
where r and & are
mathematical
expressions

POL(x,y)
where x and y are
mathematical
expressions

FACT (formula)

NPR(n,r)

NCR(n,r)

FRE (argument)

DEGR
(hexadecimal
number)

DMS (formula)

CNT

SUMX
SUMY
SUMX2
SUMY2
SUMXY

MEANX
MEANY

SDX
SDY

The two-dimensional polar coordinate representation given
by the radius r and the argument @ is converted into
Cartesian coordinates (x, y).

As a function value, x coordinate x is returned, x is stored in
variable X, and y is stored in variable Y.

Where 0 <=r<10" 100, | ¥ | <1440 ° (8n rad, 1600 grad)

Converts a two-dimensional orthogonal coordinate
representation given by x-coordinate x and y-coordinate y
to polar coordinates (r, ¢).

As a function value, the radius r is returned, the radius r is
stored in the variable X, and the argument @ is stored in the
variable Y.

Where | x | <107 100, | y | <107 100, | x|+ |y |>0and -
180°<9<=180"

Gives the factorial of the formula, n ! However, 0 <=
Formula <= 69 and an integer.

Returns a permutation that selects from r different n . NPR (
n,r)=nPr=n!/R! However,0<r<=n<10"100,and n
and r are both positive integers.

Returns a combination that selects r from n different
numbers.NPR(n,r)=nCr=n!/(R!(N-r)!). However,
0<r<=n<10"100, and n and r are both positive integers.

Gives the size of the memory area according to the
argument. 1 <= Argument <=5,

1: Size of unused memory in the entire program / memo
data area,

2: Size of the entire work area,

3: Size of the entire character area,

4: Unused size in the work area Used memory size,

5: Size of unused memory when character area is free

Ab.Cdefgh - - - numbers represented by ab degrees to, cd
minute, Ef.Gh - - - converting the 60 decimal likened to the
second decimal.

Itis equal to DEG (ab, cd, ef.gh...).

The inverse function of DEGR, which converts decimal
numbers to hexadecimal numbers. Decimal number is
converted to a value represented by ab.cdefgh ..., ab is in
degrees, cd is in minutes, ef.gh ... is in seconds.

Gives the number of statistically processed data.

Gives the sum of X data.

Gives the sum of Y data.

Gives the sum of squares of X data.

Gives the sum of squares of Y data.

Gives the product sum of X data and Y data.

Give the average value of X data.
Give the average value of Y data.

Gives the sample standard deviation of the X data. SDX =
SQR (MEANX2-MEANX A 2) Gives

Seite 50

SDXN
SDYN

LRA
LRB

COR

EOX
EOY

&H

DMSS

LEN

MID$

CHRS

LEFTS

RIGHTS

STRS
VAL
HEXS

ASC

Numeric
functions

Numeric
functions

Numeric
functions

Hex prefix

Character
functions

Character
functions

Character
functions

Character
functions

Character
functions

Character
functions

Character
functions

Character
functions

Character
functions

Character
functions

SDXN
SDYN

LRA
LRB

COR

EOX argument
(formula)
EQY argument
(formula)

& H hexadecimal
string

DMS $ (Formula)

LEN (character
expression)

MID S (character
expression,
position [, number
of characters])
where the position
and number of
characters are
mathematical
expressions

CHR S (Formula)

LEFT S (character
expression,
number of
characters)

RIGHT S (character
expression,
number of
characters)

STR S (Formula)

VAL (character
expression)

HEX S (formula)

ASC (character
expression)

the sample standard deviation of Y data. SDY = SQR
(MEANY2-MEANY * 2) Gives the

standard deviation of the X data. SDXN = SQR (CNT / (CNT-
1)) * SDX Gives the

standard deviation of the Y data. SDYN = SQR (CNT / (CNT-
1)) * SDY

Find the linear regression constant term.
Find the linear regression coefficient.

The correlation coefficient (y) is obtained based on the
statistically processed data.

Based on the statistically processed data, an estimated
value of X for Y is obtained.
Based on the statistically processed data, an estimated
value of Y for X is obtained.

Converts the hexadecimal string following "& H" to
hexadecimal (signed 2 byte integer). & HFF = 255

Converts a decimal number given as an expression into a
character string in hexadecimal notation.
| Formula | <10 A 5, degree minute second display.

Returns the length of the string stored in the character
expression.

Returns a string starting at the specified position in the
string of the character expression. When the number of
characters is specified, the character string of the specified
number of characters is returned from the start position.
When the number of characters is omitted, the character
string from the specified position to the end is returned.

Returns the character code character of the formula. 0 <=
Formula <256

Returns the character string for the specified number of
characters from the left of the character string in the
character expression.

Returns the character string for the specified number of
characters from the right of the character string in the
character expression.

Returns the value of the formula converted to a string.

Returns a character expression that represents a number
converted to a number.

Returns the numeric value converted to a 4-digit
hexadecimal string. -32769 <Formula <65536

Returns the character code of the first character of the
character expression.

Seite 51

VALF

EOF

ERL

ERR

PEEK

DSKF

TAB

INPUTS

INKEYS

Character
functions

Other
functions

Other
functions

Other
functions

Other
functions

Other
functions

Other
functions

Other
functions

Other
functions

VALF (character
expression)

EOF (file number)

ERL

ERR

PEEK (address)

DSKF

TAB (formula)

INPUT S (formula [,
file number])

INKEY $

Returns the evaluation value of a mathematical expression
expressed as a character expression.

Indicates the end of reading the file.

Returns the line number of the line where the error
occurred.

After an error occurs, an error code corresponding to the
content is returned.

Returns the contents of the specified address.

Returns the number of remaining clusters on the floppy
disk. One cluster is 1 Kbyte.

Display to the horizontal position specified by the formula
or move the print position of the printer.

Reads and returns a string of the number of characters
specified by the formula from the keyboard or the file with
the opened file number.

Returns one character of the key being pressed when this
function INKEY S is executed. When not pressed, it stops
execution like INPUT and does not wait for input, but
returns null "". Refer to the key code table by INKEY
(191DH) of FX-870P / VX-4 internal information for return
value .

Seite 52

2-8 BASIC Logical Operations, etc.

Logical operators are prepared. Can also be used in CAL mode.

Table 6. Logical Operators and Others

Operator

NOT

AND

OR

XOR

MOD

Operation

Type

logic

logic

logic

logic

Numeric

Numeric

Format

NOT 4

A AND B

AORB

A XOR B

A¥B

AMOD B

Function

Returns the bit inversion of A. The
argument type is a signed 16-bit integer (-
32768 to 32767; & H8000 to & H7FFF).

Returns the logical AND of A and B. The
argument type is a signed 16-bit integer (-
32768 to 32767; & H8000 to & H7FFF).

Returns the logical OR of A and B. The
argument type is a signed 16-bit integer (-
32768 to 32767; & H8000 to & H7FFF).

Returns the XOR of A and B. The
argument type is a signed 16-bit integer (-
32768 to 32767; & H8000 to & H7FFF).

Returns the value obtained by rounding
off the decimal part of the result of
dividing A and B into integers.

The remainder when A and B are
converted to integers and then divided.

Example of Use

A=NOT 123:"'

A=BANDC:'

A=BOR &
H8000:'

A=BXOR &
H8000:'

A=16.1%¥3.5:
returns' 5

A=BMOD 3:'

Seite 53

2-9 Arithmetic Priority

The priority of calculation in BASIC and CAL mode is as follows.

Table 7. Logical Operators

Priority Operation Type Symbol
1 brackets 0
2 function SIN, COS, etc.
3 Power A
4 Sign +-
5 Multiplication and division | * /
6 Addition and subtraction | +-
7 Comparison operator =S <> <= <<= =>> =
8 Logical operators NOT AND OR XOR

note:

(1) For non-functions, if the precedence is the same, the expression is computed from left to right.
Unlike normal mathematical notation, it is also applied to the power (*). For example, 33 "2 =
(373)~2="1720.

(2) For complex functions, it is computed from right to left in the expression. For example, SIN
COS 60 = SIN (COS (60)).

(3) Comparison operators cannot be used with BASIC manual commands.

(3) The priority between logical operators is ()NOT, (2)AND, (3)OR, and XOR.

Seite 54

2-10 BASIC Error Messages

Table 8. FX-890P Error Messages

Error
code

10

11

12

13

14

Error
message

OM error

SN error

ST error

TC error

BV error

NR error

RW error

BF error

BN error

NF error

LB error

FL error

OV error

MA error

Error Contents

1. Memory over or system overflow.
2. Avalue that cannot secure memory
was set in the CLEAR statement.

Incorrect command or statement format.

The character length exceeds 255
characters.

The formula is too complex.

1. 1/ 0O buffer overflowed.

2. Onelineis 256 bytes or more. Or
you entered more than 256
characters.

1. 1/ 0Ois notready for input / output.
2. An attempt was made to access a
file that was not opened.

An error occurred during | / O device
operation.

There is an error in the file name
specification.

There is an error in the file number
specification.

The specified file name cannot be found.

There is no power supply for MD-110S.

1. An attempt was made to write to a
floppy disk when there was no
space to write.

2. One program file exceeds
approximately 64K bytes.

3. The total size of the array exceeds
64K bytes.

The calculation result or entered numerical
value exceeded the allowable range.

1. Mathematical errors such as division

by zero.
2. The function argument exceeds the
calculation range.

N

N RN e

w

Workaround

Shorten the program. Consider the
dimensions of the array. Consider the
dimensions of the array.

Consider the value in the CLEAR
statement.

If RAM is not expanded, expand it.

Check the spelling of the instruction.
Check the program input.

Limit the length of characters to 255
characters.

Separate the expressions.

Reduce the baud rate of RS-232C.
Enter up to 255 characters per line.

Check I / O connection and power
supply.

Set a floppy disk in the MD-120.
Open the file correctly.

Check the I / O device.

Check the file name.

Check the file number specification.

Check the file name again.
Check the file attributes.

Replace the battery with a new one.
Use an AC adapter.

Delete unnecessary files with the KILL
statement to increase the free space.
Use a new formatted floppy disk.
Reduce the size of one file.

Reduce the size of the array.

Consider the numbers that will be
calculated.

Consider formulas and numerical
values.

Seite 55

15

16

17

18

19

20

21

22

23

24

25

DD error

BS error

FC error

UL error

TM error

RE error

PR error

DA error

FO error

NX error

GS error

An attempt was made to double-define the
same sequence.

The subscript or parameter exceeds the 1.
specified range. 2.

1. Thereis an error in the way
functions and statements are called.

2. An attempt was made to execute a
statement that cannot be used in
direct mode. Or vice versa.

3. An attempt was made to execute a 3
statement that cannot be executed 4'
in CAL mode. '

4. Tried to undefined array.

1. There is no line number specified by
GOTO, GOSUB, etc.

2. You entered a statement without
entering a line number in BASIC
EDIT mode.

1. The variable type does not match in
the right side, left side, or function
argument of the expression.

2. An attempt was made to read
character data into a numeric
variable with a READ statement.

3. An attempt was made to read
character data into a numeric
variable with the INPUT #
statement.

There is a RESUME statement even though
control was not transferred to the error
handling routine.

1. Aninvalid command or operation
was performed when PASS was set.

2. An attempt was made to write to a
write-protected floppy disk.

A READ statement was executed when there | 1.
was no data to read. 2.

1. Thereis no FOR statement for the 1
NEXT statement.)

2. CLEAR statement and ERASE)
statement are included in the FOR-)
NEXT loop.

There is no NEXT statement for the FOR
statement.

1. GOSUB statement and RETURN 1.

statement do not correspond
correctly.

There is a CLEAR statement at the 2.

destination.

Do not use the same array.
Once the array is cleared with the
ERASE instruction, it is redefined.

Consider subscript parameters.
Increase the array.

Review argument values and
statements.

Check the grammar as some can only
be used in program mode and direct
mode.

Check the sentence.

Use after defining the array in the
DIM statement.

Check the line number.
Be sure to include the line number.

Check the type of the right and left
sides of the expression.

Consider where to use the RESUME
statement.

Cancel PASS.
Release write protection and set to
write mode.

Check the DATA statement.
Check the READ statement.

Check the combination of FOR and
NEXT statements.

Delete the CLEAR and ERASE
statements in the loop.

Check the combination of NEXT and
FOR statements

Check the correspondence between
GOSUB statement and RETURN
statement.

Delete the CLEAR statement at the
jump destination.

Seite 56

26

28

29

30

31

32

FM error

OP error

AM error

FR error

PO error

DF error

The floppy disk is not formatted.
Or the format is broken.

An attempt was made to reference a file
that was not opened.
Or tried to OPEN twice.

An attempt was made to use an output
command for an input open.
Or vice versa.

The RS-232C port detected a framing error.

The RS-232C port detected a parity
error or overrun error.

There was a defect in reading the
cassette tape.

An undefined command was sent to
FDD.

An error occurred in the drive
device.

NPk wN

Always format a new floppy disk.

Be sure to execute the file after
executing the OPEN statement.

To OPEN a file that has already been
opened, close it once.

Use input and output commands
correctly.

Check the RS-232C connection and
data transfer method.

Check the RS-232C connection and
data transfer method.

Reduce the transfer speed.

Adjust the cassette tape volume.
Invert the cassette tape phase setting.
Clean the cassette tape head.

Check the command for FDD.

The contents of the floppy disk are
not guaranteed.

If you still get this error after trying
several times, contact CASIO.

Seite 57

Table 9. Character Code Table

Subordinate 4 bit

2-11 Character Code Table

1.The actual shape of & H60 is a mirrored version of the characters in the table.
2.The actual shape of & H86 is 8 x 6 dots, "AA55AA55AA55" Ichimatsu pattern.
3.The shape of the characters & HEO and & HE1 is slightly different.

4.Characters with pink background are special characters.
5.0ther than special characters can be printed with FP-40 and FP-100.

6. The four characters & HFC to & HFF are user-defined characters, and the character pattern is defined by

B

C

D

DEFCHRS.

(NULL)

(L.TOP)

(L.CAN)
(L.END)
(BEL)
(BS)

(TAB)

(HOME)

(CLS)

(CR)

(DEL)

(INS)

CURSOR

(=)

CURSOR

(<)

CURSOR

(M)

CURSOR

()

Upper 4 bits

£ < o =~

=

8

A

i

D

111

v

IA

[V

i g

Seite 58

-+l

(US
R1)

(US
R2)

(US
R3)

(US
R4)

192 208 224 240

176

160

144

128

112

96

80

64

48

32

16

0

High-order digit >

Lix EClf|lm oy IR«
wia (v |+ =11 [— |1 |E
Q| A (WA |m|n
Ol [|DN[IK[L[R]IT[K
@ NY|D|H| | R+
<|g |o | “]n m| N~
Do |~ ([N | | (0 (O |~
0L [— [& N | C |
~Noa|lols o |+- |0 > |2
«© @ Qo (O |T |0 |« | D
wao |0l |on|-D|>|2
<@ [< 0 (O |0 |W |w |O
Mo |« [N [| |1 |© |~
N ™ |-
B

[TU

x| ©
m O |~ [N [| |10 |©O |~

Character Code Table

O «~ N O < 10 O M~

Low-order digit =

JRN IR
(o]

v | T/ ||
L

|Vl |O|&

[+]

2
/\
7 |o|d

P
VX

4 |7
T |3
S
\\j

9
Seite 59

B
0

X

8 H|X|h
L|¥

(

+*

BS
CAPS
L-U
LF
HOME
CLS
CR
SHIFT
SET

B

12
13
14

11

III. Internal Information

Table of Contents

This information is a summary of “FX-870P analysis details” (Kota-chan) published in the July 1991
issue of PJ .

Information related to machine language in the “FX-870P Analysis Details” is currently available at
http://pb-prog.sakura.ne.jp/fx-870p.html .

e 1. Machine language related
e 1-1. Memory map
e 1-2. System area (BASIC)
e 1-3. ROM routine
e 1-4. Key matrix
e 1-5. Notes on creating machine language programs
2. BASIC related
e 2-1. Hidden BASIC instructions
e 2-2. BASIC program and (text) file storage format
e 2-3. Storage format of variable data
A. Appendix
e A-1. PB-1000 memory map
e A-2. BCD floating point format and internal format
B. BASIC program
o B-1. CHKPFAV4.BAS: Check program area and file area
e B-2. OUTWRKV4.BAS: Output variable storage status of work area to file
e B-3. CHKAV4.BAS: Numerical data of numerical variable A is displayed in binary (for
BCD floating point format investigation).
References

Seite 60

3-1 Machine Language Related

Memory Map
FX-870P and VX-4 have 4 memory banks (64KB x 4). The overall memory map is shown in FIG. The features are
as follows.

1. Compared to the PB-1000 (see A-1.) With the same CPU as the FX-870P, it is an orderly
layout with BANKO to 3 assigned to ROM, RAM, ROM, and I/ O, respectively . There are
advantages such as easy to program.

2. All system programs (BASIC, C, CASL) are in the BANKO ROM.

3. In the BANK1 RAM, 4KB from 0000H to OFFFH is not used by the system at all, and the VX-
4 has no memory.

4. The BANK2 ROM stores overseas characters and fonts, various messages, and training board
programs.

5. BANK3 is used for I/ O. Addresses 0 to 7 of the 30-pin connector are assigned to 8000H to

8007H. By setting DEFSEG = H1000 , the PEEK and POKE argument addresses can be input /
output from 0 to 7.

Of these, the first unused 4KB of BANKI is suitable for storing machine language programs.

Memory Map of FX-870P

0000H 0000H 0000H 0000H
OBFFH Intemal ROM OFFFH Unused RAM 0017H RS-232C1 /0
0CGO0OH 1000H 00184
Syst Al
repot [————= System ROM
System ROM Unused Area
BASIC
C RAM 4C9BH
CASL 4C9CH I / O for 30—pin
Connector
7FFFH a0001 /
T
8000H 80074
8008H
Unoccupied Unused Area
Area for
Optioral Unused Area
RAM
FFF8H z
FFFFH FFFFH FFFFH Frrry |_Peripheral 1/0
Bank 0 Bank 1 Bank 2 Bank 3

e
Seite 61

Table 1. BANK 3 ROM Details

Start address
(Hexadecimal)

0000H

0540H

0A80H

0EA8H
13F7H

2739H

27D4H
2ADYSH
2E1EH
38C4H
3BCBH
4248H

47CFH
4C9CH

ROM Contents

Standard character font

Character font for overseas

BASIC error message table

unused

Data area for F.COM, CASL, FX, system message
unused

Data area for ROM check program

unused

BASIC program for communication with 3 pins, etc.
C language command table

unused

C error message table

unknown

unused

Seite 62

System Area (BASIC)

BANK1 0000H to OFFFH is not used. 1000H to 1CDOH are used as system areas as shown in Table 2.

o Label names that are basically the same as PB-1000 have the same name as the “PB-1000
Technical Handbook”. Other than that, Kota-chan was named.

o For bit specification, the left side of / is 1 and the right side is 0. In the case of true / false, 1 is
true and O 1s false.

e Where “Unknown” is written, the part that could not be confirmed

Table 2. List of System Work Areas

Data
classifica LABEL ADDRESS BYTE Explanation
tion (Hexadecimal) number

INTOP 1000 256 Intermediate code buffer

7bit: NONE

6bit: NONE

Sbit: Inverted display (ON / OFF)

4bit: Cursor bar ON / OFF

3bit: Cursor movement range specification
2bit: Virtual screen / Real screen

1bit: Virtual display enable

Obit: KEY input / PRINT

LCDST 1100 1

Cursor position
DGR 101 ! Real screen top (upper 3 bits, lower 5 bits 0)
SCTOP 1102 1 . . .
data Logical row top (upper 3 bits, lower 5 bits 0)
LD 1105 ! Log. row bottom (upper 3 bits, lower 5 bit
BOEDB 1104 1 1)og. ow bottom (uppe s, lowe S
MOEDEN| 1105 I Logical line top (when INPUT)
TOARE 1106 1 Cursor movement range top
BOARE 1107 1 Cursor movement range bottom
Position of last character entered +1
LS 1108 ! 00H = Normal display / 01H = PF display
DSPMD 1109 1 o o
SCROL 110A 1 80H =4 line scroll / 60H = 3 line scroll /
40H = 2 line scroll / 20H = 1 line scroll
ELVAD 110B 2 Contrast data (ROM address)
110D 6 unknown
6bit: Kana
SEACHDRN| 1113 ! 5bit: NONCAPS
7bit: AC
Key data 6bit: OFF
KYSTA 1114 1 Sbit: APO prohibited

4bit: Contrast
3bit: REPEAT enable
2bit: REPEAT ON / OFF

Seite 63

1bit: O
Obit: O

CHATA 1115

KEYCM 1116
KEYIN 1117

[S—

For time counting of chattering

KO
KI

—_— N =

KYREP 1119
11TA

Key repeat count time
unknown

[

Key buffer

1 byte: 00H pointer reference
2 bytes: buffer pointer

1 byte: 10H buffer length

2 bytes: buffer start address
16 bytes: buffer

1131 1 unknown

Angle mode (0: DEG, 1: RAD, 2: GRA)
ANGFL 1132 1 0: Round after computation (MODE10), 1:
RNDFL 1133 1 No rounding after computation (MODEI11)
1134 1 ... (Note 1)
unknown

CSRDT 1135 6 Data buffer for blinking cursor
EDTOP 113B 257 Input buffer

(Sicreen LEDTP 123C 768 Display dot buffer
ata

KECNT 111B 22

BASIC
data 1

Display dot pattern for character code FCH
to FFH

7,6,5Dbit:

(1 11)...75baud (unconfirmed)
(110)...150 baud
(101)...300 baud

(100) ... 600 baud
(011)...1,200 baud
(010)...2,400 baud
(001)...4,800 baud
(000)...9,600 baud (use confirmation)
4bit: Stop bit 1/2

3bit: Data length (bit) 7/8

2bit: Parity ON / OFF

1bit: Parity Odd / Even

Obit: MT / RS-232C

CGRAM | 153C 24

RS1 1554 1

1/ 0O data

1bit: For input SO
Obit: For output XOFF

7bit: NONE
6bit: For input XOFF
RS3 1556 1 Sbit: SO for output
4bit: CD control specification
3bit: DSR control designation

RS2 1555 1

Seite 64

BASIC
data 2

RS4

INTCK

RXCNT

ACJMP
WORK1

VAR1
VAR2
VAR3
VAR4

PASS

CASPN
CPN

FCOMD

FCOM1
FCOM2

OPTCD

SEGAD

SETDA

MODEI1
MODE2

1557

1558

1559

165B
165C
165E
167A

167E
167F
1680
1681

1683

168B
168C

168D
168E

1687

1688
1689

16BA

16BF
16CO

16C2

16C3

16C4
16C5

258

2bit: CTS control designation
Ibit: XON / XOFF specification
Obit: SI/ SO control designation

4bit: Framing
3bit: parity
2bit: Overrun
1bit: not Ready
Obit: Buffer

01H - - - Data reception

RS-232C, MT reception buffer

1 byte: Number of receive buffers
Ibyte: Input pointer

256byte: Receive buffer

unknown

Jump destination address at BREAK
WORK buffer

unused(?)

Variable work
Variable work
Variable work
Variable work

Password storage area (entered as XOR255)

CASL program number
C program number

unknown
unknown

F.COM device, (000000AB) B.
AB=00 - - - RS-232C

AB =01+ - - DISK
AB=10"- - - MT
F.COMP/F

F.COM number

unknown

Option code
Segment value

unknown

With SET instruction data (00AB ####) B,
E..A=1/F..B=1/###=Number of
BCD digits

Impossible to confirm

In FX-870P / VX-4, it always seems to be 0.

Seite 65

Main
data

MODE3

NOWFL
NOWLN
EXEDE

DATPA
CONTA
ERRFL
EJPDE
ERRLN
ERRDE
ERRN
EJPFG
TRAFG
INPER
STAT
OuUTDV
IOSTS
PRSW
PTABC

RSFG
RND

ANSAD

FDDBF

I0BF
SSTOP
SBOT
FORSK
GOSSK
TONDT
DTTB
TOSDT
PTSDT
POSTT
PISTT
P2STT
P3STT

16C6

16C7
16C9
16CB
16CD

16CF

16DB
16DD
16DF
16E1
16E3
16E5
16E7
16E8
16E9
16EA
16F1
1739
173A
173B
173C
173D
173E
1740
1749
174A
1753
1770
1790
1793

1895
1897
1899
189B
189D
189F
18A1
18A3
18A5
18A7
18A9
18AB
18AD

N NN

O — O N — = === QNN == = NN

W N
W \O

N W
N
(o2¢]

[NSTN (ST \O I \O T (O O I NS I \O I \S I \O TN \S I (S I} O

01H: BASIC running (RUN)
02H: BASIC stopped (STOP)
O00H: Other

Same as below

The address of the file currently in use
Currently executing line number

The address of the instruction currently
being executed

unknown

DATA statement pointer

Pointer to resume execution at CONT

ON ERROR Valid file DIR address

ON ERROR Jump destination pointer
Error line number

Error statement statement address

Error number

00H: Normal processing / 01H: ON ERROR
processing

O0OH: TROFF / 01H: TRON

INPUT Error return address

Data for STAT

Output device (00: display, 02: printer, 04:
FCB)

IBIT ON reception open / OBIT ON
transmission open

PRT ON / OFF (1/0)

Number of printer output characters
unknown

RS-232C default value (DATA of RS1, RS3)
Random number data

unknown

ANS data

unknown

FILE work (?)

unknown

FDD bufter

Start address of I / O buffer
First address of character calculation work
Stack free area start address
FOR stack pointer

GOSUB stack pointer
Numeric conversion data
Variable table

Character variable data
Character data free area

PO first address

P1 start address

P2 start address

P3 start address

Seite 66

P4STT 18AF 2 P4 start address
PSSTT 18B1 2 P5 start address
P6STT 18B3 2 P6 start address
P7STT 18B5 2 P7 start address
P8STT 18B7 2 P8 start address
PISTT 18B9 2 P9 first address
FOSTT 18BB 2 FO start address
F1STT 18BD 2 F1 start address
F2STT 18BF 2 F2 start address
F3STT 18C1 2 F3 start address
F4STT 18C3 2 F4 start address
F5STT 18C5 2 F5 start address
F6STT 18C7 2 F6 start address
F7STT 18C9 2 F7 start address
FSSTT 18CB 2 F8 start address
FISTT 18CD 2 F9 start address
MEMEN |18CF 2 File / Free area start address
DIREN 18D1 2 RAM end address
CALC 18D3 258 Calc buffer
IOBUF 19D5 258 1/ O buffer for SAVE / LOAD
SSPBT 1AD7 256

stack SSPTP I1BD7 0 System stack area
USPBT 1BD7 249
USPTP 1CDO 0 User stick area

* (Note 1) Although it was written as MODED in “FX-870P Analysis Details”, it was found to be data
that determines the validity / invalidity of rounding after four arithmetic operations. The name of the
equivalent system area data of the described FX-890P / Z-1 ROUNDFLG is now referred to as
RNDFL in accordance with the nomenclature of FX-870P (PB-1000).

Seite 67

ROM Routine

 Table 3 shows the available BANK1 ROM routines that have been confirmed so far. The names of the
same routines as in the “PB-1000 Technical Handbook” remain the same. How to call a ROM routine from a
machine language program is explained in 1-5.

Table 3. FX-870P ROM Routine List

Label
Name

NEXTC

ENDSC

OKNMI

OKAMI

FCO07

Address

0049H
(73)

003CH
(60)

002BH
(43)

00ABH
(171)

00E9H
(233)

Function

The search is started from the address specified by 1Z, and if a code other
than space (20H) is found, that code is placed in $ 0.

[input]

1Z: Search start address

[output]

1Z: Address where the code at $ 0 exists

$ 0: first non-space code

When NEXTC is executed and the value of $ 0 is 0, 1, 2, the flag register
carry is turned ON (1)

[input] IZ: Search start address

[output] IZ: Address where the code at $ 0 exists

$ 0: first non-space code

FLG: Carry flag=1 @ $0=0,1,2

When the value of $ 0 is a number (ASCII code 30H to 39H), the flag
register carry is turned ON (1).

[input] $ 0: code to check

[output] $ 0: code

FLG: Carry flag=1 @ $ 0 =30H-39H

When the value of $ 0 is an alphabetic capital letter (A to Z), the flag
register carry is turned ON (1).

[input] $ 0: code to check

[output] $ 0: code

FLG: Carry flag=1@ $ 0 ="A"-"Z2"

The search starts from the address specified by 1Z, and if a code other than
space (20H) is found, $ 1 (7 is stored) and $ 2 are compared against the 2
bytes of the code at the next address . As a result, if they match, the zero
flag is turned ON (1).

[input] IZ: Search start address

$ 2: Second code

[output] $ 1: 07H

$ 2: Second code

FLG: Zero flag 1 @ match / 0 @ mismatch

1Z: Address of the first code found +2 @ Z =1 / unchanged @ Z =0
Register $ 0 whose contents are destroyed

Y Routines of the same series
FC06 00EBH (235) $ 1 = 06H
FCO05 00EDH (237) $ 1 = 05H
FC04 00EFH (239) $ 1 = 04H

Seite 68

The rest is exactly the same as FCO7. This routine is used to determine
BASIC instructions.

SCF2F 00BBH After executing NEXTC , if the value of § 0 matches $ 1 (= 2FH), the zero
(187) flag is turned ON (1).
[input] IZ: Search start address
[output] $ O: first non-space code
$ 1: 2FH
FLG: ZeroFlag1l @ (30)=(31)/0 @ $0)<> (S 1)
1Z: Address of the first code found + 1 @ Z =1/ unchanged @ Z =0

¥ Routines of the same series

SCF3A 00BDH (189) $ 1 =3AH
SCF22 00BFH (191) $ 1 =22H
SCF40 00C1H (193) $ 1 =40H
SCF2C 00C3H (195) $ 1 =2CH
SCF28 00C5H (197) $ 1 =28H
SCF29 00C7H (199) $ 1 =29H
SCF2D 00C9H (201) $ 1 = 2DH
SCF3B 00CBH (203) $ 1 =3BH
SCF23 00CDH (205) $ 1 =23H
SCF2E 00CFH (207) $ 1 =2EH
SCFXX 00D1H (209) $ 1 = value entered by myself immediately before
The rest is exactly the same as SCF27.

SCE3B 00D7H After executing NEXTC , if the value of $ 0 matches $ 1 (= 3BH), the zero
(215) flag is turned ON (1). If it doesn't match, it becomes SNerr.
[input] IZ: Search start address
[output] FLG: ZeroFlag1 @ ($0)=31)/0@ ($0)<>($ 1)
When Z =1
$ 0: first non-space code
$1:3BH (";")
1Z: First code address +1
WhenZ =0
SNerr

¥ Routines of the same series

SCE24 00D9H (217) $ 1 =24H

SCE2C 00DBH (219) $ 1 =2CH

SCE2D 00DDH (221) $ 1 =2DH

SCE29 00DFH (223) $ 1 =29H

SCE28 00E1H (225) $ 1 =28H

SCF3D 00E3H (227) $ 1 =3DH

SCEXX 00ESH (229) $ 1 = value entered by myself just before
The others are exactly the same as SCE3B.

TCAPS 00B6H Convert lowercase alphabetic codes in $ 0 to uppercase alphabetic codes.
(182) No conversion is performed for non-alphabetic characters.
[input] $ 0: lowercase alphabetic code
[output] $ 0: Alphabet capital letter code

CHEXI |009DH If the code in $ 0 is characters 0 to 9, A to F, a to f (30H-3H, 41H-46H,
(157) 61H-66H), $ 0 is converted to a numerical value (0OH-OFH) as a

Seite 69

CLEME

CLEDB

DOTDS

BRSTR

CRTKY

KYCHK

BKCK

OUTCR

014CH
(332)

9338H
(37688)

930FH
(37647)

297AH
(10618)

23C8H
(9160)

506EH
(20590)

29C5H
(10693)

2AESH
(10984)

hexadecimal character .

[input]

$ 0: Hexadecimal character code

[output]

$ 0: Hexadecimal conversion value (00H-OFH)

Clears the number of bytes specified by $ 2 and $ 3 to 0 from the specified
saler address by $ 0 and $ 1. If $ 2 and $ 3 are 0, do not execute.

[input] $0,$ 1: Start address to clear

$ 2, $ 3: number of bytes to clear

[output] IZ: Cleared address + 1

$5t0813: AllO

Registers whose contents are destroyed $ 0to $ 2, § 14

Clear the contents of EDTOP (113BH-123BH) and LEDTP (123CH-
153BH) of BANKI1 to 0 and set each pointer to CLS.

[output] IX: Contents of EDCSR (1101H)

Contents of IZ: MOEDB (1105H)

Registers whose contents are destroyed $ 0 to $ 14

Displays full screen according to the contents of DSPMD (1109H).
Transfer the contents of 3 or 4 lines from LEDTP (123CH-153BH) +
SCTOP (1102H) x 6 to the LCD.

[input] Depending on the contents of DSPMD (1109H), it is determined
whether it is 3 or 4 lines.

[output] None

Registers whose contents are destroyed $ 0 to $ 15, IX

Put the contents of $ 2 and $ 3 into ACIMP (165CH, 165DH).
[input] $ 2, $ 3: data

[output] None

Register IX whose contents are destroyed

Contrast key execution KEY sample flow. The BREAK key jumps to the
address specified by ACIMP (165CH, 165DH).

[input] None

[output] $ 0: Key code (see Table 4) is entered.

Registers whose contents are destroyed $ 1to $ 11, IX, 1Z

Check the OFF , BREAK , and STOP keys.
[input] None

[output] FLG: Zero flag =1 @ STOP key
Registers whose contents are destroyed $ 0 to $ 4

Check OFF key and sample BREAK key.
[input] None

[output] None

Registers whose contents are destroyed $ 0 to $ 4

Outputs 0DH and 0AH (CR, LF) to the device.

[input] The device depends on the contents of OUTDV (1739H).
[output] None

Registers whose contents are destroyed $ 0 to $ 13, $ 16, IX

Seite 70

PROUT

DTBIN

BINMZ

BINO1

BIN11

BINO02

BIN12

SIKI

89A9H
(35241)

1EE6H
(7910)

0EFDH
(3837)

0EC6H
(3782)

0ECEH
(3790)

OEE2H
(3810)

OEESH
(3816)

1088H
(4232)

Output $ 16 contents to the printer. If it is not connected to the printer, it
will be NRerror.

[input] $ 16: Data output to the printer

[output] None

Registers whose contents are destroyed $ 0 to $ 6, IX

The ASCII code existing at the address specified by IZ is converted to a
numerical value as a decimal number.
« If the conversion result exceeds 65536, an OV error will occur.
* Returns 0 if there are no numeric characters (30H-39H).

* If a code other than numeric characters (30H-39H) exists, it will end
immediately. At this time, skip the space.
[input] IZ: Start address of the string to be converted to a number
[output] IZ: Address where data other than "0"-"9" (30H-39H) exists
$ 17, $ 18: Conversion result value
Registers whose contents are destroyed $0to $ 3, $ 16

Real type number xin $ 10 to $ 18 is -32769 <x<65536

[input] S 10to S 18: Real number

[output] S 15, S 16: integer type number

Registers whose contents are destroyed $ 10to $ 14, $ 17 to $ 18, IX</x<65536

If the real type number x in § 10 to $ 18 is 0 <= x <256, it is converted to
an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to § 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10to $ 14, $ 17 to $ 18, IX

If the real type number x in $ 10 to $ 18 is 1 <= x <256, it is converted to
an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10to $ 14, $ 17 to § 18, IX

If the real type number x in § 10 to $ 18 is 0 <= x <65536, it is converted to
an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10to $ 14, $ 17 to $ 18, IX

If the real type number x in $ 10 to $ 18 is 1 <=x <65536, it is converted to
an integer type number. If it is out of range, a BS error occurs.

[input] $ 10 to $ 18: Real number

[output] $ 15, $ 16: integer type number

Registers whose contents are destroyed $ 10to $ 14, $ 17 to § 18, IX

Execute an expression (which may be a character expression) and obtain
the result.

* When the result is a numeric value, it is stored as a real number value in $
10to § 18.

* When the result is a character string, it is stored in the free area of RAM,
the start address of the character string is stored in $ 15 and $ 16, and the
character length is stored in § 17.

[input] IZ: RAM start address where the expression is stored. Reserved
words (functions, etc.) in expressions must be converted to internal code.

Seite 71

EXPRW

NISIN

SIKI2

INKEY

?2? Err

112FH
(4399)

0AFAH
(2810)

11D2H
(4562)

191DH
(6429)

following

[output] IZ: End of expression + 1 address
* When the result is numeric

$ 10 to $ 18: Real number

FLG: Turn carry (OFF).

-When the result is a string

$ 15, $ 16: string start address

$ 17: string length

FLG: Turns carry on (1).

Execute the mathematical formula and obtain the result.

[input] IZ: RAM start address where the expression is stored. Reserved
words (functions, etc.) in expressions must be converted to internal code.
[output] IZ: End of expression + 1 address

$ 10 to $ 18: Real number

The value of § 17 is the BCD number. Convert to binary.
[input] $ 17: BCD number

[output] $ 17: Binary conversion value

Register $ 19 whose contents are destroyed

Execute a character expression and obtain the result.

[input] IZ: RAM start address where the expression is stored. Reserved
words (functions, etc.) in expressions must be converted to internal code.
[output] IZ: End of expression + 1 address

$ 15, $ 16: string start address

$ 17: string length

INKEY $ subroutine.

[input] None

[output] $ 15, $ 16: Address where keyed data (see Table 5) is stored
$17: 0 @ No key input / 1 @ Key input

Registers whose contents are destroyed $0to $ 5, $ 18, IX

BASIC error occurred. After execution, waits for input in BASIC or CAL
mode.

[input] None

[output] None

The error name and its address are as follows.
LBERR - - - - 2BSEH (11102) (Note 1, 2)
OMERR - - - 2B6DH (11117)

SNERR - - - 2B70H (11120)

STERR - - - 2B74H (11124)

TCERR - - - 2B78H (11128)

BVERR - - - 2B7CH (11132)

NRERR - - - 2B80H (11136)

RWERR - - - - 2B84H (11140)

BFERR - - - 2B88H (11144)

BNERR - - - 2BS8CH (11148)

NFERR - - - 2B90H (11152)

FLERR - - - - 2B94H (11156)

OVERR -+ - - 2B98H (11160)

MAERR - - - 2B9CH (11164)

Seite 72

BEEP

ENLST

RSOPN

RSCLO

RSGET

33B3H
(13235)

508BH
(20619)

84ECH
(34028)

8563H
(34147)

8590H
(34192)

DDERR - - - 2BAOH (11168)
BSERR - - - 2BA4H (11172)
FCERR - - - - 2BASH (11176)
ULERR - - - 2BACH (11180)
TMERR - - - 2BBOH (11184)
REERR - - - 2BB4H (11188)
PRERR - - - 2BBSH (11192)
DAERR .. 2BBCH(1U9®
FOERR - - - 2BCOH (11200)
NXERR 2 ... 4BC4H (11204)
GSERR - - - 2BCSH (11208)
FMERR - - - 2BCFH (11215)
FDERR - - - 2BD3H (11219)
OPERR - - - 2BD7H (11223)
AMERR - - - 2BDBH (11227)
FRERR - - - 2BDFH (11231)
POERR - - - - 2BE3H (11235)
DFERR - - - 2BE7H (11235)

BASIC BEEP sound is generated.

[input] None

[output] None

Registers whose contents are destroyed $ 0 to $ 3

The BASIC program stored in internal code is converted into ASCII code
for one line from the address specified by IZ and stored in INTOP (1000H-
10FFH).

[input] IZ: Address where the line of the BASIC program to convert starts
[output] IZ: Start address of next line or program end (0)

Registers whose contents are destroyed $ 0 to $ 16, IX

Open RS-232C hardware.
» Set baud rate
* Turn on DTR and RTS.
[input] $ 00: Open mode = 01H @ Transmission / 02H @ Reception / 03H
@ Transmission / reception
$ 11: Value entered in RS1 (1554H)
$ 13: Value entered in RS3 (1556H)
If you do not set RS1 to RS4 of the work area before calling this routine, it
will not operate normally.
[output] None
Registers whose contents are destroyed $ 0 to $ 6, IX

Performs RS-232C hardware close.

[input] None

[output] None

Registers whose contents are destroyed $ 0 to $ 3, IX

Extract one character from the RS-232C receive buffer. When the buffer is
empty, wait until data is received.
 If XON / XOFF is specified and XOFF is selected, one character is first

Seite 73

PRTRS 85FBH
(34299)

NTX 865CH
(34396)

DOTMK 977FH
(38783)

*

extracted from the buffer. When the remaining characters are 32 characters
or less, XON is transmitted.

* When an error is detected, jump to each error.

[input] None

[output] $ 0: Receive data

Registers whose contents are destroyed $ 1 to $ 4, IX

Send $ 16 data via RS-232C.

* If XON / XOFF is specified and XOFF is set, wait until it becomes XON.
« If SI/ SO is specified, control it.

[input] $ 16: Transmission data

[output] None

Registers whose contents are destroyed $ 0 to $ 4, IX

Send the contents of $ 0 via RS-232C.

* Sends the contents of § 0 regardless of the XON / XOFF and SI/ SO
specifications.

[input] $ 0: Transmission data Upper 2 bits of UA register = 11
[output] None

Create a dot pattern for the character in EDTOP (113BH-123BH) specified
by $ 10,$ 11 in LEDTP (123CH-153BH).

[input] $ 10: Start cursor address

$ 11: End cursor address

[output] None

Registers whose contents are destroyed $ 0to $ 11, IX, 1Z

(Note 1) Ayaka Toji, PJ February 1991, p.106, ** ROM analysis of FX-870P ".
(Note 2) Errors not listed in the error message list in CASIO “VX-4 Operation Text”, p.93. Short for

"Low Battery"?

Seite 74

Table 4. Key Code Table by CRTKY (23C8H)

Under Place 4 Bit

H S A ®m e e a9 e A W N

i

F.END

L.TOP

L.CAN

L.END

BS

HOME

CLS

EXE

BRK , STOP , OFF , ALL RESET , CASL , FX, C, MODE,
CONTRAST 1 | Keys are executed. CAPS , Kana changes State.

1 2
F.TOP | SPC
DEL | !
INS | "
#
$
%
&
(
)
*
+
- s
- | -
'
! /

* E on AOH is the m button on the Numeric Keypad

Upper 4 Bits

3 4 5 6 7 8
0 @ P |' p PRINT
1 A Q alq S?ETE
2 B |/R | b |r CLEAR
3/ C|S c|s | CONT
4 D T d t RENUM
5 E|U e |u| RUN
6 F |V f | v EDIT
7.G |W w | log
8 H X X In
9 T Y iy e

J | Z z sin
; K[Tk ¢ cos
<|L ¥ |1] tan
= M|] m|} | sin'!
> N |~ | n |~ cos!
?2 10 0 tan !

9
N
\/

hyp
SET

FACT

RAN #

nPr
nCr
HEX $
DEGR
DMS
POL (

REC (
&H

10 *

A B
E
X2 7
X34
Y,
I
T
7%
7+
VI
9
I |
%
¥ V
1 A
ERE
y Y

i

111

o

ENG

TAB

MR

Min

M+

ouT

CALC

ANS

MEM

LINE

Seite 75

PO

Pl

P2
P3
P4
P5
P6
P7
P8
P9

Kapitel: Il Internal Information

Table 5. Key Code Table by INKEY (191DH)

* When BRK is executed, processing is transferred to the address indicated by ACIMP .

Upper 4 Bits
0 1 2 3 4 5 6 7 8
0 SPC | 0 P ‘ p
1 1 A Q a q
2 INS 2 B R b r
3 OFF 3 C S c s
4 4 D T d t
5 5 E U e u
é 6 6 F A% f \%
; 7 7 G W g w
% 8 | BS (8 H X h X
3
=
5 9) 9 I Y i y
A * J] z
B + K k
C CLS | — , L 1
D EXE | « - = M m
E 1 N A n
F ! / O 0

ENG

MR

M+

IN

OuT

CAL

ANS

ALL
RESET

MODE

MEMO

LINE

3-1 Machine language related

Seite 76

1-4. Key matrix Table 6 shows the key matrix of FX-870P. To obtain a key, first assign the specified
output value (7 if "6") to the IA register, and if the key is pressed, the corresponding bit in the KY
register will be 1 (Ifitis "6", the Oth bit becomes 1. In other words, KY = 0001H).

Listing 1 shows a sample program that can read 2 , 4, 6 , 8 and SPC simultaneously. If you call this
program, $ 0 returns the result as follows.

765 4 3210 (bit)
000SPC8246

The bit where the key was pressed becomes 1.

Table 6. FX-870P Key Matrix Table

* E is the 7 button on the numeric keypad

IA Register Key Output Specification Value

1 2 3 4 5 6 71 8 9
0 Fx In | hyp @ (9 6 3 E’
1 CASL log 'MR M+ 8 5 2
= § 0
S 2 SHIFT 7 |ENG 4 | ANS |1 SPC .
:é 3 -~ | INS$ O P K |L| |, =
E‘: 4 l — U /1 H J N M
ZE (s CALC | 1 T 'Y F G V B
E"; 6 IN our E R | S D X C
EE 7 BRK OFF MEMO Q | W |RESET A CAPS Z
14 X2 |MODE cos tan | CLS '/ | - | EXE
15 DEGR &V sin |) A BS| % +

e
Seite 77

Listing 1. Simultaneous Key Input Subroutine

ADRS

xx00
xx03
xx06
xx09
xx0C
xx0F
xx12
xx15
xx18
xx1B
xx1E
xx21
xx24
xx27
xx2A
xx2D
xx2F
xx31
xx34
xx35
xx38

Code
02 60 1F
57 00 08
42 01 04
77 2D xx
57 00 06
42 01 02
77 2D xx
57 00 08
42 01 02
77 2D xx
57 00 05
42 01 04
77 2D xx
57 00 07
42 01 01
18 60
OF 22
0C 62 01
FO
0E 60 1E
F7

Label
KEY:

SCAN:

Mnemonic
LD $0,$31
PST IA, & HOS
LD $1, & HO4
CAL SCAN
PST IA, & HO06
LD $1,&HO2
CAL SCAN
PST IA, & HOS
LD $1, & HO2
CAL SCAN
PST IA, & HOS
LD $1, & HO4
CAL SCAN
PST IA, & HO7
LD $1, & HOI1
BIU $0
GRE KY,$2
AN $2,81
RTN Z
OR $0,$30
RTN

Comment
; Clear result input register ($ 31 = 0)
: SPACE check

; 8 check

; 2 check

; 4 check

; 6 check

; Bitup $ 0

; Matrix key scan

; Clear key bits to check

; Return if no key to check is pressed

; Set the least significant bit ($ 30 = 1)

Note: Although the subroutine SCAN is as follows in the original, it is NG because the result is

strange.

ADRS

xx2D
xx2F
xx31
xx33

xx36

xx38
xx3B
xx3C
xx3F

Code
18 60
9F 22
9F 24
8162 04

B4 8A

0C 62 01
FO
OE 60 1E
F7

Label
SCAN:

Mnemonic
BIU $0
GRE KY,$2
GRE KY,$4
SBCW $2,%4
JR NZ, SCAN
AN $2,51
RTN Z
OR $0,$30
RTN

Comment
; Matrix can
; Dummy input
; This input
; Key check
; Return if not pressed. — When you return,
the result is strange because $ 0 is bit-up
extra!
; Clear key bits to check
; Return if no key to check is pressed
; Set the least significant bit ($ 30 =1)

Seite 78

1-5. Notes on creating Machine Language Programs

The FX-870P / VX-4 uses an 8-bit CPU called Hitachi's HD61700. This CPU has the following
registers (Figure 2). For details, refer to “ 2-2. Register Configuration ” in “ HD61700 Cross
Assembler ”.

o Internal register

e $0to$31 Main register

o IX IY,I1Z Index register

o SSP, USP Stack pointer

e PC Program counter

e SX,SY,SZ Specific index register
o Flag register (F)

o Z Zero flag

e C Carry flag

e LZ Lower digit flag

e UZ Upper digit flag

e SW Power switch state flag

e APO Auto Power Off State Flag

o Status register

e IE Interrupt enable register

e [A Interrupt selection & KEY output register

« IB Interrupt control and memory bank range specification register

e UA Upper address specification register

e PE Port status specification register

e PD Port data register

e« T™ Timer data register

e KY Key input register

Registers of HD61700
16-bit Registers Interrupt Control and Memory Bank
8—bit Main Regsters Program Counter Specific Index Registers Range Configuration Register

X oo [T Lo ® LI
$1 System Stack Pointer sY (=30) High-order Address Specification Reg.
2 ser [T <2 ([0
$3 UserStack Pointer Flag Register Display Driver Control Reg.

: ose[TTITTTTIIIN fOLOFY OO

* Index Registers z ¢ |uz|APO Port Data Reg

. IY Interrupt Enable Register Port Data Direction Reg.
$30 =1) Key Input Register Timer Data Reg.

oo (T o (OO (LTI

Interrupt Select and Key Output Register

¥ Yellowpainted registers are status registers.

Figure 2. HD61700 register configuration

Here, SX, SY, SZ, IB, and TM were unknown in “FX-870P Analysis Details” . The user can freely use
$ 0 to $ 29, index registers IX, 1Y, IZ and flag register F, and there are restrictions on the use of other
registers. In particular, Casio's pocket computer is fixed at $ 30 and $ 31, SX, SY, and SZ are fixed at
31, 30, and 0, respectively, and can operate at high speed when $ 31, $ 30, and $ 0 are specified as the

e
Seite 79

second operand, respectively. The ROM is coded so that Therefore, be careful not to change the
contents of $ 30 (=1), $ 31 (=0), SX (= 31), SY (=30), SZ (= 0). (note)

FX-870P and VX-4 can call their own machine language program with BASIC hidden instruction
MODE110 (address) , but it is not officially supported. Therefore, unlike PB-1000 and FX-890P / Z-1,
FX-870P and VX-4 BASIC cannot secure the machine language area with the CLEAR instruction, so
secure the machine language area as follows. There is a need to.

e Use less frequently used areas such as CALC (calc buffer), IOBUF (SAVE/LOADI1/0O
buffer), and CGRAM (user-defined character area) in the system area. However, a large free
area cannot be secured, and there is always a risk of machine language data being
destroyed.

e The first 4KB of RAM area 0000 to OFFFH is unused on the system side, so it can be used for
machine language with a certain size.

However, the unmodified VX-4, which is 32KB and not equivalent to FX-870P, cannot be
used even if the additional memory RP-33 is 40KB.

e Ao's extended CLEAR instruction can secure the machine language area for the number of
bytes specified from 1CDOH (from 6CDOH for VX-3 extended CLEAR). However, because
the extended CLEAR machine language routine is placed in the CALC (calc buffer) in the
system area , storing the formula with more than 32 characters with the IN key limits the
extended CLEAR.

e IfCLEAR-ZERO is used, the above extended CLEAR is relocated to addresses 0 to 123, the
same operation as the above extended CLEAR is possible, and the user program can be resident
unless the contents of addresses 0 to 123 are destroyed. Become. However, as mentioned above
, CLEAR-ZERO cannot be used with an unmodified VX-4 that is not 32KB.

In this way, there are merits and demerits in securing the machine language area of FX-870 and VX-4.
Even if a machine language is secured from 1CDOH with extended CLEAR, if a C program is
executed in C language mode, the information in the machine language area will be destroyed.
Therefore, when returning from C language and executing machine language, it is necessary to reload
machine language again. For the time being, CASL confirmed that the data in the machine language
area was not destroyed after executing a simple program, but it is unknown whether it was completely
destroyed.

When returning (ending) from a user-written machine language program to BASIC, processing must
be transferred from BANK1 with the machine language program to BANKO with the BASIC ROM.
Therefore, bank switching is required at the end of the program, so be sure to add the following code at
the end of the machine language program.

Listing 2. Exit code for machine language program

ADRS Code Label Mnemonic Comment
XXXX 56 60 54 PST UA, & H54 ; Switch to bank 0
xxxx F7 RTN ; RETURN

Similarly, bank calls are required for FX-870P ROM calls from homebrew machine language
programs. Listings 3 and 3-2 show machine language samples that make ROM calls. This ROM call is
a well-known method for HD61700 ROM calls. First, enter the ROM routine address to be called into
$ 17 and $ 18, call your own BSCLL, switch from here to BANKO and jump. This program uses $ 15
to $ 18, but if you want to use these registers in a BIOS call, you need to change the registers
accordingly.

Seite 80

Listing 3. Machine language sample for ROM calls

ADRS Code Label Mnemonic Comment
0000 D1 110F93 LDW § 17, & H930F ; DOTDS (full screen display) address
0004 77 0B 00 CAL RMCLL ; Execute ROM call
0007 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0
000A F7 RTN ; Back to BASIC
000B D1 0F2353 RMCLL: LDW $ 15, & H5323 ; ROM call routine
000F A610 PHSW $ 16 ; & H5323 is pushed into system stack
0011 5660 54 PST UA, & H54 ; Specify to switch PC BANK to 0
0014 DE 11 JP $17 ; BIOS call

Listing 3-2. ROM call routine
ADRS Code Label Mnemonic Comment
000B D1 0F2353 RMCLL: LDW $15, & H5323 ; ROM call routine
000F A6 10 PHSW § 16 ; & H5323 is pushed into system stack
0011 5660 54 PST UA, & H54 ; Specify to switch PC BANK to 0
0014 DE 11 JP $17 ; BIOS call

*"JP $ 17" (opcode DEH) has been described as "JP ($ C5)" in "FX-870P Analysis Details" , but Piotr
Piatek specified indirect memory address using the main register ($ C5) By finding the jump
instruction (opcode DFH), the unnaturalness of the notation can no longer be ignored, and now it has
been changed to "JP $ C5".

Ao's HD61 cross assembler supports "JP $ C5" notation from Ver0.34, so it will malfunction when
assembling the old notation source.
Therefore, if there is a ""JP ($ C5)" mnemonic, the source may be modified, so be careful.

Also, Ao taught me the equivalent of the ROM call routine prepared in the AI-1000 ROM that was
introduced in Ref. (5), so it is shown in Listing 4 (Ref. (16)). This method is characterized by the fact
that the registers to be destroyed are fixed at $ 28 and $ 29, but the number of registers used is smaller
than in list 3, and the execution time is longer than in list 3.

Listing 4. Using the ROM call routine provided in FX-870P / VX-4 ROM

ADRS CODE LABEL MNEMONIC comment

0000 D1 1COF 93 LDW § 28, & H930F ; DOTDS (full screen display) address
0004 77 0B 00 CAL RMCLL ; Execute ROM call

0007 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0
000A F7 RTN ; Back to BASIC

000B RMCLL: ; ROM call routine

000B 56 60 54 PST UA, & H54 ; Specify to switch PC BANK to 0
000E 372153 JP & H5321 ;

(note)

Settings for $ 30 and $ 31 in CASIO Pokécons PB-1000, FX-860P, FX-870P, VX-4, etc. , SZ=0is
assumed to be used as a fixed value, but the values of $ 30 and $ 31 are 1 and O as follows.

Seite 81

e The HD61700 does not have increment and decrement instructions, but these are operations
that are frequently used by computers, so the benefits of high speed are significant. At this
time, if 1 is put in the main register specified by the specific index register rather than adding
constant 1, high-speed operation is possible. In fact,

. AD$2,8$SX Indirect specification of $ 30 (= 1) by specific register.

One byte code can be shorter than main register specification.
. ADS$2, 81 Here, $ 1 =1
. ADS$2,1 Increment by immediate value 1

o Of these operations, only the top is 9 clocks and the rest is 12 clocks, which can be 25% faster.

e« HD61700 index registers IX and IZ cannot be used alone, except for the exception of block
transfer instructions, and can only be used in the form {IX | IY} + A (specific index register
specification, main register, 8-bit direct value) If you want to perform IX + 0, you can use the
register specified by the specific index register to increase the speed by 3 clocks as above.
Therefore, it is useful to assign 0 to the main register specified by a specific index register.

o For the above reasons, assigning both 0 and 1 to the main register specified by the specific
index register is effective for speeding up, but by setting $ 30 =1 and § 31 = 0, the register pair
($ 31, $ 30) The increment / decrement speed can be increased even with 16-bit arithmetic.
Also, it is important to assign 0 to the main register.

LD$2,$SY Indirect specification of $ 31 (= 0) by specific register.
One byte code can be shorter than main register specification.
. LD$2,0 Immediate value substitution of 0
. XR$2,8$2 Own exclusive OR.

o Of'these, only 9 clocks can be transferred by specifying the top specific index register, and the
remaining 12 clocks, which can be accelerated by 3 clocks. However, speeding up the word
transfer of 0

LDW $ 0, $ SY Indirect specification of $ 31 (= 0) by specific register.
One byte code can be shorter than main register specification.

e Can only be loaded into ($ 1, $ 0) pairs, generally
XRW$2,$2 Exclusive OR of yourself in the word.

Seems to be the fastest exclusive OR (likely because I'm not familiar with HD61700 yet).

The HD61700 cross assembler has the optimization option turned on by default, and even if a
specific register is not specified by the above-mentioned Casio Pokekon register setting premise,
the specific register is automatically specified. Therefore, it is only necessary to remember that $
30=1,$30=0and $ 30, $ 31, $ 0 can be accelerated by specifying a specific index register.

Seite 82

3-2 BASIC Related

In “FX-870P Analysis Details” , only the BASIC hidden instructions and the program storage format
were explained. Later, Jun Amano's “BB variable storage format of PB-1000 / C” explained the
variable storage method in PB-1000. This time, we will investigate the storage method of variables
based on this, and also explain what was corrected in the above explanation.

Hidden BASIC Instructions

Two hidden instructions were found.

(1) MODE command grammar is

MODE Argument 1 (argument 2) has different functions depending on the value of argument 1.
Model0, 11: PJ Although unknown in the FX-870P analysis details of the July 1991 issue, rounding is
performed after four arithmetic operations in MODE10, and rounding is not performed in MODE11.
Mode110: Call the machine language program in BANKI1. Argument 2 is an address.

Mode200,201: FD sector READ, WRITE command. Argument 2 is (track, surface, sector), track is 0-
79, surface is 0-1, sector is 1-8. It is unknown which is READ.

(2) CALCJMP instruction This is the same as pressing the CALC key with an instruction without an
argument, and executes the formula entered with the IN key. However, it can be executed only in CAL
mode, and FCerror in BASIC mode.

BASIC Program and (Text) File Storage Format

In the (text) file area file that can store PO to F9 programs and C and CASL source files, the start
addresses where the respective data are stored are stored in POSTT to FOSTT of the system area. The
end code of the program (BASIC) is 00H and the end code of the file is 1 AH, both of which consume
at least 1 byte and consume 20 bytes in total. In the VX-4 manual, the user area is the total of 21 bytes
subtracted from the file area, and it seems that the last 1 byte of memory is not consumed. The end-of-
file code 1AH is well known as the end-of-file (EOF) code used by many operating systems.

In addition, the system automatically performs memory block transfer and changes in PI1STT to
MEMEN so that unnecessary data does not occur between files. However, POSTT is not changed
unless the user makes a CLEAR statement, and the system side does not change it arbitrarily.

BASIC programs are stored in PO to P9 in the program area, and the BASIC program method is
exactly the same as PB-100. The BASIC sample program in Listing 5 is stored as shown in Table 7.
Each line consists of the line length (1 byte), line number (2 bytes), space (1 byte), BASIC code
(variable length), and line end code (1 byte). The line length is the total number of bytes from the line
number to the line end code. If this is 0, it indicates the end of the program. The line number is 2 bytes
of little endian. Space is a space between the line number and the BASIC code, and is fixed with &
H20. A BASIC code is a character string in which a reserved word is converted to a 2-byte internal
code with big endian. There are reserved words that have processing destinations and no processing
destinations such as functions, and Tables 8 and 9 show the internal codes. The line end code is fixed
at 0.

Seite 83

Listing 5. BASIC Sample Program

100 REM Sample

110 'Program

120 CLS

130 PRINT "Hello"

140 END

Table 7. Memory Contents of Listing 5

LEN LNUM @ SPC
1byte 2bytes 1byte
0D 64 00
13 | 100 20
0D 6E 00
13 110 20
06 78 00
6 120 20
0D 82 00
13 130 20
06 8C 00
6 140 20
00
0

Variable Length

04 A9 5o 5361 6D 70 6C 65
REM S'a m|p |1 e
0y 20 30 (72 /6F 67 72 61 6D

P rio|g | r | a m
04 71
CLS
04 A3 tv:elz)ty 48 |65 6C |6C | 6F |twenty two
PRINT WO TH e |1 |1 o "
04 87
END

Program Statement

EOL
1byte

00

00

00

00

Seite 84

Table 8. Internal Code with Processing

Destination Address

COPE Command
0449H GOTO
044AH GOSUB
044BH |RETURN
044CH RESUME
044DH RESTORE
044EH | WRITE #
0450H CONT
0452H | SYSTEM
0453H PASS
0455H < DELETE
0457H LIST
0458H | LLIST
0459H | LOAD
045AH MERGE
045CH RENUM
045DH TRON
045FH | TROFF
0460H | VERIFY
0463H POKE
0469H CHAIN
046AH |CLEAR
046BH NEW
046CH |SAVE
046DH RUN
046EH |ANGLE
046FH EDIT
0470H BEEP
0471H | CLS
0472H | CLOSE

Processing
Destination

368AH
3620H
3663H
3ACBH
42EBH
5517H
35ADH
51BAH
525CH
3CDDH
3D26H
3D21H
4753H
474BH
43DAH
3617H
3614H
474FH
3A23H
4762H
53A8H
4594H
4736H
352CH
3929H
58B8H
43C7TH
2ADFH
46BOH

0476H
0478H
047CH
0480H
0481H
0482H
0485H
0486H
0487H
048BH
048DH
048EH
048FH
0490H
0491H
0496H
0497H
0499H
049AH
049FH
04A3H
04A4H
04A5H
04A8H
04A9H
04ACH
04ADH
04AEH
04BOH
04B2H
04B5SH

DEF
DEFSEG
DIM
DATA
FOR
NEXT
ERASE
ERROR
END
FORMAT
IF

KILL
LET
LINE
LOCATE
NAME
OPEN
OuT

ON
CALCJMP
PRINT
LPRINT
PUT
READ
REM
SET
STAT
STOP
MODE
VAR
FILES

397DH
3A3AH
3A4AH
0B9BH
36F9H
383BH
3A81H
2BA8H
3520H
7FOFH
38BBH
7F1EH
2EA2H
3E26H
39FAH
7F35H
45DFH
2BAS
3B71H
542CH
3EFIH
3EECH
2BASH
42A0H
0B9BH
532AH
4322H
3500H
52A2H
3BEBH
TF87TH

Seite 85

Table 9. Internal Code without 0572H HYPCOS

Processing Destination 0573H HYPTAN
CODE BASIC Function 0574H HYPASN

054FH ERL 0575H HYPACS
0550H ERR 0576H HYPATN
0551H CNT 0577H LN
0552H SUMX 0578H LOG
0553H SUMY 0579H EXP
0554H SUMX2 057AH SQR
0555H SUMY2 057BH ABS
0556H SUMXY 057CH SGN
0557H MEANX 057DH INT
0558H MEANY 057EH FIX
0559H SDX 057FH FRAC
055AH SDY 0581H DEGR
055BH SDXN 0582H DMS
055CH SDYN 0586H PEEK
055DH LRA 058AH EOF
055EH LRB 058DH FRE
055FH COR 0590H ROUND
0560H PI 0592H VALF
0561H DSKF 0593H RAN#
0563H CUR 0594H ASC
0567H FACT 0595H LEN
0569H EOX 0596H VAL
056AH EOY 059BH HYP
056BH SIN 059CH DEG
056CH COS 05A7H REC
056DH TAN 05A8H POL
056EH ASN 05AAH NPR
056FH ACS 05SABH NCR
0570H ATN 05ACH HYP
0571H HYPSIN 0697H DMS$

Seite 86

069BH
069CH
069DH
069EH
06A0H
06A1H
06A3H
06A8H
0747H
0748H
07B6H
07BBH
07BCH
07BDH
07COH
07C1H
07C2H
07C3H
07C4H
07C5H
07C6H
07C7H

INPUT
MID$
RIGHT$
LEFT$
CHRS$
STR$
HEXS$
INKEYS$
THEN
ELSE
TAB
ALL

AS
APPEND
STEP
TO
USING
NOT
AND
OR
XOR
MOD

Seite 87

FO to F9 in the file area are general-purpose files that can be used as input and output destinations for
C and CASL source files and BASIC. The data storage format is exactly the same as a general OS such
as MS-DOS. For example, the file in Listing 6 is stored in memory as shown in Table 10. The line feed
code is ODH, 0AH, and the end-of-file code is 1AH, which is exactly the same as MS-DOS. The list
of

programs B-1. CHKPFAV4.BAS for checking programs and file areas is shown, so you can use this to
check the contents of this section yourself.

Listing 6. -
Sample file Table 10. Memory storage format in Listing 6
Data
HELLO, WORLD! 48 |45 |4C (4C 4F [2C 57 |4F 52 |4C 44 121 OD 0A 1A
HE/L L/ O , WOR L D ! |CRLF EOF

Storage Format of Variable Data

When variables are used in program execution, CAL mode, etc., numerical variables and character
variables that have not been registered in the variable table, that is, for the first time, are automatically
registered and instantiated by the BASIC system. Also, array variables cannot be instantiated
automatically by the BASIC system , and the user must intentionally declare and instantiate them with
a DIM statement (probably to prevent unnecessary memory consumption). Figure 3 shows the
situation of materialization and storage in the BASIC work area as described above.

Seite 88

FX-870P ® RAM AE!)—v S

0000 [e 0o “’ POSTT
10 27 KT P1 ﬁ sty
1CDOH P2STT
Wbk Ak, i pasrr
 IOBF > P3
1/0/1\s 27 U' o ﬁ— PASTT
SSTOP
prasa 1= Wl Thy) H' PS5 PSSTT
P6STT
SBOT
BT —57)—T17 al ﬁ posTT
FORSK P7 u
FOR A%%%7 ﬁ = “ PESTT
D—% | 95 Gosu 2% * POSTT
Iy TONDT — P9 u
HEF—4HT)7 = “ FOSTT
DTTB | owp— FISTT
THT—) F1 u
TOSDT F23TT
R — 4T F2 I
Fa u FasTT
PTSDT [FASTT
NIy —5) -1 7 Fa
r POSTT F5STT
InJsLTYT u oI
F6STT
FOSTT F6
77l4}b - FFAN) 77 OLT)7 H F7 e
Ty MEMEN e F8STT
F7AIL)17 ﬁ_ FOSTT
L DREN Fo

Figure 3. FX-870P / VX-4 RAM Memory Map (BASIC)

In Figure 3, the three numbers at the top of the RAM written in blue are fixed values. IOBF, TOSDT,
POSTT, and DIREN written in red are values that can be set by the user, and BASIC cannot be
changed by themselves. 1CDOH to (IOBF-1) is a machine language area, and IOBF cannot normally
be changed, and 1CDOH and the machine language area is 0 bytes. However, the machine language
area can be secured by changing with extended CLEAR . POSTT and TOSDTT can be set with the
BASIC CLEAR statement, (POSTT-IOBF) is the work area size, (POSTT-TOSDT) is the variable area
size, and is actually the area where character variables and array character variables are stored. .
DIREN is the final RAM address of FX-870P / VX-4 and is not normally changed. Usually 1 byte, but
if you make a few bytes free by changing DIREN, you can use it to store high scores of the game. The
machine language area is destroyed when a C program is executed in C language mode, but the
data in the area after DIREN seems to be immune to destruction.

At this time, the BASIC system uses the I / O buffer from the IOBF and the memory for the character
operation stack, and uses the memory from the TOSDT as the variable table, numeric variable / array
numeric variable data area, GOSUB stack, and FOR stack in the reverse address direction. . Finally, it
is used as a data area for character variables and array character variables in the address forward
direction from TOSDT.

Jun Amano has already explained the basics of variable storage format (Ref. (13)).). This time, in
order to complete the information of the variable storage format , the analysis result using the program
B-2. OUTWRKV4.BAS that outputs the variable storage status of the work area to a file is described.

Tables 11 to 13 show the results of analyzing the storage format of the materialized variables by this
program.
The variable table is searched in the forward direction from the address stored in the DTTB. Data

e
Seite 89

addresses are (DTTB) to (TOSDT) -1. The data format of the variable table is variable attribute (1
byte), number of characters of variable name (1 byte), variable name (variable length), pointer to
actually store data (2 bytes). (Number of characters of variable currently being searched) + 4 should be
added to (address of variable attribute currently being searched). In addition, the variables are searched
in the reverse order of the materialized variables, and the last materialized variable is first hit in the
search. There are four types of variable attributes: character variables, numeric variables, array
character variables, and array numeric variables, which are 20H, 28H, AOH, and A8H, respectively.
Therefore, four variable types can exist simultaneously with the same variable names as A $, A, A $ (),
and A ().

The numeric data area is an area with addresses (TONDT) to (DTTB) -1, and stores data for numeric
variables and array variables. Basically numeric data is packed and little endian encoded BCD floating
point formatHowever, in the case of an array variable, the pointer of the variable table points to the
declaration information of the array numeric variable. The first byte is the dimension of the array
variable, and the maximum value of each subscript is arranged for each array dimension by 2 bytes.
Multidimensional array variables of two or more dimensions must be managed with a one-dimensional

S L+ TTM =T = (M, + 1) (Mg, +1) + = = (M, +1)

. lh-l * (hlh-: +l) e (h"l|+l)

LU L L L L L

— [|
T M,=0.

subscript inside the BASIC system, but they are unified so that the rightmost subscript is inside the
loop. Thatis, if DIM A (M~ , M .1, ..., M 1) is declared , one of the array numeric variables written
asA (In,In1,...,11) You can think of the subscripts of the elements as being unified in the
expression inside . In addition, for array numeric variables, there is basically no memory size change
after securing the data storage area as declared in the DIM part in the numeric data area (initial value
0), so BASIC system management is a character array variable. It is easier compared to

The character variable data area is an address area from (TOSDT) to (PTSDT) -1, and stores data for
character variables and array character variables. In the case of a character variable, the first byte
pointed to by the variable table pointer is the number of characters in the data stored in the variable,
and character string data of that number of characters is stored subsequently. In the case of an array
character variable, the declaration information of the array numeric variable is contained in the same
manner as the array numeric variable. However, the one-dimensionalization inside a multidimensional
array is the same as a numeric array variable, but each numeric data is 8 bytes, but the character
variable is variable, so the internal one-dimensional subscript is searched from 0. The target index
must be reached, and access is less efficient than array numeric variables. In addition, substitution and
deletion of character data (substitution of "") does not leave unnecessary data in the character variable
data area, and the BASIC system automatically manages memory. In other words, when the data of a
character variable or array character variable is changed and the size of the character variable data area
needs to be changed, it is materialized after that variable (in the case of an array variable, the one-
dimensional subscript is larger Subscript) data is shifted by the necessary amount, and the variable
table pointer is also shifted by the shift amount. Therefore, the load of the BASIC system due to the
substitution of the character variable is smaller for the character variable (character array
variable) that is materialized last.

Seite 90

Also, instead of clearing the work area contents with CLEAR, only the pointers are changed. Variable
initialization is performed when a variable is registered in the variable table.

The above analysis results are summarized as follows.
Table 14 shows the memory usage of variables.

Table 14. Variable Memory Usage

Variable Table Data Storage

Variable type Usage (byte) Destination Data storage size (byte)
Numeric 2
variable
Numerical data

Array . area 1+ (number of dimensions) x 2+ (number of
MUMErie array elements) x 8
variables (Number of Y

characters in
Character variable name) + 4 (Number of characters in the assigned
variable Character string) + 1
Array variable data 1 + (number of dimensions) x 2+ (number
numeric area of array elements) + (number of characters
variables in the string assigned to all array elements)

In addition, the following precautions are effective for speeding up BASIC.

o The registration order of the variable table and the search order of the variable table are
reversed, and the search time is shorter for the variables registered in the variable table later.
Therefore, it is effective for speed-up to start using frequently used variables as much as
possible.

o When it is necessary to change the size of the character variable data area by changing the data
of a character variable or array character variable, the data is materialized after that variable (in
the case of an array variable, it is a large subscript with a one-dimensional internal subscript).
Must be shifted as much as necessary, and the variable table pointer must also be shifted by the
shift, which places a heavy load on the BASIC system. Therefore, using frequently used
character variables and character array variables as soon as possible is especially
effective for speeding up BASIC programs.

e
Seite 91

Table 11. Variable Table (DTTB) analysis Results

Address

(Hexadecimal) Attribute

3A8A

3A8F

3A96

3A9C

3AA2

3AA8

3AAD

3AB2

3AB7

3ABE

3ACS

3ACB

1byte

20

Ch
28

Nu
28

Nu
28

Nu
28

Nu
20

Ch
28

Nu
28

Nu
A0
AC
A8
AN
20

Ch
28

Nu

Word
Count
1byte

01
01
03
03
02
02
02
02
02
02
01
01
01
01
01
01
03
03
03
03
02
02
01
01

Variable Name
Variable Length

53
S
53
S
4E
N
53
S
41
A
46
F
4A
J
49
I
51
Q
50
P
42
B
41
A

Variable Table Data

54

58

54

44

57

4F

43

30

45

49

EF

ED

F5

FD

05

ED

0D

15

D6

1D

DO

82

Table 12. Numerical Data Area (TONDT) Analysis Results

Address
(Hexadecimal)

Variable Table Data

Pointer
2 Bytes
3A
3AEF
39
39ED
39
39F5
39
39FD
3A
3A05
3A
3AED
3A
3A0D
3A
3A15
3A
3AD6
3A
3A1D
3A
3ADO
3A
3A82

Remarks

Seite 92

39ED

39F5

39FD

3A05

3A0D

3A15

3A1D

3A22

3A2A

3A32

3A3A

3A42

3A4A

3AS2

3ASA

3A62

00

00

00

00

00

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

16
14816
86
14986
29
14829
86
14986
00
Three
73
14873
00

Three

00

00

00

00

00

00

00

00

00

00

00
-1E60
00
-2E60
00

00
-4E60
00
-5E60
00
-6E60
00

00

48

49

48

49

00

48

00

00

00

00

00

00

00

00

00

41

41

41

41

03

41

00

01

02

00

04

05

06

00

08

10

10

10

10

10

Ten

00

66

66

00

66

66

66

00

66

STO value

NX value

ST value

AD value

Jvalue

Ivalue

DIM statement for array numeric variable
POI () Information declared in DIM POI
(2,3).

The first byte is the dimension. Defines
the maximum subscript value by 2 bytes.

POI (0,0) value

POI (0,1) value

POI (0,2) value

POI (0,3) value

POI (1,0) value

POI (1,1) value

POI (1,2) value

POI (1,3) value

POI (2,0) value

Seite 93

3A6A

3AT72

3ATA

3A82

-8E60
00 |00 100 |00 00 00 09 | 66

POI (2,1) value

-9E60
00 100 00 |00 00 00 11
POI (2,2) value
-1E61
00 100 00 |00 00 00 00 | 00
0 POI (2,3) value

20 10189 67 45 tvrlemy 01 Ten
three A value

1.234567890120

Seite 94

Table 13. Character Variable Data (TOSDT) Analysis Results

Address
(Hexadecimal)

3ADO

3AD6

3AD9

3ADA

3AE1

3AE2

3AEB

3AEC

3AED

3AEF

PS

TOSDT Data

05 43 |41 |53 (49 4F

5 "CASIO"
01 |05 /00

1 Five
00

"" (no data; null)

06 |50 4F 43 (4B |45 54
6 "POCKET"

00

"" (no data; null)

08 43 |[4F (4D 50 55 |54 45|52

8 "COMPUTER"
00
"" (no data; null)
00
"" (no data; null)
01 30
r "o"
00

"" (no data; null)

Remarks

BC § value. The first byte is the number
of characters.

Information declared in DIM statement
DIM QWE (5) of array character variable
QWE $ ().

The first byte is the dimension. Defines
the maximum subscript value by 2 bytes.

QWE $ (0) value

The value of QWE §$ (1).

QWE $ (2) value

The value of QWE $ (3).

QWE $ (4) value

QWE § (5) value

F $ value

The value of S $ (4)

I would like to thank Jun Amano because I could not understand the variable storage format so far
without the website of Jun Amano.

Seite 95

3-3 Appendix

A-1. PB-1000 Memory Map

Memory Map of PB-1000

Internal ROM of HD61700

0000H \\ 0000H _ _ — — — — — " 0000H o o o o " 0000H po o o o e o -
0GooH ! ' ! ' : '
| 1 | | | |
| Inaccessible | Inaccessible | | Inaccessible |
Unused Area
1 Area 1 | Area 1 | Area I
| 1 | 1 I 1
S00H I 8KB Standand | 1 ! 1 ! |
7FFFH RAM | [| | | I
8000H 8000H 8000H B000H
Unoccupied
A fe
System ROM rea for Unused Area Unused Area
Optional
RAM
FFFFH FFFFH FFFFH FFFFH
Bank 0 Bank 1 Bank 2 Bank 3

Figure Al. PB-1000 Memory Map

A memory map of Casio PB-1000 is shown in Figure A1 (Reference (11)). By switching the bank of
the address space from 8000H to FFFFH, the BANK 0 system ROM and the BANK 1 RAM
(extension RAM) are accessed. In addition, 0000H to 7FFFH are designed so that only BANK 1 can
be accessed even if another bank is specified, and addresses 0000H to 7FFFH of BANK 1 to 3 cannot
be accessed.

A-2. BCD floating point format and internal format

Casio's pocket computers, except for some logical operations, perform numerical calculations using
BCD floating-point data, and all numerical variables and array numerical variables are stored as BCD
floating-point data. PB-1000's BCD floating-point format and internal storage format are described by
Polish Piotor Piatek (Ref. (14)). However, there are places where explanation is insufficient and there
are places where it is difficult to understand.

First, to conclude, the data storage format for numeric data is

1. Casio's BCD floating-point data format,
2. Little endian encoding,

3. Packed Little endian (Packed little endian encoding)

It is easier to understand if you understand in the order

Seite 96

BCD F8&i/NRTA—< vk (CASIO R4)

2 s —42 (msgn)(m0) . (m1)(m2)m3)- - -(m12) X 10 (eseXEIXED) megn esgn:+,— others:0-9
B S-15BREEE {REER

el 3 5 e e o) E R R
s$8 $7 $6 85 $4 $3 $2 $1 $0 { it (megr) = +

(esgnXE1XEQ) + 100 + 500

Lif (msgn)=-

e X7 [t fre] [mo Jro] [[me | [s [e][T ma | [t T2] [me [0
$0 $1 $2 $3 $4 $5 $6

example -
ss I (esgan‘l XEO) =—29amd (msgn) =+
— (ss)(e1Xe0) =-25+100=075
(esgnXE1XEOD) = +25 and (msgn) = —
— (ss)(e1Xe0) =+25+600=625

el Ie()” 0 I
g $

(N
l’/‘;?;j%’é{t ml1lm12||m9 Im10”m7|m8”m5|mﬁ|Im3lm4”m1 |m2 0 m0| Hu E::iiﬁfjf;ﬁ)ﬁﬁilu
(AT VST $0 $1 $2 $3 $4 $5 $6 $7 1.000,000,000,000 ~ 9999999 999,999

HD61700 TD | 0 Iss ||m1]|m12||m9 |m10||m7|m8||m5|mﬁI|m3|m4||m1 |m2||mclm0||e1 IeOI
AR T 0 81 sz s3 0 s4 $5 86§

Figure A2. BCD floating-point data format (Casio)

In FX-870P / VX-4, the basic format of numeric data is a normalized decimal exponent with a
signed mantissa part of 13 digits and a signed exponent part of 2 digits.

That, (msgn) (m0). (M1) (m @ 2) - - - (m11) (m12) x 10 (Esem (ED (E0)

It is expressed.Here, (msgn) and (esgn) are the sign of the mantissa part and the exponent part
(Exponetial part), respectively, and are + or-. Others are numbers from 0 to 9, the exponent part is 2
digits, and the mantissa part is normalized, so it is 1.000,000,000,000 to 9.999,999,999,999. By
following this rule, you can make a number such as

+1.123456789012 x 10 23

In addition, 0 is expressed by setting all 0s to 0.

This number is expressed in BCD (Binary-Coded Decimal) with 18 digits of 9 bytes. At this time,
MSD (Most Siginificant Digit) is 0, and the next three digits (ss) (el) and (e0) are a combination of the
sign and exponent part of the mantissa part (both sign and exponent mixture part), The mantissa part
carry (mc) is usually 0, and the remaining 13 digits are the mantissa part (m0). (M1) (m2) ... (m11)
(m12). Since the mantissa part is the original numerical value, there is no problem, but the sign /
exponent mixed part is given as follows.

The sign / exponent mixed part (ss) (el) (e0) is first considered to be a decimal three-digit
number and is offset by +100 to the exponent part. The sign of the mantissa part is minus (-)
Only in some cases, you can think of +500.

For example, if the exponent part (esgn) (E1) (E0) = -25 and the mantissa sign (msgn) = +, then
(ss) (el) (e0) =-25+ 100 =075,

exponent part (esgn) If (E1) (EO) = +25 and the mantissa code (msgn) =-,

(ss) (el) (e0) =+ 25+ 100 + 500 = 625

The reason why the value is +500 is presumed to be that sign calculation of the mantissa part can be
performed simultaneously with exponent addition and subtraction in multiplication and division. For
example, when multiplying-, 500 and 500 are added together to become 1000, and the significand sign
is + at the same time.

Seite 97

The above description can encode numbers in BCDC floating point format. For example, -
1.123456789012 x 10 ¥ is
057101 1234 56 78 90 12 in the BCD floating point format

If you can understand the BCD floating-point format, it becomes a CPU problem. FX-870P / VX-4
CPU HD61700 is a little endian system, so loading to the main register is performed in ascending
order from the least significant byte. For example, 05 71 01 12 34 56 78 90 12 is loaded as

129078 56342101 71 05 from$ 0 to $ 8.

The load state to this register is the first explanation of Piotr Piatek's BCD format, and the original
BCD floating-point format is not specified, so the packed little-endian encoding state, which is the
memory storage format, is difficult to understand. ing.

Since MSD and (mc) are 0 in the original BCD floating point format, moving (e0) to (mc) and
shifting (ss) (el) up one digit to reduce 1 byte ¢ Little-endian encoding, which is stored in
memory using this method.

For example, little-endian encoded data 12 90 78 56 34 21 01 71 05 (numeric value: -1.123456789012
x 10 %) is stored as
1290 78 56 34 21 11 57 in the memory

In Figure B2, it seems that digit movement is complicated and difficult to understand in packed little
endin coding, but it can be seen that it is natural digit movement when considered in the original BCD
floating point format. In fact, this operation is performed when $ 0, $ 1, ..., $ 8 contains floating point
data.

DIUW §$7 ; Digit Up of ($ 8, $ 7) pair

; $6<-$6o0r$ 7, where the upper digit of $ 7 and the lower one are equal to

OR $6,87 (e0) and zero respectively.

LD $7,$8 ;$7<-$8

Can be compressed. Conversely, compressed numeric data loaded from $ 0 to $ 7 from memory is

LD $8,87 ;$8<-$7
LD $7,86 ;$7<-%$6
DIDW §$ 8 ; Digit Down of ($ 8, $ 7)

AN $ 6, & HOF ; clear the upper digit of $ 6

It is reasonable to realize the original state.

The successor FX-890P / Z-1 CPU is also an x86-based 80186, little-endian CPU, and the storage
format in memory is the same.

The FX-3870P / VX-4 provides a program that displays the internal storage format of numeric data in
hexadecimal format in B-3 , so you can check the memory storage format yourself.

At the bottom of Fig. A2, Piotr Piatek explains the arrangement on the stack of numerical data on PB-
1000 explained by HP. He does not give a reason just by fact, but this stacking arrangement is for
reasons specific to HD61700. When saving $ 0 to $ 8 with BCD floating-point data to the user stack,

e
Seite 98

it can be accelerated by using multi-byte PUSH, but only up to 8 bytes are supported. Therefore, it is
necessary to push 1 byte separately. Therefore,

PHUM $ 7, 8 ; PushH User-stack Multibyte for ($ 7, ..., $ 0)
PHU $8 ;PusH User-stack for $ 8

Is saved in the user stack as shown in the figure. To pop the saved data,

PPU $8 ;PoP User-stack for $ 8
PPUM $ 0, 8 ; PoP User-stack Multibyte for ($ 7, ..., $ 0)

What should I do? Here, the register number is different between DIUW and DIDW, PHUM and
PPUM. This is also a specification unique to HD61700. When restoring packed little-endin encoded
data, the first two instructions are used.

LDW $7,$6 ;($8,87)<($7,56)

However, if § 7« $ 6 and $ 8 «— $ 7 are executed, $ 6 is copied up to $ 8 of the most significant byte,
and the target operation is not achieved.
Finally, when pushing to the user stack,

PHU $8 ;PusH User-stack for $ 8
PHUM §$ 7,8 ; PushH User-stack Multibyte for ($ 7, ..., $ 0)

If you push $ 8 first, it will be packed in the normal order of $ 0, $ 1,..., $ 7, $ 8 from the low address
side of the stack. Whether the FX-870P and VX-4 are still using the PB-1000 is currently unknown, so
it is unclear.

PS: I would like to thank Piotr Piatek for not being able to understand the BCD floating-point format
so far.

Seite 99

3-4 BASIC Programs

This time, in order to independently investigate the internal information of FX-870P / VX-4, several
programs were created and investigated. Below is a list of the main programs, a brief explanation of
the programs and how to use them. Such a program is unnecessary in nature, but it can be used as a
reference, such as output to a file.

B-1. CHKPFAV4.BAS: Check program area and file area
Listing B-1. CHKPFAV4.BAS

100 'CHKPFAV4.BAS

110 'check program and file area

120"

130 'for FX-870P / VX-4

140"

150 "program by 123

160 'since 30th, Oct., 2010.

170"

190"

200 INPUT "1:disp addrs, 2:disp one of PO-F9";MD
210 IF MD=2 THEN GOSUB 500 ELSE GOSUB 300
220 END

290 "*DISPADR:'disp addrs

300 POI=&H18A7:'addr of PO

310 PRINT "Addresses of PO-F9"

320 FORI=0 TO 9

330 AD=POIL:GOSUB 1000

340 PRINT "P";RIGHTS$(STRS$(I),1);":";HEX$(AD);" ";
350 POI=POI+2

360 NEXT

370 PRINT

380 FORI=0 TO 9

390 AD=POI:GOSUB 1000

400 PRINT "F";RIGHTS$(STRS$(I),1);":";HEX$(AD);" ";
410 POI=POI+2

420 NEXT

430 'PRINT

440 AD=POIL:GOSUB 1000

450 PRINT "MEMEN:";HEX$(AD)

Listing B-2. OUTWRKV4.BAS

000 ' OUTWRKV4.BAS

110 ' output data of work area of FX-870P/VX-4
120 ' to File FO-9

130 ' for FX-870P/VX-4

140"

150 ' programmed by 123

160 ' since 30th, Oct., 2010.

170"

180 ' S$ must be emobodied at lat for string data stability!!
190"

200 ' Data input

e
Seite 100

210 A=1.23456789012

220 BC$="CASIO"

230 DIM POI(2,3)

240 DIM QWES$(5)

250 FOR I=0 TO 2

260 FOR J=0 TO 2

270 POI(1))=(1*4+J)*(-1E60)

280 NEXT

290 NEXT

300 QWES$(1)="POCKET"

310 QWES$(3)="COMPUTER"

320 F$="0":AD=0:ST=0:NX=0:ST0=0:S$=""
490 ' Output work area to F0...9

500 INPUT "Output FileNumber";F$

510 RESTORE#("F"+F$)

520 WRITE#:'clear file

530 WRITE#"WORK AREA DATA"

540 ' TONDT(&H189F):numerical data
550 AD=&H189F:GOSUB 1000:ST=AD
560 AD=&H18A1:GOSUB 1000:NX=AD
570 WRITE#"TONDT:numerical data"
580 GOSUB 1100

590 ' DTTB(&H18A1):variable table

600 ST=NX

610 AD=&H18A3:GOSUB 1000:NX=AD
620 WRITE#"DTTB:variable table"

630 GOSUB 1100

640 ' TOSDT(&H18A3):string data

650 ST=NX

660 AD=&H18A5:GOSUB 1000:NX=AD
670 WRITE#"TOSDT:string data"

680 GOSUB 1100

690 ' PTSDT(&H18A5):free area of string
700 ST=NX

710 AD=&H18A7:GOSUB 1000:NX=AD
720 WRITE#"TOSDT:free area of string"
730 GOSUB 1100

740 END

990 '*GETAD:'get address

1000 AD=PEEK(AD)+PEEK(AD+1)*256
1010 RETURN

1090 *OUTHEX

1100 STO=ST AND &HFFFO0

1110 S$=""

1120 FOR I=ST0 TO NX-1

1130 IF (I AND &HF)=0 THEN S$=HEXS$(I)+":"
1140 IF [>=ST THEN S$=S$+" "+RIGHT$(HEX$(PEEK(I)),2) ELSE S$=S$+" "
1150 IF (I AND &HF)=15 OR I=NX-1 THEN WRITE# S$:S$=""
1160 NEXT

1170 WRITE#

1180 RETURN

1190 ' end of program

Seite 101

e Since WRITE # cannot be output without line breaks, as in PRINT A §; in the PRINT
statement, the file is output after combining it into a character variable S §.

e For numeric variables and array numeric variables, changing the value only affects the data
contents, but for character variables and character array variables, if the contents change, the
pointer values and character variables stored in the variable table It changes to the state of
the data area. In order to minimize the impact, S $ whose contents change frequently in the
program is used last in the program and registered in the variable table. In this way, other
character variables and array variables are free from the influence of dynamic fluctuation of
character variable data caused by program operations.

There are two ways to operate the program.

e Execute CLEAR (the CLEAR command may be placed at the top of the program), clear the
variables, and then simply execute RUN.
The output results are useful for understanding how variables are stored. However, the
content of the character data area of S $ (the last 1 byte of the TOSDT area of the output
data) is not 0 but contradicts, but is actually 0 (S $="").

Executes RUNS500
after assigning character variables and deleting the contents (substituting "") . Thereby, the
dynamic change of the character variable data area can be confirmed.

Listing B-3. CHKAV4.BAS: Numerical data of numerical variable A is displayed in binary (for
BCD floating point format investigation)

Listing B-4. CHKAV4.BAS

100 'CHKAV4.BAS

110 'check A, numerical variable

120 'to inspcet the inner represenation

130 'for FX-870P, VX-4

140 ' programmed by 123

150 ' since 28th,Oct.,2010

200 AD=&H18A1

210 DTTB=PEEK(AD)+PEEK(AD+1)*256

220 AD=&H18A3

230 TSDT=PEEK(AD)+PEEK(AD+1)*256: 'TOSDT
240"

250 FOR AD=DTTB TO TSDT-1

260 IF PEEK(AD)=&H28 AND PEEK(AD+1)=1 AND PEEK(AD+2)=&H41 THEN 310
270 NEXT

280 PRINT "Failed to find var A!"

290 END

300"

310 AD=PEEK(AD+3)+PEEK(AD+4)*256

320 PRINT "A=";A

330 FOR I1=0 TO 7

340 PRINT RIGHTS(HEX$(PEEK(AD+II)),2);" ";
350 NEXT

360 PRINT

370 END

380 ' end of program

e
Seite 102

Examine the variable table of DTTB to TOSDT in the system area and output the internal format of the
value of numeric variable A in hexadecimal. This allows you to check the storage format of numeric
variables in memory.

In the FX-890P / Z-1 successor to FX-870P / VX-4, A is a fixed variable ("Z-1 / FX-890P Utilization
Research"), so without examining the variable table, The program is simple because it only outputs
the contents of a fixed address. For reference, the equivalent program for FX-890P / Z-1 is shown in
List B-3. The reason why I used II instead of I in the FOR to NEXT loop is because I was not able to
use I because the original program targeted not only A but also variables A to Z. It is.

Listing B-5. CHKAZ1.BAS (for FX-890P / Z-1)

000 'CHKAZ1.BAS

110 'check A, numerical variable

120 'to inspcet the inner represenation
130 'for FX-890P, Z-1

140 "program by 123

150 'since 28th, Oct., 2010

200 AD = & H196F

210 PRINT"A ="; A

220 FORII=0TO 7

230 PRINT RIGHT $ (HEX $ (PEEK (AD +1I)), 2); "";
240 NEXT

250 PRINT

260 END

270 'end of program

e
Seite 103

IV. C - Referenz

While the BASIC Manual part was shown very well, the C-Manual
part is not executed on the Japanese website. On the Internet and in
books enough references to look up the C language (see operating
instructions "Introduction to C programming Casio PC-2000C").

The commands from the original manual are listed here using screenshots.
Despite the Japanese characters integrated as a result, the existing command
set can be recognized and the examples also show how they are used. For

further interest you can use it to experiment and compare with other C manuals. pﬂz ”c

CASIO.

4-1 Sides from the Original Manual:

Starts C with ON / Shift /C >

CEREt—NK
4. BIEAONIZLT. CEFET—FIZANZET,
BF T
@ %mné
Fe1H34586 78 8 33558
F2>Run/Load/Source/Cal
K= g - '3?—' % ﬁg
Source BE T Z LD EEENTRZET,
Load Mx— TarshLrun—FEhFET,
Run ®lx— TR ANREITEINET,
Cal C1%— 22 TAFEE—FIZED 27,

e
Seite 104

the C-Commands list

F—7—-F3477Y) —MHE

abort default goto sinh
abs do gotoxy sizeof
acos double if sprintf
acosh else inport sqrt
angle enum int sscanf
asin exit log static
asinh exp logl0 strcat
atan extern long strchr
atanh fflush main strcmp
auto ‘ fgetc malloc strcpy
beep fgets outport strlen
break float pow struct
breakpt for printf switch
calloc fprintf putc tan
case fputc putchar tanh
char fputs puts typedef
clearerr free register union
clrscr fscanf return unsigned
const getc scanf void
continue getch short volatile
cos getchar signed while
cosh gets sin
RES AN CEE

char 8kEw k

short 16w b

int 16w b

long 32 v b

float 328 v b

double 64w k

float 0, t£le—63 ~ £9.99999e+63
doudle 0, +1e—99 ~ £9.9999999999% +99

Seite 105

F—7—F Bk Bk
auto R E RO 7 7 R167E
break for, do, while, switch 34> 5 DI
X case switchX D% 4L, HEHAR
char XFERF—2(8Ey FR)DESFF
X const ERNES. BERAR
continue for, do, while i B W T, KDED R L~V x 7
X default switchX THEY L \w & EOMI%, HEAHAT
do MBBDE D K LEFT, do {~) while(X) ;
double fEAERE TR/ N B RN (64 P R)DES
else ifxr & bz, if () {~) else {~}
X enum FIFEMNEE F. HHAT
extern NERBERRIMBERNRE 7 7 RIGE
float YOS FE N SR (328 Y PR)DEE
for ek LET, for(R1;R2;X3) (~)
goto RELIZTAAANDY % 7
if H LRAYFEL SIFET, if(R) {(~)
int BHA(1I6E Y FR)DEE-
long fEREER (32 P RYDES T
register VORI BERENEE 7 7 AHEE, autoLFL
return BEOEZEL, O LANRES
X sigened HEOERRINES, ERAY
sizeof FT—yRNES, sizeof (BY) (IBEHAT]
short HEPMOESE F. intkFL
static HIERDRE 7 7 AIRE
X | struct BEEROESF. HEHA
X switch iz & Ao, ERAT
X typedef L WwF— 2 BOIEE, HHA
X union HHEDNEE T, HEHA
unsigned e LEERNDOES T
void lERS L WHERNAES
X volatile 7TarSAnMIP LEETELZRNES, HHA
while 0K LnET, while(R) {~}

Seite 106

i il
- int 0~32767
1EZEE | (g 39768 ~ 2147483647
int 00 —~077777
8 HEE unsigned int 0100000~0177777
long 0200000 ~017777777777
int 0x0000~0x7FFF
163 2 $ unsigned int 0x8000~0xFFFF
long 0x10000~0x7FFFFFFF
BHFOEECBEIEMLS LUBSHRA
& RIENE I - N & FEAHA
e : ()1 3 —
Hirg I~ +4+ —— (&) *iED & gizeof «—
T ek + - -
7 h < > -
fid £ Boxl = = =5
S He i == I= -
Evk AND & —
imEAND && —
mFEOR i —
B’ JIIEU?‘ , —
— Ko AICER F1) MERELSD *
— A LEITHEE i¥2) REILSD *
ASCII ASCII
Xv37 8-
¥ 2 — F (10i) | 7 — F (16i)
A 65 41
yA 90 5A
0 48 30
9 57 39

Seite 107

Sigg X # V)R L i & OFIEEE

Gk arik

if (RX) (OFW A= Er N &
o @XEFEITLET,
if (X)) | ORPEL 5T,
N @X1=FE4TL,
}
elsef @F LA ST (AL 51T),
AL @x2EEITLET,
)
if (K1) | @R 1A H 7% 51,
Wil @X1%#EiTL,
)
else if (X2) { @FnsnT (AT, RNe2HELLHIE
X2 ; @x 2 E2ETL,
}
elseif (3) { GFNLANTUBT), X3 HHEA LI,
X3 ®X 3 #FEITL,
)
else if (:n) DF NN TUBT), AndtE 72 51,
Xn; @XnEFEiTL.
}
else @#nlii s (K1 ~Rndbis)
Xn+1; WXn+12EiTLET,
}
e 1) oz LI
while (X) { ORDPEDH AT
s @XEETLETS,
g

for (X1 ; K2 ; X3) {

O 1 E2EITLTHHREETLVET,

DG
} while(=) ;

X @R 2HHL L, XEBEITLET,
} @RITETLTCERMFEzEHEZ LT,
@R 2 HAg b, XEERITLET,
GUT. Re2HFHEHDDWIE, XNFET, R3IckrEHE
WMOELIT.
do {

OX=ETLET,
@FXAHELH, JLICKEY £7.
QEIT, XAFHDOH W XDEITERNEL T,

Seite 108

int x, *px;

x=%px;

EOBITIIpx AR L T 2R xILAZR
i‘j—o

int x,y, *px;

EOFITIExDT FL Zhpx IS A S 2tk

px= &x; pxHRTT FLANDAEEyICALET,
y=*%px; Thbb, y=x; MLzt T,
main () XFEICBEWTEL »FEHVWD L, XFH2
{ W—RFaBTIenTEET, EfT343
char *p; ERERITROLICLNET,
p="Casio” ; C Casio

printf ("%c %s ¥n", *p,p) ;
}

KA > #pitCasiomCEIFLET,

main ()
{
char *p;

p="Casio”;

printf("%c %c ¥n", *p, *(p+2));

CasiodCrsZHI T IiZEN LI ICLET,

}
main() A DEERIIR, > TRTIELTEZT,
{ EOFITEES anEEF2pa TR LTWET,
int i,a(5), *pa; % ald, BHMNORMOERal0)FIET A
pa=a; vEEELLET, LT, BENOEZEEEE
fopli=0 =4z} &) By R4 2 3kRDEI 2R 2T,
* (pa+i)=1i; pa ceeeeeeees a(0)
for(i=0;i<=4;i++) patl -eeeeeeeen all)
printf ("%d” al(il) ; BT v al2)
printf ("¥n") ; pat3 eoeeeriens a(3)
} pa+4 a[4]
main () KA 22 BERDT FL R ERH>TWBEIT

{
char *pc, c(80);
pc=c;
strepy (pe, "abedefgh™);
printf ("%s¥n” ,pc) ;

T LizdioT. BAIZ L » TIIEMEIR MR
AT A I R ErH N £,

EOFITIE, R4 > % pe &80 FOMHIELE %
FERT 2720ICEN c2ES L, KA~ 7 pcZid
BIORA »gcEMIZLTWET,

Seite 109

—

RN —T7

for(;;) DOXE#ZYELEITLET,
X, (for XDOWIMARKE. FHFHIMT. FFEHI L)
while(1) DX E#HNELETLET,
X (while XD &GO LE (1))
do X ; DX =N ELETLET,
while(1) ; (do ~ whileX D &EHF»FVDLH (1))

break . continue

while (1) {

OwhileX 2 & 2B —THETINE T,
@R EL Sbreak XAETEN, BEL—7H LiETH
L33,

QX1 HHDOBWE, {) OFEITEINET,
@R 2 HE A 5 . continue XAYEAIT &, whileXXIiZED |
R1IPETENET,

|\EEI T

goto 7L

D7~ NOMEICERFICZ 7T LET,

Seite 110

4-2 The C-Code in Original Manual

RUN (Z%) RUN

RUN>“PRN @ ”
RUN>(!prn : ”

(#aE) 7nroako—FLTEITERET,
“PRN : "F7203"prn " ZIWETH &, EITHRE2 T -2 hLFE T,
HEZEMT L, BEICHEILET,

EDIT (#=) EDIT

(H88E) 7077 20BERTHITT 4+ FICANET,
FEYI LI CE 7R Ly SEENTRAN YA 27 7
ANVZS—REFTEERLET.
Tv—=2T7ar 7 50FTHERRIL T3 L BICEDIT2ANT 3, =
FALic AT L—2 LG ERzL 3T,

TRHRON (%) TRON

(BBE) ML —RALLHo7Rr782ETTE ML —AMRERIRELEST. L —
AMREPIEELTT O 77242 T0TAE, 707768 17TETTEI LI,
KIZETTR2IT2ERLET,

FL— 2o —#{E bd ¥ —: EfFEHETLE T,
) Xx—EKiTeHITLET,
Bed % — @ EiTEPHEIL F T,
ML —2AKEREIT, EEIREIZOFFIZ - TWET,

TROFF (#=) TROFF

(#8E) b~ —AMRREEMERL £ T,

Seite 111

getchar (®s) intgetchar(); (RYf) HABALXFNI—F.
int Y,
(#88E) (#1)
F—R—F»5 1 XFHAAATT, int c;
getcharl, getc(stdin) &[{] L T¥, :
ARG X —2W|F LiThbFE T, c=getchar () ;
pREed & 13 L . EOF(—D AN INET,
getc (W) int getc(stdin); (RYME) HARALELFNI—F,
extern FILE *stdin; int#,
(#8E) (1)
MARAATTETIXFNI—-FeRLET, extern FILE * stdin;
ANE, BIX— 2T LT hbET, int c;

3. getchar& [F LT,
stdin (¥ —K— F) LIS 6N AH #38E
THIEIITEIRA,

c=getc (stdin) ;

fgetc (E=R) int fgetc(stdin); (RYE) MARALXFNI—F,
extern FILE *stdin; int®,
(H#%8E) (%)
X—K—F»56 1 XFaHARLET, extern FILE *stdin;
AR . IX—2 T LT b FET, int c;

#{E(Xgetchar R L TT.
stdin (¥ — &K —F)LIAkm 6 DA N 1345E
TEFEA

c=fgetc (stdin) ;

putchar (#s%) intputchar(c); (RYfE) HHLiXFna—Fk,
int c; int®!,
(#%8E) (1)
“ stdout (F/REIHIZ) 1 XFHALET, main ()
{

char buffer [64];

int i, c;

gets(buffer);

for (i=0; buffer [i]!="%0";i+ +){
c=putchar (buffer [i]);
if(c==EOF)break;

Seite 112

putc (&®=X) intputc(c, stdout); (R 1{&)
int putc (c, stdprn);

int c;

extern FILE * stdout, * stdprn;

HhLieXsFoa—F,
int%®4,

(H8E)
stdout (F/~E) ¥ 72X stdpm (7Y > %)
c1xXxERALET,

fDutC (&=) int fputc(c, stdout); (&Y {#)
int fputc (c, stdprn);

int ¢c;

extern FILE * stdout, * stdprn;

HhLiXEna—F,
int®,

(#8RE)

stdout (F7REHE) F 72 (dstdprn (7)) > %)
IXFHALET,

#iElL. putck R LTI,

(%)

extern FILE *stdout;
char buffer [30];

int c;

c=fputc (buffer [0], stdout);

BEINT—FDEKRA ~
% . char®l,

(1)

char string[30], * result;

gEtS (&) char *gets(string); (FEV{H)
char *string;
(#8E)
stdin(F —F— F) 55 1Tii A A, £
N zstring ML 3,

XFHT, WITXTFETAAINIT T,
AT XT3, string R Tlz "¥0,(NULL)
XFICEERZLNET,

result=gets (string);

Seite 113

fgets (==)
char *string;
int count;

extern FILE #*stdin;

char *fgets(string, count, stdin);

(RV{lE) HwHInit7—%
DRA 7,
char®¥,

(#%8E)

stdin (¥ — K — F) > 6 X FH 23 A, £
N &string IZHEML £ 9,

XFIF., WITXFFLRBRARAALTLTE
Hhicount-1ic % b FTHENET. XF
Bl OBt T¥0(NULL) X FE a3 i
;P

SATFE D E LA S stringP T
YO (NULL) X FiIcEERZ 6N T T,

()
entern FILE 3* stdin;
char string[30], * result ;

result=fgets(string, 30, stdin);

puts (#=) int puts(string); (EY{E) &fFxFa—F.
char * string; int#y,
(H#8E) (1)
stdout (F&/REIM) (Istring Z i h L £ 77 int result;

XFEHN DT 2FbTT¥0,(NULL) XF
3. ITXFEICEZHBRLITESAAZT T,

result =puts(“string”);

fputs (#=) int fputs Gtring,stdout); (RYfE) &HEXRAALEBOLF,
int fputs(string, stdprn); int%®,
char *string;
extern FILE *stdout, * stdprn;
(#8E) (1)
stdout (FE7REM) F 72 (Istdpm (7)) » %) extern FILE *stdprn;
ICstring 2 h LET, int result;

XFERO#RT 2KbT T¥U(NULL) X+
rHEEAAZHA

result =fputs(“string”, stdprn);

Seite 114

printf (==t)

L PIRAY &= - &

fD rintf printf (format [, argument:+----]); int®Y,
. int fprintf (stdout, format[, argument:--=--]); (sprintf TOHEED

Spri ntf int fprintf (stdprn, format [, argument------]); T¥0,(NULL)XF(Z
int sprintf (buffer, format [, argument------]); 2 £¥A)
char *format; 7 —7% 5., EOF,
char * buffer;
extern FILE *stdout, * stdprn;

(#5E) (F1)

argument % format |2 L 7225 > TE#L | int count;
printf(3std out (F/REH) 12, fprintfidstd- count =234;

out (F7REH) % 7213 stdprm (7Y > %) 2.
sprintf(3bufferiz, £ FNH LT,

sprintf DA 72T, Hi%ICT¥0,(NULL)
XFEEHHLET,

formatid, OHLLED X FH T, @D
XF, Ry =7 =47 v A, BffEr»
L% NFET, BROXFLIAYy—T ¥ —
TR, BHbhaAIZFNZEFHhEN
= 2 o

sprintf (" %d%06d% X %x %o0¥n”,
count, count, count, count, count);
KR 234 000234 EA ea 352

(B 2)
int count;
count=234;
printf ("1 %d! %,6d1%-6d ¥n”
count, count, count);

argumentERAAE L D L 2 & BT, SR 1234 2341234 ,‘
F5 7cargument (TR I N LAk BT
RRVAEE LN FT,
scanf (B=) (RY{E) fLAZNL7zargument?
fS ca nf int scanf (format [, argument------ D; BEEOLHINEETT),
int fscanf (stdin, format [, argument----- D; int®El,
Sscanf int sscanf (buffer, format [, argument---+- IR
char *format;
char # buffer;
extern FILE * stdin;
(#8E) (%1)
AR L#:F—% #formatic L2 - TE inti;
L . argumentiZfCA L F4, float {;
scanf & fscanf(3stdin (¥ — R — F) 26, doubled;

sscanflibuffer 5 AN L9,
argument (3, format THaE 7B %}
BT AMOEEE/T RS > T,
scanf & fscanfiz g X — 2§ L A7 &
1L F Fosscanfi3 "¥0, (NULL) X F 4 buffer
D¥ELNERAEINET,

acanf ("%d%{%1f, & i, &f, & d);

DEEMHEDMNEREE)
MNeEHEEE - AhT 2L, 112123,
f12—1.23e10.d12203. 045 fCA R L T,

Seite 115

fflush (=)

int fflush(stdin);

(RYW1E) E¥ZXHIE, 0, inth,

extern FILE * stdin;

(#8E)
Ny 7 rDAFEZVT—LET,

(1)
extern FILE #* stdin;
int c;

c=getc (stdin);

fflush (stdin);

getch (#) int getch(); (RYl) #HARALIXFNOI—F, inth,
(HE) ()

stdin (¥ —FK— F) 2 5 EE 1 XFHAA int x;

B EDX T2 —a—FEELET. ?
MARATHEITIERENF A, x=getch();

AF1o%y 77 HEDBAI, H— Vbt
ERLTHERLET.

inport (%) int inport(n); (RYE) FHARAALE, inth,

int n;

(#8E)

NTIRESI N — P2 51354 FifasA

A2FT,

nit. 025 7 DFHETT,

outport (&) void outport(n,); (RY{E) MLEL I A,

int n, i;

(#8E)
nTiRESNR— biCizhhLET,
ni30H S7DFIP 1130~ 255D FPH T

clearerr

(#=X) void clearerr (stdin) :

(RY{E) fILELEHA,

extern FILE 3*stdin;

(#E)
A%y 7 7 NDEOF %2)7—LET

Seite 116

breakpt (®=) void breakpt(); (RYf#H) LELFHA,

(#8E) (#1)
TRTILADETEFLEL, TV—-I % :
—FizAN 4, breakpt ();

— A5 L0FL—2FE—F@

breakpt AP EITENE & Fhd L —2AIZX—HENE L, 7L—27E—FIZA
Y MBreak? X\ X v —UHERRENET,
V=2 - FTIKNE) X —RIEEITEVET,

X — #® fic
(A) FEITRHRT
© EITEHEA
(g EITEHE
FLr—2 L6 ET2HH
(N FLr—2LEWTET2HEH
@ EHEFPANTBLEROBL 7L —2 L2k EOEBOMHEEFER
(19 — Kk F— 25 L EEERD, HIKTHT)
exit (®R) void exit (); (ROfE) MHELTEA,
(HtaE)

Tur77LRIEERTIEEY., EER
T3EBEICHN Ny 77 ORNEEI)T
=LE T,

abort (=) void abort (); (RY{f) MLELEEA,

(H48E)

TRTTLBPRERTEEET, ZDE
&, TAborti& \»9 4 v £ — ¥ %stdout (F
RERE) B LE T,

Seite 117

malloc (®=) char #malloc (size); (RYE) WERSN/AE) —HM
unsigned size; WHKRA % charfl,
MERTE L5 d
13™¥0, (NULL)ZE L
=Ty
(#8E) (1)
size CIRE L7 KEED AT —HED main ()
MECR L &4 (BALI3 <A FTF.) L
WRINz A€ —HRIZ, 7or7a

DEAHETLELCHESINET,

char *c;

if ((c=malloc(256))= =NULL){
printf ("7 —F Y a4 XA L ~L

>¥n");
exit();
}
!
calloc (#=R) char *calloc(n,size); (RYfl) FEHRL 7A€) —ff
unsigned n; DiRA > % ,charfl,
unsigned size; FEIR T E e - 124
I3T¥0,(NULL)ZK L
7,
(#8E) ()
size CRHRELAKEE (34 b) onfiD main ()
BEROERS & 4) —EHICHERL, 0T {

MEfLLE ¥,
MfRIN/I2 AT) —FZ, 727 5a
DETRTLELIZHRKENZET,

int *iarry, i;

it ((larry = (int *)calloc (1000,2))= =
NULL){
printf(".~4 v v A F L=+t L ¥n");
exit ();
}

for (1=0; i<1000;i+ +) iarry [i] =0;

}

Seite 118

free (&) int free(ptr); (RY{E) MRS 5E0, intA ptrddEs)
char * ptr; 72 ¥ (calloc. malloc I & - THE
fRENI2AE) —FEEBOKRA >~
FTnE), —12ELET,
(H8E) (%)
malloc=ecalloc THEfRS L7z £ €) —

ERKLE T,
ptr T. calloc. mallocic & » THEfRE I
P2AR) —FEEMORA LI ERELET,

char *arry;
arry =malloc (256) ;

free (arry);

XFHBIE
strien (#=) int strlen (string); (RYE) XF5string? ¥0,(NULL)
char *string; PEILVWERI, intH,
(B%8E) (1)
X FHstring® "¥0,(NULL) X F O 1 fi

FTO L FEERLET,

int length;

length=strlen (“adc”);
/*length=3%/

strcpy € &9 (RYME) destn®A > %,
char #* strcpy (dest, source); char®,
char % dest, *source;

(#%8E) (f31)

X FHlsource DHIED & ¥, (NULL) X
T F T("¥0(NULL) 2 &) Ofp % . XF
HidestDEAHIZaE—LFT,

FHE—95 E &, Ad=-TE—lF=
v 2TV ERA.

char * result, string [64];

result =strcpy (string, “abc”);
/ *string="abc” */

Seite 119

strcat (m=) (RYfE) destn®f > %,
char strcat (dest, source); char®,
char * dest, * source;

(#HE)

X FEF]source D FEIAL HT¥01(NULL) X
FOUEFR] E TOFR % X 75 dest D& D
"¥0,(NULL) XFN&AS AL, &%
T¥0,(NULL) XFZfmL £7,

Dk &, F—at=F0=F=n FiX

THWEHA,
stremp (E=) (RYIE) KOBKIEELET,
int stremp (string 1, string2); int®,
char *string1, *string2; string 1<string 2—0 LM S ¥
string 1 =string 2—0
string 1 >string 2—0 kDK EiE
(#%8E) (1))
X FHstring 1 & 7% string 2 D S 5E int result;
Lb—XFT . ¥ (NULL) X T8 b char string 1[5];

5 % THEASCIIo—FIE) LZT., char string2[5];
T¥0,(NULL) b DM R L %) 7, :
strepy (string 1, “abcde”);
strepy (string 2, “abeda”);
result =strcmp (stringl, string2);
/*result=1%/

Seite 120

strchr € 9]

char * strchr (string, chr);

char *string;

int chr;

(RY1#)
fagE L 72chr GRE XF) D KA

(#8tRE)

X T string THRANNZE HN BTEE X Fchr

PRELE T

T¥0,(NULL)XF MBI REL Y &

T

%, char®,
Romsihofas 2iIT¥0 (N
ULL)#:EL £,
(%)
main ()
I

char instr[64], *ss;
printf (“Input string=");
gets (instr);
ss=instr;
while ((ss=strchr (ss,” % ’))!=NULL)
[T 2ZAFNA7
T x/
kgs=' 'y JRT L F—— =
TXAHT %/
puts (instr);

Seite 121

abs (B/R) int abs (n); (EVE) nO#MAHE, int,
int n;
(#8E) (1)
BROMEEZEL F T, main ()
{
int 1, ans;
i=—1;
ans=abs (i);
1
sin (#=) double sin (x); (R Y1{&) double®!,
cos double cos (x);
t double tan (x);
an double x;
(#8E) (1)
AExICHT 3 ZARBDOMHZELET, main ()
BExPERRA B T4, {
ot s o double y;
AExDREEHBEIZ, k0w) T, angle (0);
|x| <1440 (DEG) for (;;) {

x| <87 (RAD)
|x] <1600 (GRA)

printf (“Angle?”);

scanf (“%If", &y);

printf (*%11.10g%11.10g%11.10g
¥n”
}

, sin(y), cos(y), tan(y));

Seite 122

asin (&) double asin (x);
acos double acos (x);

double atan (x);

(RY{&) double#!,

ata n double x;
(H8E) (1)
XIZHT B = O (AE) 2R L double y;
- 4. -
x PEFHEE 282 TV A EAICE, angle (1);
Z—I2% D FT, y=asin (1.0);
x DIEEHH ZZHE D TT, y=acos(1.0);
—1=x=1(asin, acos DHA") y=atan(1.0);
x| <1001 (atan?D ¥4
W2 B PABDIEDHHIZKRDIE) T,
(RADDH).
[—7/2, 7/2](asin)
[0, 7](acos)
[—7/2, m/2)(atan)
sinh (=) double sinh(x); (EV1{#E) double#!,
COSh double cosh (x);
double tanh (x);
ta nh double x;
(#88E) ()
A x (23 B R DM 2R L & double y;
T :
sinh x = (eX—e %) /2 angle (0);
cosh x = (eX+e7X) /2 y=sinh(1.0);
tanh x = (e¥X—e™%) /(eX+e7%) v=cosh(1.0);
xPEERHZEBL TV 284012, =7 y=tanh(1.0);

e {2) G
xDEFEEIE, k0@ TF,
|x| =230.2585092 (sinh, coshh?D54)
Ix| <1001° —1<|tan(x)|<1
(tanh?D34)

Seite 123

asinh

(#=t) double asinh (x);

(RY1&E) double®!,

aCOSh double acosh (x);
double atanh (x);
atanh double x;
(BaE) (1)
X AZA Y B AR BB 2 KL E T, double y;
sinh™' x=loge(x+/x*+1) :
cosh™x=loge(x+/x2—1) angle (0);

tanh'x=loge(1+x/1—x)/2
XV HEEHZEZ THW25483. =5
—iEnY 9,
xD{EHEFHAIZKRDOEY) T,
|x| <5E+99 (asinh)
1=x <5E+99 (acosh)

y=asinh(1.0);
y=acosh(2.0);
y=atanh (0.5);

—1<x <1 (atanh)
pow (&B=RX) double pow(x,y); (RY{#) doubleX!,
double x, y;
(#%8E) ()
XDyFXY)DEEL 3, double x, y, z;

yOODEGERIE 12RL T,

xPOTYyDEHDGH L, xWHETYyH»F B
ThWHSIR, =52 x5,

RiRHF —rv— 7o —DsY, =5—
ol B 3 g

x=2.0; y=3.0;

z=pow (X, y);

sart (&R) double sqrt(x); (RY)fE) double®!,
double x;
(H8E) (1)
XDOFEHBR([x)E2ELFEFT. double y;
xPEOEARIL, T -2 FT, :
y=sqrt(2.0);

Seite 124

exp (E=®X) double exp(x); (K'Y {&) doubleZ!,
double x;
(188E) ()
x DIFHBAH () D ZRE L £ 7, double y;
X >230.258509203 6, =7 —I2% D & :
T y=exp(1.0);
log (#=) double log(x); (RY{#E) double®,
IOg]U double log10(x);
double x;
(#%aE) ()
logld . xD HIAM E (logex) DIEZR L F

s

log10!Z. x D A X E (logox) D 2R L
= ot i

xMWODHE, BOEZAIIZT -1) £
s

double v;

y=1og(1000.0);
y=1og10(1000.0);

angle (&) void angle (n); (RWflE) fHELZHA,
unsigned n;
(H8E) (#1)
A%, S-ARKROAE T F 25 double y;
ELFZFT. nDIFEICEDNIKRDE HITLD :
= o P angle(0);
0:DEG (F) y=sin(90.0);
1:RAD (79T) angle (1);
2:GRA (77 v F) y=sin(1.570796327);
angle(2);

y=sin(100.0);

Seite 125

beep (#=) void beep (n); (RUME) FLEL $4 A,
unsigned n;
(#HE) (1)
nOIREICL) BUFIrEHELZKS beep (0);
LE7s
0:fEVWEFEZELLET,
LEWEEBESLET
clrscr (&=R) wvoid clrser (); (RY{E) MILELFEA,
(t#8E) (1)
FRERDOEREBHEL, A—Y V2K clrser ();
<AL s IR T,
gotoxy (&) void gotoxy (x, y); (RYE) WMLELFEA
unsigned x;
unsigned y;
(#8E) (%)

BRI\ 7Y — (32X 84T) LD H—
MiEZ, xEyTIRELE T,

R, RBR 72— EnELBzE
20,00 & L RoFHTIRETEE T,

gotoxy (10, 2);

Seite 126

—XRTFNCZR
—FISAR

—XE)—-NEIBRE

Cl [« AHNTEZT/NAR

B

b S g 2 e

V. F:COM

_5:..\/\'/]' Z %t}] i‘) ;#Ei"{;i 3{,3_0
REOREIITL L T

=]

P B
F x
P@>

I ey, FF~F b F—F—
BT HAE FR4T

RS-232C

WRIFIL—
WRZFTI—
@ —
M) ¥ —
D)% —

mle
ThOF — &L T,

Seite 127

ESANIEIE Sk S L

BASIC7OZ L7 7 LITUT—
FRE—FADOT7FAILIT)T7—

- =
—

FRAEF—FRD77OLI)T—

F.COMXZ=a—

(R1E)

oo o om om 0om o
um o um um U~ o
M > m< m~ mm>»—
ama> um aum uma >
nmow nm 0o nmow
o o0 o «c T 0o
NN NN
-+ [
DOwc oom ol O*wc
e — A o L e | —
N NS NN N et L. L ug=z
N ~ m NN (=l=hod mm -
© © oo~ oouw oo ——w umm
o e oo nm -
nwaexs N0 — D10 — 0N o= ® Ma r =
oo ow I\ ! — .
TSIz ddm 44.0.. T ow— -
MmN~ mm mm MmN~ oon=E -
© o =z
o~ 1] 3¢ [TH TERTH uflo+~ e om -
> - — wuze -
——00 —re — > ~—®O B i 3
wuw a a wuw _.0_..09 BBE
80A s o e 0 S8 A
o o o [A= B S -
[TRTE oW A owA oww - @ w
— PN oo -
1% ~ 1 13 i 2000 o E
ﬁ@mu %@ _m® am® g it i
LOm= (=]
P] R qIIT=
Ium_“ul._h__,,m, N Lo Lo Lo Yo | (w]
TEHR = S~uz| |mmo
- H ol e] =
UMW @ 2 ul O QU » w
.o et
| =t~ @ =3 T W
Fn= N 4 —
75 (§] & = o
X DY wo © [% [N
a ~ @ W AU o+~0c e
E _7/, @ ,;._s._.m mwouw oo
R TRt
WTD@ e =S @ 0
98 x| 8 | @7 | ©
g
L£0Q L@ L@ L@
L L L ¥

BASIC7QZ ZL77(LTY)T—

F.COM Begin
over RS232

RS-232C ROtk |
BPS (K — b — hMi7E)
KOK—L — b HHEETEET .

| 150 | 300 600 | 1200 | 2400 4800

Parity (#<1) 7 1 & v b DIRIEIRE)

N E 0
SUTFa%L | BB T4 | A¥U) T4

Data(¥ + 77 # Dt v b EDIFE)

7 8
JIS7E » b JIS8E v b

Stop(A F v 7E v FEDIEE)

1 2
AFwFrEgk=1E¥E Abv7Eyb=2Ey}

CTS(CTSIES DARIETHIHT 2 20 L 5 »DIEE)

ON OFF
w4 5 T D
DSR (DSR{E 5 0K FE THIFH T 2 2 &) 2 DIEFE)
ON OFF
HlliH-4 2 EHT S
CD(CDIE % DAIKRETHIT T 2 20 &) 2 DIFE)
ON OFF
HilE4 % TS
Busy(#¥v 7 7 & ¥ —DHlEIN B 52 L\ DIEE)
ON OFF
HE 5 HE L 7w
SI/SO (SI/SOfIE % § % 20 L %\ DIRE)
ON OFF
3 2 BB L 2w
End(z > F2— F1ADKE)
ON OFF
KETY B AHE L&

Aty b F—FLa—5—MEF
MTphase (MT#* & DAt & EDLHNIEE)

0 1
1EAH po |
MTspeed (S5 1% B DIEE)
S F
300BPS 1200BPS

e
Seite 128

Save to (F)

—m
=9
—m

oM~
won
[o
oo
[TaRTs]
TN
mmo
U se
— % <C

3¢ [SIY

oun

Merge Files

~mM
oM

o
—

ouuw

Seite 129

VI. STAT

STAT Begin
B4 -
@ | & @ (Fx menu)
1 STAT(x)
2:8TAT(x.¥)
3. Trainig Board
A RiR (Statistics [x])
CRREE Input / Delete / Clear / List
Print / T-score / Freaquency
Bir RiR ({ Statistics [x.yl }
ONNF=) ©)
lnput / Delete / Clear / List
Print / eoX / eoY / Freaquency
Select Modi
X —#R{E £ R K AE
M Input F—IDAN
(D) Delete 7 — 2 OHIE
© Clear 27— DHE, HETEOPIHAL
List HHATRNOERR BEROER)
X eoX Ty icxtd 3 Txy OHEEMETH
eoY Fxy K52 Ty, ofEEMIHRE
@ Print Rt 7)) 2 h
= Freaquency BEHATUNNEL
BRI E
@ O) (statistics [x1)
@ | MFx7zided Clear data (Y/N) ?
Input Data
B1F E
ORI @ | Input data (x) [EXE]l:menu
CNT= @ Frea of f
XPo
BE RR
@ | MEks @® | Input data (x) [EXE] :menu
CNT= @ Freqg on
x?10
f?1

Seite 130

List Data

nw
ouno -
~—lNMLwW

® | BJ@L]

B{E

Delete Data

)
L
e

y.fl
a
Fre

[:x
I
£

Statistics
I
X

¢
t
t

tY®?

1tez data (x.y)

N]
-~ 1
O0Z 00
00X+

(NS

® | HEE

B®1F

¥

Extimation of x

—~®
x E

+
—~auw

n >
— >

B

[x.

nm

—1D x
+ M

nE
—no
~ 0

[i =
~1I0 o
mo--—

~0 @©

-

c+ |
(o T
ow »

Bk e

| BHEX

B1F

Training Board

Training Board

Seite 131

w1

(o]

VII. HD61700 Cross Assembler

Table of Contents

. HD61700 Cross Assembler

e 1-1. Assembling method

e 1-2. Assembler options

e 1-3. Execution of output format and machine language
e 1-3-1. BAS format
e 1-3-2. PBF format
e 1-3-3. QL format

e 1-3. Error messages

. Architecture

e 2-1. Features
e 2-2. Register configuration

. Assembler

e 3-1. Assembler format
e 3-2. Pseudo instructions
e 3-3. Program points

e 3-4. Mnemonic format

. Mnemonic
. Instruction set table
. Appendix

e 6-1. Output format and loader (BAS format, PBF format, QL format)

. References and links
. Figure
. Revision information

e
Seite 132

List of Pseudo Instructions

Pseudo Instructions

ORG (Origin), START - - - EQU - - - DB - - - (Define DW - - - (Define Word)
(Start), (Equivalent), Byte),
DS - - - (Define LEVEL ... #IF - - - #ELSE --- #INCLUDE H#INCBIN - - - (INClude
Size), (Level), HENDIF BINary)
H#NOLIST, #LIST, H#KC, #Al, #EU
HEJECT
List of Registers

General-Purpose 8-bit Register
$0,$1,--+,$31- -+ (Main
Registers)

16-bit Register
PC - - - SSP (Syatem Stack |USP (User Stack Pointer) IX, 1Y, IZ (Index
(Program Pointer) Registers)
Counter)

Specific Index Register and flag Register
SX, SY, SZ F----(Flag
(Specific Index | Registers)
Registers)

Status Register
IE - - - IA (Interrupt Select | UA (High-Order Address No mnemonic PE - - - (Port
(Interrupt and Key Output Specification Register) (Display Driver Data Direction
Enable Register) | Register) Control Register) Register)
PD- - (Port |TM* - - (Timer IB (Interrupt Control and KY - - - (Key Input

Data Register)

Data Register) Memory Bank Range Register)
Configuration Register)

Seite 133

List of Mnemonics

Transfer Instruction (8 bits)

LD - - - (Load),
STl - - - (Store
Increment),

PHU - - - (Push by
User stack pointer),

PST - - - - (Put
Status),

GSR - - - (Get
Specific index
Register)

LDI - - - (Load
Increment),

STD - - - (Store
Decrement),

GFL - - - (Get Flag),

STL (Store data to
LCD),

Transfer Instruction (16 bits)

LDW - - - (Load
Word),

STIW - - - (Store
Increment Word),

PHUW - - - (Push
by User stack
pointer Word),

PPOW - - - (Put
LCD control Port
Word),

LDIW - - - (Load
Increment Word),

STDW - - - (Store
Decrement Word),

GRE * * - (Get
Register),

GFLW - - - (Get Flag

Word),

Arithmetic Instructions (8 bits)

INV ... (Invert),

SBB (Subtract BCD),

NA - - - (Nand),

XRC - - (Exclusive
Or Check)

CMP (Complement),

ADC ... (Add Check),

NAC - - - (Nand
Check),

Arithmetic Instructions (16 bits)

INVW - - - (Invert
Word),

CMPW - - -
(Complement
Word),

LDD - - - (Load
Decrement),

PPS - - - (Pop by
System stack
pointer),

PFL (Put Flag),

LDL (Load data from
LCD),

LDDW - - - (Load
Decrement Word),

PPSW - - - (Pop by

System stack pointer

Word),

PRE (Put Register),

GPOW - - - (Get
Port Word),

AD - - - (Add),

SBC (Subtract Check),

OR - - - (Or),
ADW - - - (Add
Word),

LDC (Load Check),

PPU - - - (Pop by
User stack pointer),

GPO - - - (Get
Port),

PPO - - - (Put LCD
control Port),

LDCW - - - (Load
Check Word),

PPUW - - - (Pop
by User stack
pointer Word),

STLW - - - (Store
Word data to LCD),

PSRW (Put Specific
index Register
Word),

SB (Subtract),

AN+ - - (And),

ORC - -
Check),

- (Or

SBW . o w
(Subtract Word),

ST - - - (Store)

PHS - - - (Push by
System stack
pointer)

GST - - - (Get
Status)

PSR (Put Specific
index Register)

STW - - - (Store
Word)

PHSW - - - (Push
by System stack
pointer Word)

LDLW * - - (Load
Word data from
LCD)

GSRW - - - (Get
Specific index

Register Word)
ADB - - - (Add
BCD)

ANC (And Check)

XR -+ -+ (Exclusive
Or)

ADBW - - - ((Add
BCD Word)

Seite 134

SBBW - - - ADCW - - - (Add
(Subtract BCD Check Word),
Word),

NAW - - - (Nand NACW - - - (Nand
Word), Check Word),
XRCW - - -

(Exclusive Or Check

Word)

Rotate shift Instruction (8 bits)

ROU - - - - (Rotate |ROD - - - (Rotate
Up), Down),
DID - - - (Digit BYU - - - (Byte Up),

Down),

Rotate shift Instruction (16 bits)

ROUW - - - (Rotate |RODW - - - (Rotate
Up Word), Down Word),

DIDW - - - (Digit
Down Word),

BYUW - - - (Byte Up
Word),

Jump / Call Instructions

JR * -+ (Relative
Jump),

JP + = - (Jump),

SBCW - - - (Subtract

Check Word),
ORW - - - (Or
Word),

BIU - - - (Bit Up),

BYD - - - (Byte
Down)

BIUW - - - (Bit Up
Word),

BYDW - - - - (Byte
Down Word)
CAL - - - (Call),

Block Transfer / Search Instructions

BUP ... (Block Up), BDN - - - (Block

Down),

BDNS - - - (Block

Down & Search)

Special Instructions

NOP - - - (No CLT - - - (Clear

Operation), Time),

TRP - - - (Trap), CANI - - - - (Cancel
Interrupt),

SUP (Search Up),

FST - - - (Fast
mode),
RTNI - - - (Return

from Interrupt)

ANW - - - (And
Word),
ORCW - - - (Or
Check Word),
BID - - - (Bit
Down),

BIDW - - - (Bit
Down Word),
RTN - e om o
(Return)

SDN (Search
Down),

SLW - - - (Slow
mode),

Multibyte Transfer Instruction (2 to 8 bytes) not Disclosed

LDM ... (Load Multi |LDIM - - - (Load

byte), Increment Multi
byte),

STIM (Store STDM - - - (Store

Increment Multi Decrement Multi

byte), byte),

LDDM - - - (Load
Decrement Multi
byte),

PPSM - - - (Pop by

Syatem stack pointer

Multi byte),

LDCM - - - (Load

Check Multi byte),

PPUM - - - (Pop
by User stack

ANCW oo om
(And Check Word)

XRW P
(Exclusive Or
Word)

DIU (Digit Up)

DIUW - - - (Digit
Up Word)

BUPS - - - (Block
Up & Search)

OFF - - - (Off)

STM - - - (Store
Multi byte
memory)

PHSM - - - (Push
System stack

Seite 135

pointer Multi pointer Multi

byte), byte)
PHUM - - - (Push |STLM (Store LCD LDLM (Load LCD data | PPOM - - - (Put PSRM (Put Specific
User stack pointer | data port Multi port Multi byte), LCD control port index Register
Multi byte), byte), Multi byte), Multi byte)

Multibyte Arithmetic Instruction (2 to 8 bytes) not Disclosed

INVM - - - (Invert | CMPM (Complement |ADBM - - - (Add ADBCM - - - ((Add |SBBM - - -
Multi byte), Multi byte), BCD Multi byte), BCD Check Multi (Subtract BCD
byte), Multi byte)
SBBCM - - - ANM - - - (And ANCM - - - (And NAM - - - (Nand NACM - - - (Nand
(Subtract BCD Multi byte), Check Multi byte), Multi byte), Check multi byte)
Check Multi byte),
ORM (Or Multi ORCM - - - (Or XRM - - - (Exclusive |XRCM - - -
byte), Check Multi byte), | Or Multi byte) (Exclusive Or Check
Multi byte)

Multi-byte Shift Instruction (2 to 8 bytes) not Disclosed

DIUM - - - (Digit DIDM ... (Digit Down BYUM - - - (Byte Up BYDM - - - « (Byte
Up Multi byte) Multi byte), Multi byte), Down Multi byte)

e
Seite 136

7-1 HD61700 Cross Assembler

HD61700 Cross assembler HD61 was developed by Ao. It is almost the same as the assembler built in
PB-1000 (upward compatibility), but the differences are as follows.

1. Label length is up to 16 characters and can be registered as long as memory allows. The code area can
be secured up to 64KB.

2. Not only address labels (for JR, JP, CAL instructions) but also numeric labels can be used with transfer
instructions.

3. Supports almost all orders of HD61700, including unreleased CASIO. The mnemonic can use both “Al-
assembler format” and “KC format”. (Mixing is also possible) From Rev 0.41, it also supports
mnemonics in EU format (Europe notation), and by #EU (or / eu) specification. Switchable from Al / KC
format to EU (Europe) format.

4. Second operation extension (S0, S 30, $ 31, LD & JR) etc. can be specified by default. (OFF when the /
n option is specified)

5. The output format supports BASIC DATA statement format and PBF format (PBF format specifies / p
option).

6. Output a formatted list file (.Ist).

7. Supports pseudo-instructions (DW, LEVEL, #if, #else, #endif, #include, etc.) not supported by PB-1000.

Assembling Method

HD®61 is available in Windows and DOS versions, but execute the following command at each
command prompt.

HD61 [source file name] (option [/ n] [/ p] [/ q] [/ w] [/ tab] [/ r] |/ o filename] [(/ set) symbol =
value | [/ eu])

When executed, the specified file is assembled according to the option settings as shown in the
example below.

Assemble example

> hd61 hd61700.s [Enter]
HD61700 ASSEMBLER Rev 0.41
Input: hd61700.s

PASS 1 END

PASS 2 END

ASSEMBLY COMPLETE, NO ERRORS FOUND
|

If normal, displays [ASSEMBLY COMPLETE, NO ERRORS FOUND] and exits. At this time, a .bas
file and an .Ist file are generated. If any error occurs during assembly, display an error line and exit.
After Rev.0.09, when the source file name is 8 characters or more, a warning is displayed (the
assembly works normally). This means that the file name output to BAS (or PBF) will be a long file
name in consideration of use with models that support 8.3 file names such as PB-1000 / C and Al-
1000. Warning. (The function to automatically shorten the file name is not implemented)

s
Seite 137

Assembler Options

Although it can be omitted, the following options can be specified during assembly.

List of Assembly Options

Option Function
/p Output in PBF format. (Default is output in BASIC DATA statement format)
/q Output in QL (quick loader) format.
/n Turn off optimization by specifying the second operation (default is ON)
Assemble for 16-bit addressing. (Optimization is fixed at LEVEL 0)
/w Outputs the assembly code corresponding to the 16-bit address for the
internal ROM.
/ tab Output the list file with TAB = 8.

Output relocate information file (* .roc).
/r Outputs information file for creating relocate format file used in FBF / VX-
MENU. Used when creating RR format and * .0 / *. 02 format files.

Specify the file name to be output to the PBF / BAS format file header.

dliiiEnaE] Default is not specified (automatic generation). >/ TD>

(/ set) [symbol label name] =

Define arbitrary symbol labels. / set can be omitted.
[value / label name] ! itrary sy / i

Set to assemble EU format (Europe format) mnemonics.
/EU Even if pseudo instruction #EU is specified in the source, the same operation
is performed.

For the / p option, refer to 1-3-2.PBF format in 1-3. Executing the created program.

The / n option disables code optimization of transfer instructions for $ 0, $ 30, and $ 31, and outputs
code compatible with the PB-1000 built-in assembler.

Output code Example with / n Option

Option Setting Mnemonic Output Code Remarks

No / n option DS 2, $30 02 42 When 2r1d Qperatlon specification is ON = 2 byte
(default) instruction is output

When the second operation specification is OFF = 3-

with /n option LD 52,530 026230 byte instruction is output

This is used when assembling a source that determines the address of the data area for the PB-1000, or
when assembling a program that changes the SIR using the PSR instruction. For details on the
instructions to be optimized and the output code, refer to 4. Ist file output by assembling the
HD61700.s file attached to mnemonic or HD61

s
Seite 138

The / set option can be used to define arbitrary symbol labels at startup since Rev 0.23. This is done
using the # if ~ # else ~ # endif pseudo-instructions,

e When switching the assembly code for each model,
¢ When switching the assembly start address according to memory capacity

The symbol label value can be changed without modifying the source file. By using a batch file, output results
for each model can be obtained automatically. If the same label name is EQU declared in the source, the
value defined in / set takes precedence, so the definition in the source functions as the default value.
Format example) Specify the model name and start address from the command line.

HD61 SAMPLE.S / SET MODEL = PB1000 / SET BASE = 0x7000

Since Rev 0.28, you can omit the / set option and define any symbol with the description [symbol label name]
= [value / label name]. The following format example is exactly the same as the above format example (no
omission of / set) in terms of operation specifications.

Format example) Specify the model name and start address from the command line.

HD61 SAMPLE.S MODEL = PB1000 BASE = 0x7000

Execution of Output Format and Machine Language

The HD61 outputs one of the BAS, PBF, and QL format files as an option specified during assembly.
For each type of file, the machine language can be executed by placing the machine language in the
memory on the pocket computer according to the following procedure.

In the following sections, loading and execution of each type of file into memory will be explained,
focusing on FX-870P / VX-4.

BAS Format

(1) Assemble with HD61. Create a bas file. For the BAS format, see the appendix.

(2) Paste the contents of Trans.b attached to HD61 into the output bas file as a machine language
loader program.
For FX-870P and VX-4, leave line number 80 as a comment.

(3) Load the created program file into the pocket computer with F.COM.

(4) Ifitis loaded to the unused area of the system, nothing is required. Otherwise, in the case of FX-
870P and VX-4 , the machine language area is secured by extended CLEAR.

(5) When the loaded program is executed, the machine language code is placed in the memory.

(6) A machine language routine is called with MODE110 (execution address) .

In PB-1000 / C and AI-1000, it is not necessary to comment on line number 80 of Trans.b. In that case,
the machine language program is automatically saved by (5).

PBF Format

For the format of the PBF format, see the appendix.
For FX-870P, VX-4 (VX-3 has the same procedure):

(1) Assemble with / p option on HD61. Create a pbf file.

(2) A machine language area is secured on the pocket computer using the same method as the BAS
format.

(3) Run TransVX.bas attached to HD61 on the pocket computer. When executed, it stands by in the
RS232C reception state.

e
Seite 139

(4)
(5)

(6)

Transfer the PBF file created in (1) to the pocket computer via RS232C.

The binary code is automatically converted and the machine language code is placed in the
memory. When processing is complete, "Completed!" Is displayed.

A machine language routine is called with MODE110 (execution address).

For PB-1000 / C and AI-1000:

(1)
(2)
(3)
(4)
(5)

Assemble with / p option on HD61. Create a pbf file.

A machine language execution area is secured on the pocket computer.

JUN AMANQO's PbfTOBin.bas is executed and the file name is "COMO: 7". (At 9600bps)
Transfer the PBF file created in (1) to the pocket computer via RS232C.

When execution is completed, an EXE (or BIN) file is automatically generated.

QL Format

 Quick loader data format devised by Mr. Ao.
The usage is as follows.

(1)
(2)

Assemble with / q option on HD61. Create a gl file. For the QL format, see the appendix.

Paste the output gl file to the quick loader described in “QL format” at the end of the book.

Add or modify code as appropriate.

Load the created program file into the pocket computer with F.COM.

If it is loaded to the unused area of the system, nothing is required. Otherwise, in the case of FX-
870P and VX-4 , the machine language area is secured by extended CLEAR.

When the loaded program is executed, the machine language code is placed in the memory.

A machine language routine is called with MODE110 (execution address) .

e
Seite 140

Error Message

The error messages displayed during assembly are as follows.

Error Message List

Error Message
Invalid Source File Name.
Line Length is Too Long.
Operand Length is Too Long.
LABEL Length is Too Long.
ORG Not Entry.
Operand Not Entry.
EQU without Label.
Illegal Operand.
START Already Defined.
Illegal [,]
Illegal ["] or [(] or [)]
LABEL Already Defined.
LABEL Type Mismatch.
Undefined LABEL.
Operation Type Mismatch.
Operand Range Over.
Jump Address Over.
Output Buffer Over Flow.

Assemble Address Over Flow.
Execute Address lllegal.

Could not calculate.
Illegal [#if]-[#endif]
Invalid Include File Name.
Could Not Nest Include.

Illegal Register Number.

Error Contents
The source file cannot be opened.
The number of characters in one line has been exceeded.
The number of operand characters has been exceeded.
The number of label characters has exceeded.
There is no ORG instruction definition.
No operand description.
EQU has no label entry.
Operand description error.
There are two or more START statements.
The comma description is strange.
Double coating / parentheses error.
There are two or more label descriptions.
Characters that cannot be used for labels.
No label registration.
No applicable instruction / Missing description method.
Operand value is out of range.
Relative jump is out of range.
Output buffer over.
Assemble address limit exceeded.

The execution address is smaller than the first ORG
declaration.

An operation error (division by 0, etc.) has occurred.
Nesting of # if ~ # else ~ # endif is abnormal.

The include file cannot be opened.

include nesting error.

Abnormal main register number.

Seite 141

7-2 MPU Architecture

Features

Decimal calculation possible

64KB of 256KB address space (UA / IB register control)

High-speed processing (LCD display, calculation routine, etc.) with 16bit ROM (3072 words; 64KB?
Low power consumption (800uA)

Built-in 32x8RAM as main register. Access in 16bit units is also possible.

With extension of second / third operation, 8-64bit unit access is also possible.

Built-in clock function (TM register)

Key input terminal 12x11 + 1 (access by IA / KY register)

Interrupt function (3 external terminals, KEY / pulse, ON terminal, 1 minute timer, TRP processing)
8-bit 1 / O port (I / O designation is controlled by PE register)

LCD display control function (MPU built-in instruction PPO / STL / LDL)

Actually coding, the personal impression is as follows.

Specific index registers and JR options have been introduced so that no single bit is wasted.

The JR option is useful for speeding up loops in the algorithm.

Instructions are arranged so that there is no space in the instruction set, but byte up / down
instructions (BYU, BYD, BYUW, BYDW, BYUM, BYDM), NAND instructions (NA, NAC, NAW, NACW,
NAM, NACM) Rather than carry addition / subtraction and arithmetic shift instructions, carry was
more desirable. BYU and BYD are instructions that simply put 0 in an 8-bit register, and they seem to
be completely meaningless just for the purpose of the beauty of the instruction system.

Since the flag register F is unused 2 bits, | wanted a sign flag (although it was impossible on the
instruction set).

| wanted a change of carry in 4 bit shift instructions (DIU, DID, etc.).

There were no undefined values in the instruction set, and future extensibility was not considered.

Register Configuration

Has 32 8-bit registers, 6 16-bit registers, and multiple status registers.

Registers of HD61700
16-bit Registers Interrupt Control and Memory Bank
8—bit Main Registers Program Counter Specific Index Registers Range Configuration Register
$0 pe [TTTTTTTTITTIION] sx =31 B[TTTTIT]
$1 System Stack Pointer SY (=30) High-order Address Specification Reg.
$2 sse[[TTTTILLILITN < o o
$3 UserStack Pointer Flag Register Display Driver Control Reg.
: ose[TN ~OTIOIEE [T
¢ Index Registers Z C|UZ|APO Port Data Reg.
. IY Interrupt Enable Register Port Data Direction Reg.
$30 =1 Key Input Register Timer Data Reg.
co e [[THTLTITIIN (TN v CECTL]

Interrupt Selectand Key O utput Register
X Yellow-painted registers are status registers.

1) Main register (8bit)

e
Seite 142

This is a RAM module built into the HD61700, specified by addresses 0 to 31.

In mnemonics, it is expressed with a "S" mark at the beginning. For example, $0, 51, ... S 31. Access and
computation up to 64 bits in little endian format. In addition, by using a specific index register SIR (5bit),
indirect access in the form of $ SIR is also possible.

* Little endian is a method of arranging & H12345678 in memory and arranging & H78, & H56, & H34, &
H12 from the lower address. A typical CPU is x86.

2) Six 16-bit registers

e PC: Program counter (16bit)
e SSP: System stack pointer (16bit)
For system operations such as CAL, RTN, interrupt processing.
In addition, direct rewriting with the PRE instruction is possible with PUSH, POP and user programs.
e USP: User stack pointer (16bit)
Unrestricted stack pointer that can be used freely by user programs.
Operate with PRE, PHU, PPU.
e IX, 1Z, IY: Index register (16 bits: Display format IR) A 16-bit data pointer used for various transfer
instructions.
The IY register can only be used as an end point pointer for block transfer / search instructions.

3) Specific index register and flag register

e SX, SY, SZ: Specific index register (5bit: Display format SIR)
By defining a specific main register in the SIR in advance using the PSR instruction, the target main
register can be transferred / calculated faster (code shortening), and indirect specifications such as $
SX, S (SX) can be specified. Possible.
However, in the CASIO HD61700 system, it is assumed that SX = 31 (S 31 specified), SY =30 ($ 30
specified), and SZ = 0 ($ 0 specified) are defined at the initial stage and used as they are. When the
user changes, the following cautions are required.
(1) Disable interrupts while changing SIR.
(2) When returning to the ROM internal processing, when calling the ROM internal processing, return
the SIR to the o+riginal setting.
(3) Coding the optimization switch with OFF (LEVEL 0) specified.
* In the EU (Europe format), these registers are called short registers (SR) and are labeled # 0, # 1, and
2, respectively.

e F: Flag register (8bit: Display format F)
The internal bit configuration is as follows.

MSB LSB
Z C LZ UZ SW APO * *

e Explanation of each flag

1. Z:Zero flag When all bits of the operation result are 0, it is reset to 0, otherwise it is set to 1.
When Z =1, it is called NZ: Non-zero.

2. C:Carry flag This bit is set to 1 when a carry or borrow occurs in the operation result, and 0
otherwise.
NC: Non-carry.

3. LZ: Lower digit zero flag If the lower 4 bits of the operation result are 0, it is reset to 0 and 1
otherwise.
NLZ / LNZ: Non-lower digit zero flag

4. UZ: Upper digit zero flag If the upper 4 bits of the operation result are all 0, it is reset to 0,
otherwise it is set to 1.
Negative forms such as other operation flags are not prepared as branch conditions.

e
Seite 143

5. SW: Power switch state flag Notifies the ON / OFF state of the power switch. ON: 1, OFF: 0
6. APO: Auto power off state flag 1 when the OFF command is executed with the power switch
turned on. 0 when the power is turned off.

4) Status register

e |E: Interrupt enable register (read / write)
Specify interrupt mask and conditions (edge / level, etc.) in 8 bits.

Bit7 - Enable interrupt from / INT1 pin (enabled by 1)

Bit6 - KEY, pulse interrupt enabled (enabled by 1)

Bit5 - Enable interrupt from / INT2 pin (enabled by 1)

Bit4 - I-minute timer interrupt enabled (1 enables)

Bit3 - Enable interrupt from / ON pin (enabled by 1)

Bit2 - Enable interrupts from the Power On switch (enabled by 1)

Bitl - / INT1 pin interrupt edge specification (0: falling, 1 rising)

Bit0 - / INT2 pin interrupt level specification (0: Low level, 1: High level)

e This register is completely cleared by a reset (RESET signal) operation.
Bits 0, 1, 5, 6, and 7 are cleared by the power OFF / OFF command, but bits 2 to 4 are maintained even
when the power is OFF.
The interrupt priority is as follows in descending order. When a higher priority interrupt occurs, the
interrupt is interrupted.

Priority 1 (IE <7>): Interrupt from INT1 pin
Priority 2 (IE <6>): KEY / pulse interrupt

Priority 3 (IE <5>): Interrupt from INT2 pin
Priority 4 (IE <4>): 1 minute timer interrupt
Priority 5 (IE <3>): Interrupt from / ON pin
Priority 6 (IE <2>): Interrupt from Power On switch

e |A: Interrupt Select and Key Output Register (read / write); Interrupt Select and Key Output Register

Bit 7 ------- KEY interrupt (1), pulse interrupt (0)

Bit 6 ------- Pulse interrupt signal (0: 256Hz, 1: 32Hz)

Bit 5to Bit4- PIN specification for KEY input (0: No specified PIN, 1: ONE PIN
specified, 2: TWO PIN specified, 3: ALL PIN specified)

Bit3to Bit0- KEY output specification (0 to 12: ONE KEY output, 13: ALL KEY
output, 14, 15: undefined)

e *When controlling the key input with the assembler, set 13 (ALL KEY output request) to this register
and then use GRE KY, $ C5 to bit OR all keys to $ C5 /S C5 + 1. The KEY scan code is read.
When specifying one key at a time, you can get a response according to each key matrix by executing
GRE KY, S C5 after setting 0 to 12.

e UA: Upper address specification register (read / write); High-Order Address Specification Register
This register determines which bank each (pointer) register will access. The meaning of each bit is as

follows.
Bit 7, 6 ---- 1Z register upper address specification (0 to 3)
Bit 5, 4 ---- IX register / main register upper address specification (0 to 3)
Bit3,2 ---- SSP, USP upper address designation (0 to 3)
Bit 1, 0 ---- PC upper address specification (0 to 3) *

e
Seite 144

It is cleared to 0 at RESET and cleared even when the power is turned off except for SSP /
USP. The contents of SSP and USP are saved even when the power is turned off.

* Only for the PC upper address specification bits (Bit O to Bit 1), there is a delay of one
instruction cycle for the result to be reflected after writing the value with the PST
instruction. This is because it is necessary to branch (JP / JR) or RTN after specifying the
PST instruction for an arbitrary bank. When operating this register, it is necessary to
disable interrupts. (In PB-1000 / FX-870P / VX-4 / VX-3 / AI-1000, when the user
program is called, the system side is set to disable interrupts. (You may not need to be
aware)

e Display driver control register (no write mnemonic)
Outputs control signals for sending display data and commands to the display driver.

Bit 7 ----- VDD2

Bit 6 ----- o1, 92 CLOCK ON (1), OFF (0)
Bit 5 ----- None (undefined)

Bit 4 ----- CE4

Bit 3 ----- CE3

Bit 2 ----- CE2

Bit 1 ----- CEl

Bit 0 ----- oP

e Except bit 6, the set value is Pin output with negative logic.
This register can be accessed with the undisclosed instruction PPO.

e Port status specification register PE (read / write)
Specify input / output for each port.

Bit 7 ----- Port7 (1: output, 0: input)
Bit 6 ----- Port6 (1: output, 0: input)
Bit 5 ----- Port5 (1: output, 0: input)
Bit 4 ----- Port4 (1: output, 0: input)
Bit 3 ----- Port3 (1: output, 0: input)
Bit 2 ----- Port2 (1: output, 0: input)
Bit 1 ----- Portl (1: output, O: input)
Bit 0 ----- PortO (1: output, 0: input)

All bits are cleared to 0 by RESET and power OFF. (Input state)

e Port data register PD (read / write)
Data input / output of each port is performed according to the state specified in the PE register.

Bit 7 ----- Port7 data
Bit 6 ----- Port6 data
Bit 5 ----- Port5 data
Bit 4 ----- Port4 data
Bit 3 ----- Port3 data
Bit 2 ----- Port2 data
Bit 1 ----- Portl data
Bit 0 ----- Port0 data

It cannot be initialized by RESET or power OFF. (Indefinite)

e
Seite 145

Timer data register TM (read)

Stores the HD61700 built-in timer value. It can be reset (cleared to 0) by the CLT instruction and read
to any main register by the GST instruction. Depending on the timing of reading, there may be a
change point of the value (FFh can be read), so it is necessary to read twice when using.

Bit7, 6 ---- 4-minute count (0-3)
BitOto 5 ---- Count value for 60 seconds (0 to 59. It returns to 0 in 60 seconds. The 1-
minute timer interrupt is triggered by the 60th second (when it changes from 59 to 0))

Note: CLT instruction reset (0 clear) does not work properly for the last 1/65536 seconds at 60 seconds
(when changing from 59 to 0). Therefore, in order to surely perform the reset operation, it is necessary
to execute the CLT instruction twice with a delay so as to avoid the above period. (Refer to the CLT
instruction for an example.)

Interrupt control and memory bank range specification register IB (read / write) Not disclosed
Enable / disable power ON function by 1 minute timer (Bit 5), various interrupt status flags (Bit 4-0),
and specify the effective range of memory bank by UA with 2 bits (Bit 7, 6).

e Bit7,6- Specifies the bank switching start address (upper 2 bits) by UA.

e |B specified status UA register switching range
e OOXXXXXXB 0000-FFFF
e O1XXXXXXB 4000-FFFF
e 10XXXXXXB 8000-FFFF (PB-1000 default)
e 11XXXXXXB CO0O0-FFFF
e Bit5--—- Power ON control by 1 minute timer 1: Permitted (ON) / O: Prohibited (OFF)
e By turning this bit ON, the power ON function by the 1-minute timer is permitted while the power
is OFF.
e By using this function, the time can be updated even when the power is off.
e Bit4--—-- IRQ1 interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
e Bit3---- Pulse / key interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
e Bit2--—--- IRQ2 interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
o Bitl--—-- 1-minute timer interrupt status flag (read only 1: interrupt is occurring, 0: RTNI)
e Bit0--—--- Interrupt status flag from / ON pin (read only 1: interrupt is occurring, 0: RTNI)

Looking at the processing in the PB-1000 ROM, it is used in the following procedure, and it turns out
that the power ON control by 1 minute timer and the bank designation range by UA are fixed to &
H8000 to & HFFFF.

56 40 80 PST IB, & H80 ; Bit 5 is turned off (power on by 1 minute timer is prohibited),
; Fix the bank range to & H8000 to & hFFFF.
<Set the timer control work area>
57 2010 PST IE, & H10 ; Allow 1 minute timer interrupt
56 40 AO PST IB, & HAO ; Bit 5 ON (Allow power ON with 1 minute timer permission),

; Fix the bank range to & H8000 to & hFFFF. Access to this IB register is performed only on the PB-1000
/ C, and does not appear to be performed on the FX-870P / VX-4 / VX-3.

(Because the clock function is not supported and there is no need to specify the bank range)

* In the EU (Europe) format, this register is called CS.

Key input register KY (16Bit: read)
Returns the 12-bit key input result (KIO1 to KI12) and the external interrupt input level (undisclosed).

Bit 15 ------- Keyboard port Pin input (KI104)
Bit 14 ------- Keyboard port Pin input (KI103)

e
Seite 146

Keyboard port Pin input (KI102)
Keyboard port Pin input (KI01)
IRQI input level (unreleased)
IRQ?2 input level (unreleased)

Interrupt input level from / ON pin (not disclosed)

Unknown use

Keyboard port Pin input (KI12)
Keyboard port Pin input (KI11)
Keyboard port Pin input (KI110)
Keyboard port Pin input (KI109)
Keyboard port Pin input (KI08)
Keyboard port Pin input (KI107)
Keyboard port Pin input (KI106)
Keyboard port Pin input (KI05)

Seite 147

7-3 Assembler

Assembler Format

e The description of the instruction in the instruction word format assembler is as follows.
e ([LABEL:]) [Mnemonic][OP1][,0P2][,0P3] " - - ([; Comment])
A space or TAB is required between the mnemonic and operand 1 (OP1).
(In practice, space / TAB is not required except for some commands, but it is necessary in the
specification.)
Use commas to separate operand 2 and later.
Mnemonic / operand descriptions are not case sensitive.

e Label declarations and comments are optional.

e Numeric values support 8-bit integer types (IM8: 0 to 255) and 16-bit integer types (IM16: 0 to 65535).
In addition to decimal numbers, prefixes & H (hexadecimal) and & B (binary: available for HD61) are
also possible.

e Labels can be described up to 16 characters (5 characters for PB-1000). Available characters are "@",
" " "AtoZ","atoz","0to9".
The first character must be other than a number, and is different from mnemonics in that uppercase
and lowercase letters are distinguished. (PB-1000 is not case sensitive)
In addition to addressing labels, numeric labels can be defined with the EQU directive.
The defined label can be used with all operands for which a numeric value can be specified.

e Expressions and operators
The HD61 can use operations with labels or expressions (operand operations) as numeric operands.
Operand operations are not limited to specific instructions and can be used with all instructions that
use numeric values.
The operations are sequentially executed according to the following priority order.

Available operators (priority from top to bottom)

Priority Calculation Type Operator

.H (or .U) upper 8 bits specified, .L (or .D) lower 8 bits specified,

Unary operator .N bit inverted

High Inversion of evaluation !

A Parenthesis operation ()
Four arithmetic operations * Multiplication, / division,% remainder (MOD)
v Four arithmetic operations + Addition,-subtraction
Low Logical operation & AND (may be #), | OR, A XOR

Relational (comparison)

. = Equal sign (equal),> <> = <= size comparison, <> inequality sign
AT q gn (equal), p , quality sig

Pseudo Instructions

HD61 supports the following pseudo-instructions.
Basically, it is compatible with the PB-1000 built-in assembler pseudo-instructions, but there are some
minor differences such as the use of labels and expressions.

e
Seite 148

Pseudo Instructions

Pseudo-
instruc-
tion
No.

(1)

(2)

(3)

(4)

(5)

Pseudo-
instruction

ORG

START

EQU

DB

DW

¢ {}Indicates one of them. However, {} itself is not entered.
e [] Can be omitted. However, do not enter [] itself.

Format

ORG [address |
LABEL | expression

]

START [execution
start address |
LABEL | expression

]

LABEL : EQU [
number | LABEL |
expression |

[LABEL :] DB{
number | " string '
| LABEL |
expression } [, {
number | " string '
| LABEL |
expression } [, = - -

1]

[LABEL :] DW {
number | LABEL |
expression } [, {
number | LABEL |
expression } [, = * -

1]

Function

Declare the address where code placement starts to the
assembler.

Multiple ORGs may be used in a program, but an ORG
declaration smaller than the assembly address at the described
location cannot be made.

This declaration must be written at the top of the program. (In
fact, it may be after START or EQU)

A label or expression can be used as an operand, but the value
must be determined at the time of use.

Give the program execution start address.
Can be declared only once during the program.

Gives the numeric value of the operand for the declared label.
Label declaration cannot be omitted.

A label or expression can be used for the operand value, but the
value must be determined at the time of use.

In addition, a character string of up to 2 bytes can be specified
by enclosing with a quotation mark.

Example)

LABEL: EQU "AB"; Substitute & H4241. (Same as DB pseudo-
instruction, from left to lower and higher)

The numerical value (and character) string described after
operand 1 is stored in memory in bytes.

The label on the left side of the DB instruction can be omitted.
When specifying a character string, enclose it in double
quotations ["] or single quotations ['].

Operand value must be in the range of 0 to 255, and can be
described by a label or expression.

Example)

DB1,2,3,"ABCDEF 012", & H20

DB 'ABCDEF'

The numerical value described after operand 1 is stored in
memory in word units.

Operands can use labels and expressions, but not strings.
This pseudo-instruction is not in PB-1000.

Seite 149

(7)

(8)

(9)

(10)

DS

LEVEL

IF~ ELSE ~
ENDIF

#INCLUDE

#INCBIN

[LABEL :] DS {
number | LABEL |
expression }

LEVEL Numerical
value (O or 1)

H#IF [!] Expression
Description 1

[
HELSE

Description 2

]
H#ENDIF

#INCLUDE (file
name)

H#INCBIN ({ file
name.BMP | file
name })

A number of bytes equal to the numerical value described in
operand 1 is secured in the code memory.

0 is stored in the reserved area. (Undefined data in the PB-1000
built-in assembler)

The label on the left side of DS can be omitted.

A label or expression can be used for the operand value, but the
value must be fixed.

Controls optimization of transfer instructions for CASIO-specific
SIR settings (SX = 31, SY = 30, SZ = 0) during assembly.

At LEVEL 1, optimization is turned on and transfer instructions
for $ 31, $ 30, and S 0 are optimized.

Turn off optimization at LEVEL 0 and output code compatible
with PB-1000 built-in assembler.

The default is LEVEL 1.

When changing SIR with the PSR instruction, LEVEL 0 must be
specified. (For details, refer to HD61 attachment HD61700.S)

If the value of operand # 1 of the #IF instruction is true (other
than 0), description 1 is validated and description 2 from #else
to #endif is invalidated.

If operand 1 is false (0), description 2 is valid. The part of (#ELSE
description 2) can be omitted.

The operator! [Reverse evaluation value] can be used in the
expression.

(The precedence of the! Operator is between the unary
operator and the parentheses.)

A label can be used in the expression, but the value must be
fixed.

IF ~ # ELSE ~ # ENDIF statements can be nested up to 255
levels.

Include the file described in parentheses in operand 1 when
assembling.

When the assembler finds this statement, it stops assembling
the source file and assembles the file specified by #INCLUDE.
After assembling the specified file, resume assembling the
original source file.

H#INCLUDE nesting is possible up to 256 levels.

If you recursively call an INCLUDE file that has already been
opened, an "Invalid Include File Name" error will occur.

By default, the list file is output even during #INCLUDE
processing. To control the list output during #INCLUDE, use the
NOLIST / # LIST pseudo-instruction described later.

Include the binary file described in the parentheses of operand
1 when assembling.

When the assembler finds this sentence, it converts the
specified file into DB format as binary data and reads it.

If the address exceeds 64KB during conversion, the process
terminates with an error.

When a Windows bitmap format file (extension .BMP) is
specified, pixel data is converted into graphic data for LCD
display and read.

Only monochrome two-color format can be read. (Up to 64KB

Seite 150

(11)

(12)

#NOLIST,
HLIST,
HEJECT

#KC
#AI
HEU

#NOLIST
#HLIST
HEJECT

#KC
#HAI
#EU

size limit)

For other BMP formats, "llligal Bitmap File Format" is displayed
and the process ends with an error.

If a file name with another extension (other than .bmp) is
specified, it is converted to DB format as continuous binary
data.

Control output to list (.Ist file).

#NOLIST command stops output of subsequent lines to the .Ist
file.

Output with the #LIST command.

The #EJECT instruction outputs LINE FEED (& hOC). (The page
header is also output at the same time.)

Specify mnemonic format (KC format / Al format / EU (Europe)
format). (Default is #Al specification)

By this specification, the subsequent grammar check process
operates according to each format.

When #EU is specified, EU (Europe) format mnemonics are
used. For details, refer to [® EU (Europe) mnemonic] in the next
section.

In the default #Al specification, if the third operand of the LDM
/ STM instruction is omitted when assembling, the following
warning is displayed to indicate that it has been interpreted in
KC format.

"WARNING: 'LDM' was interpreted to 'LDD' of the KC form."
This is due to the fact that the KC format LDM (LoaD Minus) and
STM (STore Minus) have the same mnemonic name as the Al
format LDM (LoaD Multi byte) and STM (STore Multi byte). .
(Determination of Al format or KC format by presence / absence
of third operand)

By specifying the pseudo-instruction '#KC', the warning is not
displayed.

Seite 151

Programming Points

Using optimization by $ 30,$ 31,50

In the CASIO pocket computer (HD61700) system, $ 31 =0 and $ 30 = 1 are always set, and in
principle, these settings are not changed.

Using these settings provides various benefits.

For example, when $ 2 is cleared to zero, it is normally done as follows.

LD $2,0
Or
XR $2,$2

However, the following method is common for CASIO Pokekon using HD61700.
LD $2,8$31 ; 0 (=9 31) is assigned

The reason is that in the CASIO pocket computer (HD61700) system, SIR: specific index register is
fixed as SX =31 ($ 31 specification), SY = 30 ($ 30 specification), SZ = 0 ($ 0 specification), these
(SX/ SY This is because the transfer / calculation using / SZ) can reduce the instruction size and the
number of execution clocks by specifying the second operation.

In the above example, when assembled with LEVEL 1 specified, the first two become 3-byte
instructions, but the third instruction becomes a 2-byte instruction.

Conventional commands include the following.

LD $2,830 ; 1 1s assigned

AD $2,$30 ; Increment: +1

SB $2,%30 ; Decrement: -1

ADW $2,%30 ; Word increment: +1

SBW $2,%30 ; Word decrement: -1

LD $2,(IX+$31) ; Same operation as LD § 2, (IX + 0)
ST $2,(IX+$31) ; Same as ST $ 2, (IX +0)

For the same reason, when performing arbitrary operations, if $ 0 (or $ 0, $ 1 pair) is used as the
second operand, optimization by $ SZ is performed, and the instruction size and the number of
execution clocks are reduced. .

This optimization for $ SX=$ 31, $ SY =% 30, and $ SZ = $ 0 is effective in almost all transfer /
operation systems between main registers.

For details on instructions that can be optimized, see 4. Mnemonic , HD61700.pdf attached to HD61,
or HD61700.S (and .1st).

In HD61, LEVEL 1 is specified as the default setting, and assembly is performed using CASIO
Pokekon system-compliant optimization (SIR setting is fixed to SX =31, SY =30, SZ =0).

To turn off optimization for $ 31, $ 30, and $ 0, specify the '/ n' option when assembling or set LEVEL
0 using the LEVEL pseudo-instruction.

In that case, it is necessary to explicitly specify indirect with $ SX/$ SY / $ SZ for the instruction that
needs to be optimized. (Optimization by indirect specification using SIR works regardless of LEVEL
0/1)

e
Seite 152

Mnemonic Format

This section gives a brief description of each mnemonic format. If you are interested in details, please
refer to the Ist file output after assembling HD61700.S.

KC Format Mnemonic

An example of the unpublished command format is "KC format".

The KC format is a mnemonic format published in Kota-chan's "KC-Disasemmbler" (reference (3)).
As with the “Al-assembler format” (reference (4)), almost all unpublished commands are supported.
The differences between the “Al-assembler” format and the “KC format” are as follows.

Differences between Al-assembler format and KC format

Order Al - Assembler KC Remarks
Format format
Decrement LDD * LDM *
instructions STD * STM *
. In the Al-assembler format, the multibyte number is
Multibyte

** M ** W described as ", IM3 ".

instruction
structions In KC format, write "(IM3)" in parentheses.

Refer to each mnemonic for details.
In Japan, the KC format was not as popular as the Al-assembler format.

e The Al-assembler (reference (4)), which appeared as the first HD61700 assembler, had a systematic
and easy-to-understand grammar, whereas the KC format uses multibyte instructions to enclose
multibyte numbers in parentheses. There were disadvantages in parsing.

e The fact that the systematic explanation of the KC format was not made in the first presentation (
reference (3)) seems to be one of the reasons why its spread was hindered.

The KC format was partly supported for the first time by the “FX-870P Assembler” (reference (5)) and fully
supported by the “X-Assembler” (references (6), (7)).
In this way, the KC format did not spread, but remained until the end.

In addition to the “Al-assembler format” and “KC format”, HD61 supports both unpublished instructions added
in “X-Assembler” in both formats. (There may be a subtle omission)

Rev0.41 and later also support DP format (described later).

EU (Europe) format
"EU format", a format used mainly within the European (Germany) community.
HD61 can be used after Rev0.41 by specifying #EU (or / eu option).

In Germany, the PB-1000 ROM disassembly list was published in a magazine with explanation in 1988, and
unofficially, an environment that supports this EU (Europe) format mnemonic (Pascal card for PB-2000) The
information about this mnemonic was widely known because it was provided.

This European mnemonic is said to contain unpublished information provided by CASIO (= close to CASIO
genuine notation) due to the publication timing of magazine articles in Germany, etc., and is a very interesting
notation.

(Since it was not confirmed by CASIO, it is unknown whether it is true)

On the other hand, the Al format / KC format has been analyzed and named by several analysts who have

e
Seite 153

nothing to do with CASIO through magazine articles in Japan, and the results are very wonderful.
EU format and Al format differ in the following points (1) to (6). For details, refer to the description of each

instruction.

Differences between Al / KC format and EU format

No. Difference AL
Format
(1) |Specific index register: SIR SX, S SX
(Specific Index Register) SY, S SY
SZ,5SZ
(2) |Register Name IB
(3) |Undocumented Mnemonic PSR
GSR
STL
LDL
PPO
BUPS IM8
BDNS IM8
JPSC5
JP (S C5)
(4) | Multibyte instructions *M
(5) |Multibyte count 2-8
(6) |JUMP expansion Tag JR

expression

EU

Format

#0
#1
#2

()

PRA
GRA
OcCB
ICB
PCB

BUP
IM8

BDN
IM8

JPW S
C5

JPW ($
C5)

*L

L2to L8

Comment

In the EU format, it is called short register: SR
(Short Registers).

An undisclosed register in Al format, denoted as
IB, is denoted as CS in EU format.

PRA (Put Ram Address)
GRA (Get Ram Address)
OCB (Output Casio Bus)
ICB (Input Casio Bus)

PCB (Put Casio Bus)

In the EU format, "L" (meaning long word?) Is
added to the end of the mnemonic for multibyte
instructions.

In EU format, the same notation as Al format is
also possible.

This tag can be omitted in Al / KC / EU format. In
the EU format, "JR" can also be used.

Seite 154

7-4 Mnemonic

This chapter explains the mnemonics of the HD61700. The operand symbols and mnemonics used in
mnemonics are shown below.

List of operand symbols used in mnemonics

Operand Symbol Comment
Main register 5C5:50,51, - - -, $ |Hexadecimal representation of $ & HO, $ & H1, -
31 - -, S & H1F is also possible.
Specific index register SIR SX 5-bit
Sy
Sz
Indirect specification of main SSX | S (SX) Main register indicated by SX (default: $ 31)
register by specific index register SSY | S(SY) Main register indicated by SY (default: $ 30)
S$SZ|$(S2) Main register indicated by SZ (default: $ 0)
Index register IR IX 16-bit
The Y register can only be used as an end point
Y pointer for block transfer / search instructions.
1z
Stack pointer SSP System stack pointer (16-bit)
uspP User stack pointer (16-bit)
Program counter PC Program counter (16-bit)
flag z Zero flag
NZ Non-zero flag
C Carry flag
NC Non-carry flag
LZ Lower-digit zero flag
uz Upper-digit zero flag
NLZ | LNZ Non lower-digit zero flag
Status register KY KEY input register (16-bit)
IE Interrupt enable register (8-bit)
IA Interrupt selection register (8-bit)
IB Interrupt control and bank control register (8-
bit); not disclosed
UA Upper address specification register (8-bit)
PD Port data register (8 bits)

Seite 155

PE Port status specification register (8 bits)

™ Timer register (8 bits)
Numerical data IM3:2,3,...,8 3-bit direct value. Used to specify the number of
multibytes.

IM5:0to 31 or &HO |5-bit direct value. Used for ADBM and SBBM.
to & H1F

IM8 : 0 to 255, or & 8-bit direct value.
HOO to & HFF

IM16 : 0 to 65535, or |16-bit direct value.
& HO0000 to & HFFFF

Mnemonic Table - Transfer instruction (8 bits)

e {}Indicates one of them. However, {} itself is not entered.
e [] Can be omitted. However, do not enter [] itself.

Number of

Mnemonic Format @ Function Flag Clocks Description Example format
LD LD opr1 |oprl < It does |- Transfer the contents of
(Load) ,opr2[, |opr2 not opr2 to oprl.
(JR) change Unreleased but with
LABEL] jump extension.
By adding an address
label to operand 3
when a specific
combination of oprl
and opr2 is executed, a
relative jump is made
after execution of the
transfer.
Operand 3 and JR tag
can be omitted.
There are six types of
operand combinations
that can be used with
the LD instruction.
Refer to the following
for the applicability of
jump extension.
LDSC5 |oprl@S$C5 3+3+6= |Transfer between main |LD$2,$0;S0
,SC5[, (<opr2@$ 12 registers data transferred
(JR) C5 (JR: +3) to$2
LABEL |
LDSC5 |oprl@ $C5 SA=S Transfer from external |LD S 2, (S 0);
,(SA) |&opr2@ SIR: 3+ 8 + | memory to main Transfer external
[, JR) (S A) 3=14 register (1) memory data
LABEL] SA=SC5: |[SAisSC5,SSIR. addressedto S 0

s
Seite 156

LDI
(Load
Increment)

LDSC5
, ({IX |
1Z}+ S
c5)

LD S C5
, ({IX |
1} +
IM8)

LDSC5
,IM8 |,
(R)

LABEL

LD$C5
,SSIR,
(JR)

LABEL]

LDISC5 SC54 (IR%

,(IR%
A)

oprl@ S C5
&opr2 @
{IX 1z} £s
C5)

oprl @ $ C5
&opr2 @
(X] 1z} £
IM8)

oprl @ $ C5
&opr2 @
IM8

oprl @ $ C5
&Copr2@S
SIR

A) not
IR<IREA
+1

It does

change

3+3+8+
3=17
(JR: +3)

3+3+6+
5=17

3+3+6+
5=17

3+3+6=
12
(JR: +3)

3+6=9
(JR: +3)

A=SIR:3+

6+5=14

A=5C5:3

+3+6+5

opr2 is little endian and
2 bytes.

The bank is for the UA
register IX.

Transfer from external
memory to main
register (2)
Specification by index
register £ main register
(8 bits).

No jump extension.

Transfer from external
memory to main
register (3)
Specification by index
register + 8-bit
immediate value.

No jump extension.

Transfer 8-bit
immediate data to the
main register

Indirect transfer of
main register by specific
index register SIR
(undisclosed
instruction)

Compared with normal
register specification,
the instruction code is 1
byte shorter. (When
LEVEL O is specified)

As a result, the
execution clock is
shortened and used
frequently in ROM.

In the EU format, SX = #
0,SY=#1,SZ=#2,and
the JR tag can be
omitted and "J." can be
written.

After the contents of
the external memory
with (IR £ A) as the
address are transferred

(lower)and $ 1
(upper)to $ 2

LD $ 2, ($52); SZ
=0 by default, so
the same
operationas LD $
2,($0)is
executed at high
speed

LDS2, (IX+$
31); Transfer
external memory
data addressed
toIX+$31to$S
2.

LDS 2, (IX+123);
Transfer external
memory data
addressed to IX +
123to S 2.

LD $4,123; 123
transferredto $ 4

LD S 4, S SX; The
main register
value (8 bits)
indicated by S SX
is transferred to
S 4. By default, $
SX=$31=0.

EU format
LDS4,#0;LDS
4, S SX
LDS4,#0,
J.LABEL;

LDIS 4, (IX+ S 2);
Specify main
register

LDI S 4, (1Z- S 2);

Seite 157

LDD LDD $ SC5 ¢ (IR+ |Itdoes
(Load c5,(IR A) not
Decrement) tA) IR< IR+ A change
LDC LDC s No It does
(Load Check) c5, operation not
opr2 |, change
UR)
LABEL |
ST STSC5 |SC5- (IRt |It does
(Store) ,(IR+ |A) not
A) change

A=1MS8:3
+3+6+5

A=SIR:3 +
6+3=12
A=5C5:3
+3+6+3
=15

A=1M8: 3
+3+6+3
=15

A=SIR: 3+
6=9
A=$C5,
IM8: 3 +3
+6=12
(JR: +3)

A=SIR:3 +
6+5=14
A=SC5,
IM8:3 +3
+6+5=
17

to the main register $
C5, the incremented
transfer memory
address is assigned to
IR.

IRis IX, IZ.

For A, S C5, SIR, and
IM8 are applicable.

Transfer the contents of
the external memory
whose address is (IR +
A) to the main register $
C5, and then assign the
transfer memory
address to IR.

Unlike the association
from the LDI
instruction, it does not
actually decrease, but
the execution clock is
shorter.

IRis IX, 1Z.

S C5, SIR, IM8 can be
applied to A.

Operands can be
specified in the same
format as the LD
instruction, but no
processing is actually
performed and only
instruction decoding is
performed.

Delay processing as
with the NOP
instruction.
However, if there is a
label in the third
operand, a relative
jump is made. (IR tag
can be omitted)

The contents of the first
operand $ C5 are stored
in an external memory
whose address is (IR +
A).

Note that the transfer
direction is opposite to
the LD command.

IRis IX, IZ.

LDIS 4, (IX+S
SX); Indirect
designation by
SIR (unpublished)
LDI S 4, (1Z- S SY);
LDI$ 4, (IX +
123); 8-bit
immediate
designation
LDI'$ 4, (12-123);

LDD $ 4, (IX- $ 2);
Specify main
register

LDD S 4, (1IZ+$
2);

LDD $ 4, (IX-$
SX); Indirect
designation by
SIR (unpublished)
LDDS4,(1IZ+$
SZ);

LDD $ 4, (IX-123);
8-bit immediate
designation
LDD $ 4, (1Z +
123);

LDCS4,S2;
Main register
specified

LDCS 4, S SX;
Indirect
designation by
SIR

LDCS 4,128; 8-
bit immediate
designation
LDCS 4,53,
ERROR; Register
specification +
Jump expansion

STS4, (IX+S2);
Specify main
register
STS4,(1Z-S 2);
STS$ 4, (IX+$
SX); Indirect
designation by
SIR (unpublished)
ST S 4, (1Z- S SY);

Seite 158

ST
(Store $)

ST

(Store IM8)
undisclosed
instruction

ST

(Store IMS8 to
Register)
undisclosed
instruction

STSC5 |[SC5->(A) |Itdoes
,(A)], not
(JR) change
LABEL |
STIMS, [IM8 > ($ It does
(SSIR) |SIR) not
change
STIM8, IM8 > $C5 |Itdoes
SC5 not
change

A=SIR:3 +

8+3=14

A=S$C5:3

+3+8+3
=17
(JR: +3)

3+3+8+
3=17

3+3+11
=17

S C5, SIR, IM8 can be
applied to A.

The contents of the first
operand $ C5 are stored
in the external memory
with A as the address.
Note that the transfer
direction is opposite to
the LD command.

A can be S C5, SIR.

If there is a label in the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

The 8-bit immediate
value of the first
operand is stored in the
external memory
indicated by the main
register specified
indirect by SIR.

Note that the transfer
direction is opposite to
the LD command.
Virtually only $SZ=5$0
can be used. (5SX =5
31 ($ 31, $ 0 pair), SSY
=530(S 30, $ 31 pair=
0001) can be specified,
but the utility value is
low.)

The 8-bit immediate
value of the first
operand is stored in the
main register specified
by the second operand.
Note that the transfer
direction is opposite to

STS 4, (IX +123);
8-bit immediate
designation

ST S 4, (12-123);

STS2,(50);
Second operation
specification (2
bytes) ?? 3 bytes
STS2,($52);
Indirect
specification by
SIR (2 bytes).
Virtually only $
SZ=50can be
used. (§SX=531
(531,50 pair), $
SY=530(530,S
31 pair = 0001)
can be specified,
but the utility
value is low.)
STS 2, ($10);
Normal (3 bytes)
STS2,($10),
LABEL; Jump
expansion (4
bytes)

ST 123, ($ SZ);

ST 123,50;

Seite 159

STI
(Store
Increment)

STD

(Store
Decrement)
undisclosed
instruction

PPS

(Pop by
System stack
pointer)

PPU
(Pop by User
stack pointer)

PHS

(Push by
System stack
pointer)

STISC5
, (IR %
A)

STD $
cs5, (IR
+tA)

PPS $
cs

PPU $

SC5- (IR+ |It does
A) not
IR<IRtA |change
+1
SC5-> (IR+ |It does
A) not
IR< IR+ A change
S C5 < (SS) |It does
SS&SS+1 |not
change
S C5 < (US) |It does
US< US+1 not
change
S C5 - (SS- |It does
1) not
SS & SS-1 change

A=SIR:3 +
6+5=14
A=SC5,
IM8: 3 +3
+6+5=
17

A=SIR:3 +
6+3=12
A=5C5,
IM8:3 +3
+6+3=
15

3+6+5=
14

3+6+5=
14

3+6+3=
12

the LD command.

Same behavioras LD S
C5, IM8, but no Jump

extension.

The contents of the first
operand $ C5 are stored
in an external memory
whose address is (IR +

A).

In IR, the incremented
transfer destination

address is stored.

Note that the transfer
direction is opposite to

the LD command.
IRis IX, 1Z.

S C5, SIR, IM8 can be

applied to A.

The contents of the first
operand $ C5 are stored
in an external memory
whose address is (IR +

A).

The transfer destination
address is stored in IR.

As with LDD, the

decrement associated
with the name is not
actually performed.
Note that the transfer
direction is opposite to

the LD command.
IRis IX, IZ.

S C5, SIR, IM8 can be

applied to A.

After the contents of

external memory

specified by SS are
stored in main register
S C5, SS is incremented.

After storing the

contents of the external
memory specified by US
in main register $ C5,
US is incremented.

After storing the value
of main register $ C5 in
the external memory

specified by SS-1, SS is

decremented.

STIS 4, (IX+$2);
Specify main
register

STIS 4, (1Z-$ 2);
STISA, (IX+$
SX); Indirect
designation by
SIR

STIS 4, (1Z- $ SY);
STIS 4, (IX +
123); 8-bit
immediate
designation

STI S 4, (1Z-123);

STDS 4, (IX+$
2); Specify main
register

STD S 4, (1Z-$ 2);
STDS4, (IX+S
SX); Indirect
designation by
SIR

STDS$ 4, (12-$
SY);

STD $ 4, (IX +
123); 8-bit
immediate
designation

STD $ 4, (1Z-123);

PPS $ 2;

PPU S 2;

PHS S 2;

Seite 160

PHU PHUS |$C5- (US- |ltdoes |3+6+3= |Afterstoringthevalue PHUS?2;
(Push by User |C5 1) not 12 of main register $ C5 in
stack pointer) US <& US-1 | change the external memory

specified by US-1,

decrement US.

GFL GFLS |SC5¢F ltdoes [3+6=9 |The contents of the flag |GFLS 2;
(Get Flag) 5], not (JR: +3) register are stored in GFL S 2, LABEL;
(JR) change the main register $ C5 Jump expansion
LABEL] designated by the first
operand.

If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

PFL PFLA[, |/ASF Change |A=5C5:3 |Storethe contentsof A |PFLS 2;
(Put Flag) (JR) withthe (+6=9 in operand 1inthe flag |PFLS 2, LABEL;
LABEL] value of |A=1IM8:3 |register. (Only the Jump expansion
A +3+6= upper 4 bits can be set
12) Ais$ C5, IM8.
(JR: +3) If there is a label for the

second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

GPO GPOS |SC5¢ Port |Itdoes |3+6=9 The contents of the GPO $ 2;
(Get Port) C5], not (JR: +3) port terminal are stored |GPO S 2, LABEL;
(JR) change in the main register $ Jump expansion
LABEL] C5 specified by the first
operand.

If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

GST GST SC5¢ Sreg |Itdoes [3+6=9 The contents of the GSTPE, S 2;
(Get Status) Sreg, S not (JR: +3) status register are GSTIB, $ 2;
5], change stored in the main Interrupt control
(JR) register $ C5 specified |/ bank control
LABEL] by the second operand. |register
Sreg = PE, PD, UA, IA, IE, |(undisclosed
TM, IB. instruction)

If there is a label for the |GSTTM, S 2,
third operand, a relative | LABEL; Jump
jump is made after the |expansion
transfer. (JRtagcanbe |GSTIB,S 2,

omitted) The LABEL; Relative
storage direction is the |jump

same as ST and (undisclosed
minority. instruction) after

storing interrupt

s
Seite 161

PST
(Put Status)

GST
Sreg , A

[, UR)
LABEL |

Sreg &< A It does ' A=$C5:3

not +6=9
change |A=1M8:3
+3+6=
12
(JR: +3)

Stores the value of A
specified by the second
operand in the status
register.

Sreg = PE, PD, UA, IA, IE,
TM, IB.

Ais S C5, IM8.

If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

control / bank
control register
ins2

EU format
GSTCS, $2;
Interrupt control
/ bank control
register
(undisclosed
instruction)
GSTCS, S 2,
J.LABEL; Relative
jump
(undisclosed
instruction) after
storing interrupt
control / bank
control register
in$2

PST PE, S 2; Main
register transfer
PSTIB, $ 2;
Interrupt control
/ bank control
register
(undisclosed
instruction)
PSTTM, $ 2,
LABEL; Jump
expansion
PSTIB, S 2,
LABEL; Relative
jump
(undisclosed
instruction) after
storing value of $
2 ininterrupt
control / bank
control register
PST UA, 123; 8-
bit immediate
value transfer
PST IB, 123;
Interrupt control
/ bank control
register
(undisclosed
instruction)

EU format
PSTCS, $ 2;
Interrupt control
/ bank control

Seite 162

STL STLA[, |[A->LCD

(Store datato |(JR) not
LCD) LABEL |

undisclosed

instruction

LDL LDLS SC5¢« LCD
(Load data C5], port data not
from LCD) (JR)

undisclosed LABEL]

instruction

It does

change

It does

change

Without
JR:3+15
=18 With
JR:3+3+
14=20

Without
JR:3+15
=18 With
JR:3+3+
14 =20

Outputs the A value
specified by the first
operand to the LCD
data area.

Ais S C5, IM8.

If S C5 is specified and
there is a label for the
second operand, a
relative jump occurs
after transfer. (JR tag
can be omitted)

The value of the LCD
data port is stored in
the first operand S C5
according to the
transfer protocol set in
advance in the LCDC.
Since reading is
performed in units of 4

register
(undisclosed
instruction)

PST CS, 123,
J.LABEL; Relative
jump
(undisclosed
instruction) after
storing 123 in
interrupt control
/ bank control
register

STL S 2; Main
register

STL S 2, LABEL;
Jump expansion
STL 123; 8-bit
immediate value
output

EU format

OCB $ 2; main
register

OCB $ 2, LABEL;
Jump extension
OCB 123; 8-bit
immediate value
output

LDL S 2; Main
register

LDL S 2, LABEL;
Jump extension
EU format

ICB S 2; Main
register

ICBS 2, LABEL;

bits, graphic data on the |Jump expansion

screen is read with the
upper and lower 4 bits
replaced.

For example, if the dot
on the screen is & H4A

display, executing LDL $

C5resultsin$C5=8&
HA4,

The readout procedure
is as follows.

(1) Specify drawing
mode (anything) and

LCD coordinate position

to LCDC. (STLM after
PPO & HDF)
(2) Set read command

Seite 163

PPO

(Put Icd
control Port)
undisclosed
instruction

PSR

(Put Specific
index Register)
undisclosed
instruction

GSR

(Get Specific
index Register)
undisclosed
instruction

(& HE1) to LCDC. (After

PPO & hDF, STL & HE1)
(3) Execute LDL with
data RAM specified.
(LDL after PPO & HDE)

If there is a label for the

second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

PPOA[, | A->LCD It does |A=SC5:3 |Outputsthe Avalue PPO S 2; Main
(JR) control port | not +6=9 specified by the first register
LABEL | change |A=1M8:3 |operand to the LCD PPO S 2, LABEL;
+3+6= control port. Jump expansion
12 Ais S C5, IMS. PPO 123; 8-bit
(JR: +3) If S C5 is specified and immediate value
there is a label for the output
second operand, a EU format
relative jump is PCB S 2; Main
performed after the register
transfer. (JRtagcanbe |PCBS 2, LABEL;
omitted) Jump expansion
PCB 123; 8-bit
immediate value
output
PSRSIR |SIR < A It does 3+6=9 PSR SX, S 2; Main register
LA, not (JR: +3) PSR SY, $ 2, LABEL; Jump expansion
(JR) change PSR SZ, 15; 5-bit immediate value (0-31)
LABEL] EU format

PRA#1, S 2; Main register
PRA #2, $ 2, J.LABEL; Jump expansion
PRA # 0,15; 5-bit immediate value (0-31)

The value of the second operand A is stored in the specific index register SIR designated by
the first operand .

SIR = SX, SY, SZ.

Ais S C5, IM8.

If S C5 is specified and there is a label for the third operand, a relative jump is performed
after transfer. (JR tag can be omitted) If

this command is used to change the SIR setting (usually fixed at SX = 31, SY =30, SZ=0)
and control is returned to the system, it will run out of control.

When users change SIR, the following cautions are required.

(1) Disable interrupts while changing SIR.

(2) When returning to ROM processing or calling ROM processing, return SIR to its original
setting.

(3) Coding the optimization switch with OFF (LEVEL 0) specified.

(Because it is optimized at $ 31, $ 30, and $ 0 at LEVEL 1, the code gets confused.)

GSRSIR |SIR>SC5 |ltdoes [3+6=9 The contents of the GSR SX, $ 2;
,SC5], not (JR: +3) specific index register GSRSY, S 2,
(JR) change SIR designated by the LABEL; Jump
LABEL | first operand are stored | expansion

in the main register $ EU format

e
Seite 164

Mnemonic

LDW
(Load Word)

C5 of the second
operand.

SIR = SX, SY, SZ.

If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

Mnemonic Table - Transfer Instruction (16 bits)

Format Function Flag
LDW oprl & It does
oprl, opr2 not
opr2 |, change
UR)

LABEL |

LDWS |oprl@SC5

c5,s8 &Copr2 @S

5], C5

(R)

LABEL]

LDWS |oprl@SC5

C5,(8 |<opr2@

A)l ($A)

(R)

LABEL |

Number of
Clocks

3+3+11
=17
(JR: +3)

SA=S

SIR:3+8+
3+3=17
SA=$C5:
3+43+8+
3+43=20
(JR: +3)

Description

Transfer the contents of
opr2 to oprl.
Unreleased but with
jump extension.

By adding an address
label to operand 3
when a specific
combination of oprl
and opr2 is executed, a
relative jump is made
after execution of the
transfer.

Operand 3 and JR tag
can be omitted.

There are five types of
operand combinations
that can be used with
the LD instruction.
Refer to the following
for the applicability of
the jump extension.

Transfer between main
registers

Transfer from external
memory to main
register (1)

oprl and opr2 are little
endian and 2 bytes.
SAisSC5,SSIR.

$ Bank applies to UA
register IX.

GRA#2,52;
GRA#0,52,
J.LABEL; Jump
expansion

Example format

LDWS$2,50;$
0, S 1 data
transferred to $
2,53

LDW $ 2, ($ 0);
Transfer external
memory data
with addresses S
0 (lower)and S 1
(upper)to$2, S
3

LDW $ 2, ($ S2);
SZ = 0 by default,
so the same
operation as
LDW $2,($S0)is

Seite 165

LDIW
(Load
Increment
Word)

LDW S |oprl@ $C5 3+3+6+

C5,({IX |¢&opr2@ 3+5=20

[1Z}+s ({IX[1Z}+$

c5) C5)

LDWS |SC5 ¢« 3+3+3+

c5, IM16 14 =23

IM16

LDWS |$SC5¢ S 3+11=14

5,5 SR (JR: +3)

SIR|,

UR)

LABEL |

LDIWS |$C5,8C5+ |ltdoes |A=SIR:3+

C5,(IR |1<(IR:A) |not 6+3+5=

tA) IR<IR:A [change |17

+2 A=5C5:3

+3+6+3
+5=20

Transfer from external
memory to main
register (2)
Specification by index
register £ main register
(8 bits).

No jump extension.

Transfer 8-bit
immediate data to the
main register

Indirect transfer of
main register by specific
index register SIR
(unpublished
instruction)

Compared with normal
register specification,
the instruction code is
shortened by 1 byte.
(When LEVEL O is
specified)

The execution clock is
shortened accordingly,
and it is frequently used
in ROM.

In the EU format, SX = #
0,SY=#1,SZ=#2, and
the JR tag can be
omitted and "J." can be
written.

After the contents of
the external memory
with (IR £ A) as the
address are transferred
to the main registers $
C5and S C5 + 1, the
value obtained by
adding 2 to the transfer
memory address is
assigned to IR.

IRis IX, 1Z.

For A, $ C5 and SIR are
applicable.

For example, in LDIW $
2, (IX+$0),ifIX=&

executed at high
speed

LDW $2, (IX+$
31); Transfer
external memory
data addressed
toIX+$31to$
2,53

LD $ 4, & H7012;
& H12 stored in
S4,&H70
storedin $ 5

LDW S 4, S SX;
Stores the main
register value (8
bits) indicated by
$SXin$4and
the main register
value (8 bits) of
the main register
+ 1 indicated by
$SXin$5. By
default, §SX =5
31=0,$SX+1=
S 0 (variable).
LDW $ 4, S SZ;
Since SZ =0 by
default, $4=5
0,55=S81is
assigned.

EU format

LDW S 4, # 0; LD
$4,5SX

LDW $ 4, #0,
J.LABEL;

LDIW S 4, (IX+$
2); Specify main
register

LDIW S 4, (1Z- S
2);

LDIW S 4, (IX+$
SX); Indirect
designation by
SIR
(unpublished)
LDIW S 4, (1Z- S
SY);

Seite 166

LDDW LDDW § |$C5,S C5-1 |It does
(Load C5,(IR < (R+A) |not
Decrement tA) IR < IR £ A- |change
Word) 1
LDCW LDCW S | No It does
(Load Check C5,A|[, |operation not
Word) (JR) change
LABEL |
STW STSC5 |SC5->(IR% Itdoes
(Store Word) |,(/IR:t |A) not
A) SC5+1-> change
(IRxA+1)

A=SIR:3 +
3+6+3=
15
A=5C5:3
+3+6+3
+3=18

A=SIR:3 +
11=14
A=5C5:3
+3+11=
17

(JR: +3)

A=SIR:3 +
6+3+5=
17

A=5C5:3

H7000,$0=1,
$2 < (& H7001
memory contents)
$ 3 & (& H7002
memory contents)
IX ¢ & H7003

Transfer the contents of
external memory whose
address is (IR + A) to the
main registers $ C5 and
S C5-1, and substitute
IR with the
decremented transfer
memory address.

IRis IX, IZ.

For A, S C5and SIR are
applicable.

Note that, unlike LDW
and LDIW, the main
register pair numbers
are $ C5and S C5-1.

For example, if IX= &
H7000,S0=1in LDDW
$2,(X+50),

$2 ¢ (& H7001
memory contents)

$ 1 < (& H7000
memory contents)

IX ¢ & H7000 (last
accessed address)

Operands can be
specified in the same
format as the LDW
instruction, but no
processing is actually
performed and only
instruction decoding is
performed.

Delay processing as
with the NOP
instruction.
A=S$C5,SIR.
However, if there is a
label in the third
operand, a relative
jump is made. (JR tag
can be omitted)

The contents of the first
operand main resist
pair $ C5,$ C5 + 1 are
stored in an external

LDDW S 4, (IX-$
10); Specify main
register

LDDW $ 4, (1Z+$
10);

LDDW $ 4, (IX-$
SX); Indirect
designation by
SIR (unreleased)
LDDW $ 4, (1Z+$
SZ);

LDCW $ 4,5 2;
Specify main
register

LDCW $ 4, S SX;
Indirect
designation by
SIR

LDCW $ 4,5 3,
ERROR; Register
specification +
Jump expansion
LDCW $ 4,55z,
LABEL; Indirect
specification
with SIR + Jump
expansion

STWS4, (IX+$
2); Specify main
register

Seite 167

+3+6+3 memory whose address | STW $ 4, (IZ-S
+5=20 is (IR £ A). 2);
Note that the transfer STWS4, (IX+S
direction is opposite to | SX); Indirect

the LD command. designation by
IRis IX, IZ. SIR
A can be $ C5, SIR. (unpublished)
STW S 4, (1Z-$
SY);
STW STWS |SC5->(A) |ltdoes |A=SIR:3+ The contents of the STW S 2, (S0);
(Store Word $) (C5,(A |SC5+1-> |not 8 +3+3 = |main register pair $ C5, | second
), UR) [(A+1) change |17 S C5 + 1 of the first operation
LABEL] A =5$C5:3 |operand are stored in specification (2
+3+8+3 |an external memory bytes) ?? 3 bytes
+3=20 having addresses A STW S 2, (S SZ);
(JR: +3) (lower)and A+ 1 Indirect
(upper). specification by

Note that the transfer SIR (2 bytes).
direction is opposite to | Virtually only $
the LD command. SZ=S$0canbe
A can be S C5, SIR. used. (§SX =5
If there is a labelinthe | 31($31,$0
third operand, a relative | pair), $ SY =5 30
jump is made after the | ($ 30, $ 31 pair =
transfer. (JR tag can be | 0001) can be
omitted) specified, but
the utility value
is low.)
STW S 2, (S 10);
Normal (3 bytes)
STW S 2, (S 10),
LABEL; Jump
expansion (4
bytes)
STW S 2, (S S2),
LABEL; Indirect
specification
with SIR + Jump
extension (3

bytes)

STW STW IM16 > (S |ltdoes |3+3+3+ |The 16-bitimmediate STW & H7023, (S
(Store IM16) IM16, (|SIR) not 8 +3 + 3 = |value of the first SZ); Indirect
undisclosed SSIR) change |23 operand is stored in the | designation by
instruction external memory SIR

indicated by the main STW & H7023, ($

register specified 0); Available at

indirect by SIR. LEVEL 1. Cannot

Note that the transfer be used at LEVEL
direction is oppositeto | 0.

the LD command.

Virtually only $S2=$0

can be used. (SSX =5

s
Seite 168

STIW
(Store
Increment
Word)

STDW
(Store
Decrement
Word)

PPSW

(Pop by
System stack
pointer Word)

STIWS |$C5-> (IR#

C5,(IR |A)
tA) SC5+1->
(IRxA+1)
IR&IREA
+2
STDW S SC5-> (IRt
C5,(IR |A)
tA)
tA-1)
IR < IR £ A-
1

PPSW S |S C5 & (SS)

C5 SC5+1 ¢
(SS+1)
SS & SS+2

It does
not
change

It does
not

S C5-1 - (IR | change

It does
not
change

A=SIR:3 +
6+3+5=
17
A=S$C5,
IM8:3+3
+6+3+5
=20

A=SIR:3 +
6+3+3=
15
A=5C5,
IM8:3 +3
+6+3+3
=18

3+6+3+
5=17

31 (S 31, $ 0 pair), SSY
=$30($ 30, $ 31 pair =
0001) can be specified,
but the utility value is
low.)

The contents of the first
operand main resist
pair $ C5,$ C5 + 1 are
stored in an external
memory whose address
is (IR A).

IR+ A+ 2isstoredinIR.
Note that the transfer
direction is opposite to
the LD command.

IRis IX, I1Z.

A can be S C5, SIR.

The contents of the first
operand main resist
pair $ C5, S C5-1 are
stored in an external
memory whose address
is (IR £ A).

IR £ A-1is stored in IR.
Note that the transfer
direction is opposite to
the LD command.

IRis IX, IZ.

A can be S C5, SIR.
Note that unlike STW
and STIW, the main
register pair numbers
are S C5and $ C5-1.
For example, in STDW S
2, (IX+S0), when IX =
& H7000and $0=1,
the operation is as
follows.

$2 - (&H7001
address)

S$1-> (& H7000
address)

IX & & H7000 (last
address accessed)

After storing the
contents of the external
memory specified by SS
in the main register pair
$C5 8C5+1,add 2 to
SS.

STIS 4, (IX+S 2);
Specify main
register

STIS 4, (12- 5 2);
STIS4, (IX+S
SX); Indirect
designation by
SIR

STIS 4, (1Z- S SY);

STDW $ 4, (IX+S
2); Specify main
register

STDW $ 4, (1Z-$
2);

STDW S 4, (IX+S
SX); Indirect
designation by
SIR

STDW S 4, (1Z- S
SY);

PPSW S 2;

Seite 169

PPUW
(Pop by User
stack pointer
Word)

PHSW

(Push by
System stack
pointer Word)

PHUW
(Push by User
stack pointer
Word)

GRE
(Get Register)

PRE
(Put Register)

STLW

(Store Word
data to LCD)
undisclosed
instruction

PPUW $

c5

PHSW S

c5

PHUW
SC5

GRE
Reg, $
C5],
(R)
LABEL]

PRE
Reg , A

[, UR)
LABEL |

STLW S ' SC5 - LCD

G,
(R)
LABEL

S C5 &« (US) |It does

SC5+1<¢ | not

(US+1) change

US< US+2

S C5 > (SS- |It does

1) not

$C5-1-> change

(SS-2)

SS & SS-2

S C5 - (US- |It does

1) not

$C5-1> change

(Us-2)

US < US-2

Reg > $C5 |Itdoes
not
change

Reg < A It does
not
change
It does

SC5+1-> |not

LCD change

3+6+3+
5=17

3+6+3+
3=15

3+6+3+
3=15

3+11=14
(JR: +3)

A=S$C5:3
+11=14

(JR: +3)

A =IM16:

3+3+3+
11=20

3+22=25
(JR: +3)

After storing the
contents of the external
memory specified by US
in the main register pair
$C5,6C5+1,add 2to
us.

After storing the value
of the main register pair
S C5,S$ C5-1inthe
external memory
specified by SS-1, SS-2,
subtract 2 from SS.

After storing the value
of the main register pair
S C5,S5 C5-1in the
external memory
specified by US-1, US-2,
subtract 2 from US.

Stores the contents of
the status register in
the second operand $
CS.

Reg=1IX, 1Y, 1Z, SS, US,
KY

If there is a third
operand label, a relative
jump occurs after
transfer. (JR tag can be
omitted)

Store the value of A of
the second operand in
the status register.

Reg =1IX, 1Y, IZ, SS, US,
KY
AisSC5(SC5,8C5+1
pair), IM16.

If the second operand is
the main register and
there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

The main register pair $
C5, $ C5 + 1 of the first
operand is output to
the LCD data area.
Output is performed in
order of 8 bits.

If there is a label for the

PPUW S 2;

PHSW S 2;

PHUW S 2;

GRE IX, $ 2;

GRE US, $ 2;
GREKY, $ 2,
LABEL; Jump
expansion

PRE IX, S 2;

PRE US, $ 2;
PREKY, S 2,
LABEL; Jump
expansion

PRE 1Z, & H703F;

STLW S 2; Main
register

STLW S 2, LABEL;
Jump expansion
EU format
OCBW S 2; Main
register

Seite 170

LDLW LDLW $
(Load Word Cc5],
data from LCD) | (JR)
undisclosed LABEL]
instruction

PPOW PPOW S
(Put lcd 5],
control Port (JR)
Word) LABEL]
undisclosed

instruction

S C5 < LCD |1t does
port data not
SC5+1¢& change
LCD port

data

SC5 > LCD |It does
control port |not
SC5+1-> |change
LCD control

port

Without
JR:3+23
=26 With
JR:3+3+
22=28

3+11=14
(JR: +3)

second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

The value of the LCD
data port is stored in
the main register pair $
C5, $ C5 + 1 designated
by the first operand
according to the
transfer protocol set in
advance in the LCDC.
Since reading is
performed in units of 4
bits, graphic data on the
screen is read with the
upper and lower 4 bits
replaced.

The reading procedure
is as follows.

(1) Specify drawing
mode (anything) and
LCD coordinate position
to LCDC. (STLM after
PPO & HDF)

(2) Set read command
(& HE1) to LCDC. (After
PPO & HDF, STL & HE1)
(3) Execute LDLW with
data RAM specified.
(LDLW after PPO &
HDE)

If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

The value of the main
register pair $ C5, S C5
+ 1 specified by the first
operand is output to
the LCD control port.
Output is performed in
order of 8 bits.

If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)
Note: The | / O port
accessible by this
command is different

OCBW S 2,
LABEL; Jump
expansion

LDLW $ 2; Main
register

LDLW $ 2, LABEL;
Jump expansion
EU format

ICBW S 2; Main
register

ICBW $ 2, LABEL;
Jump expansion

PPOW S 2; Main
register

PPOW § 2,
LABEL; Jump
extension

EU format
PCBW S 2; Main
register

PCBW $ 2,
LABEL; Jump
expansion

Seite 171

GFLW
(Get Flag
Word)

GPOW

(Get Port
Word)
undisclosed
instruction

PSRW

(Put Specific
index Register
Word)
undisclosed
instruction

GFLW S |SC5¢F It does
c5|, SC5+1 & F |not
(JR) change
LABEL |

GPOW |SC5 & Port |It does
SC5[, |SC5+1¢ |not
(JR) Port change
LABEL |

PSRW |SIR« SC5 | Itdoes
SIR, S SIR< SC5 | not

C5], +1 change
(R)

LABEL |

3+11=14
(JR: +3)

3+11=14
(JR: +3)

3+11=14
(JR: +3)

from the PD register. (I
/ O of LCD system)

The contents of the flag
register are stored in
the main register pair $
C5, $ C5 + 1 specified by
the first operand.

At this time, the same
data is stored in S C5
and $ C5+ 1.

If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

The contents of the
port terminal are stored
in the main register pair
$ C5,$ C5 + 1 specified
by the first operand.
The register pair $ C5, S
C5 + 1 contains the
same data.

If there is a label for the
second operand, a
relative jump is made
after the transfer. (JR
tag can be omitted)

The contents of the
main register pair $ C5,
S C5 + 1 of the second
operand are stored in
the specific index
register SIR designated
by the first operand .
However, only $ C5
(lower 5 bits) is stored
in the SIR.

SIR = SX, SY, SZ.

If there is a label for the
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted) If

this command is used
to change the SIR
setting (usually fixed at
SX=31,SY=30,SZ=0)
and control is returned
to the system, it will
run out of control.

GFLW $ 2;
GFLW S 2,
LABEL; Jump
expansion

GPOW $ 2;
GPOW $ 2,
LABEL; Jump
expansion

PSRW SX, S 2;
Main register
PSRW SY, $ 2,
LABEL; Jump
expansion

EU format
PRAW #1, S 4;
Main register
PRAW # 2, S 4,
J.LABEL; Jump
expansion

Seite 172

When users change SIR,
the following cautions
are required.

(1) Disable interrupts
while changing SIR.

(2) When returning to
ROM processing or
calling ROM processing,
return SIR to its original
setting.

(3) Coding the
optimization switch
with OFF (LEVEL 0)
specified.

(Because it is optimized
at$31,530,and $0at
LEVEL 1, the code gets

confused.)
GSRW GSRW |SIR->SC5 |ltdoes |3+ 11=14 The specificindex GSRW SX, S 2;
(Get Specific SIR,S SIR+1->$ |not (JR: +3) registers SIRand SIR+1 | GSRW SY, $ 2,
index Register | C5 |, C5+1 change designated by the first LABEL; Jump
Word) (JR) operand are stored in expansion
undisclosed LABEL | the main register pair $ | EU format
instruction C5and S C5 + 1 of the GRAW # 2,5 2;

second operand. GRAW #0, S 2,

SIR = SX, SY, SZ. J.LABEL; Jump

If there is a label for the | expansion
third operand, a relative
jump is made after the
transfer. (JR tag can be
omitted)

For example, in GSRW
SY,$2,ifSY=30,$2=
30and $3=31are
stored. When SY =31, $
2=31and$3=0are
stored.

Mnemonic Table - Arithmetic operation instruction (8 bits)

Operand formats not described in the format examples are not supported.
To be precise, INV and CMP are classified into shift instruction groups, but arithmetic
instructions are easier to understand.

Mnemonic Format | Function Flag NuCTot::T(rSOf Description Example Format
INV INV S SC5¢ & Z,C=1, 3+6=9 Bit-inverts the contents |INV S 2;
(Invert) c5], HFF-S C5 Lz, Uz (JR: +3) of the main register INV S 2, LABEL;
(JR) change specified by the first Jump expansion
LABEL] operand (1's

complement).
If there is a label for the

s
Seite 173

CmP
(Complement)

AD
(Add)

CMPS |$C5&27 1Z,C Lz
5], 8-5C5 uz

(JR) change
LABEL |

ADA,B |A<A+B Z,C Lz,
[, (JR) uz
LABEL] change

3+6=9
(JR: +3)

(A,B)=($
C5, SIR): 3
+6=9
(A,B)=($
C5,5C5):
3+3+6=
12
(A,B)=($
C5, IM8):
3+3+6=
12

(JR: +3)
A=(IR%
SIR):3+6
+3+3=
15
A=(IR%S
C5):3+3
+6+3+3
=18
A=(IR%S
IM8):3 +3
+6+3+3
=18

second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

1is added to the
contents of the main

CMP $ 2;
CMP $ 2, LABEL;

register specified by the |Jump expansion

first operand after bit
inversion (2's
complement).

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The result of adding the
value of the first
operand A and the
value of the second
operand B is stored in
A.

For operations other
than external memory,
a relative jump is
performed after the
operation according to
the description in the
label of the third
operand. (JR tag can be
omitted)

AD $ 4, S 2; Main
registers

ADS 4,52,
LABEL; Main
registers (Jump
expansion)

AD S 4,5 SZ;
Indirect
designation by
main register +
SIR

AD$ 4,$SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

AD S 4,123; Main
register + IM8
AD$ 4,123,
LABEL; Main
letter + IM8
(Jump expansion)
AD (IX +$ 4),$2;
External memory
(1) + Main
register >
External memory
AD (IX-$52),$ 2;
External memory
(indirect
designation by
SIR) + main
register >
external memory
AD (1Z +123), $
2; External

Seite 174

SB
(Subtract)

ADB
(Add BCD)

SBA,B |[A< AB

[, UR)
LABEL |

ADBA,
B[, (JR)
LABEL |

(BCD

A< A+B

calculation)

Z,C LZ, |(AB)=(S

uz C5, SIR): 3

change |+6=9
(A,B)=($
C5,5C5):
3+3+6=
12
(A,B)=($
C5, IM8):
3+3+6=
12
(JR: +3)
A=(IR%
SIR):3+6
+3+3=
15
A=(IR%S
C5):3+3
+6+3+3
=18
A=(IR%S
IM8): 3 +3
+6+3+3
=18

Z,C, LZ, |[B=SIR:3+

uz 6=9

change |B=5C5,
IM8:3+3
+6=12
(JR: +3)

The result of

subtracting the value of
the second operand B
from the value of the
first operand A is stored

in A.

For operations other
than external memory,

a relative jump is

performed after the
operation according to
the description in the

label of the third

operand. (JR tag can be

omitted)

The result of BCD

addition of the value of
the first operand A and
the value of the second
operand B is stored in

A

The BCD format is a

decimal number in

which the upper 4 bits
are the 10's place and

memory (2) +
Main register -
External memory

SBS$ 4,5 2; Main
registers
SBS$4,52,
LABEL; Main
registers (Jump
expansion)
SBS4,5Sz;
Indirect
designation by
main register-SIR
SBS$4,5Sz,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)

SB $ 4,123; Main
register-IM8

SB $ 4,123,
LABEL; Main
letter-IM8 (Jump
expansion)
SB(IX+S$4),$2;
External memory
(1) -Main register
- External
memory

SB (IX- $52), $ 2;
External memory
(Indirect
designation by
SIR)-Main
register >
External memory
SB(IZ+123),$2;
External memory
(2)-Main register
- External
memory

ADBS4,S2;
Main registers
ADB$ 4,52,
LABEL; Main
registers (Jump
extension)
ADB S 4,5 SZ;
Indirect
designation by

Seite 175

the lower 4 bits are the | main register +

1's place. SIR
Relative jump is ADBS 4,557,
performed after the LABEL; Indirect

operation according to | specification with
the description of the main register +

label of the third SIR (Jump
operand. (JR tag can be |expansion)
omitted) ADB S 4, & H12;

Main register +
IM8. & H12 (18)
is BCD decimal
number 12.

ADB $ 4, & H12,
LABEL; Main
letter + IM8
(Jump expansion)

SBB SBBA, A< AB Z,C,1Z, B=SIR:3+ The result of BCD SBBS$ 4,$2;
(Subtract BCD) B[, (JR) |(BCD uz 6=9 subtraction of the value |Main registers

LABEL] |calculation) |change |B=S C5, of the second operand |SBBS$4,S 2,

IM8: 3 +3 |Bfrom the value of the |LABEL; Main

+6=12 first operand A is stored | registers (Jump

(JR: +3) in A. expansion)
The BCD format is a SBBS 4,5 SZ;
decimal number in Main register-

which the upper 4 bits | Indirect
are the 10's place and specification with
the lower 4 bits are the |SIR

1's place. SBBS 4,5 Sz,
Relative jump is LABEL; Main
performed after the register-Indirect

operation according to | specification with
the description of the SIR (Jump

label of the third extension)
operand. (JRtagcanbe |SBBS 4, & H12;
omitted) Main register-
IM8. & H12 (18)
is BCD decimal
number 12.
SBB $ 4, & H12,
LABEL; Main
letter-IM8 (Jump
expansion)
ADC ADCA, [(A<A+B) Z,CLZ, |(A/B)=(5 Addsthevalueofthe ADCS4,$2;
(Add Check) B[, (JR) uz C5, SIR): 3 |first operand A and the | Main registers
LABEL] change |+6=9 value of the second ADCS 4,52,
(A,B)=(S |operand B, but does not | LABEL; Main
C5,5C5): |store the result registers (Jump
3+3+6= |anywhere, only the flag |expansion)
12 changes. ADCS 4, $SZ;
(A, B)=(S | For operations other Indirect

C5,IM8): |than external memory, |designation by

s
Seite 176

SBC
(Subtract
Check)

SBCA,
B[, JR)
LABEL]

3+3+6= |arelative jumpis

12 performed after the
(JR: +3) operation according to
A=(IR% the description in the
SIR): 3+ 6 |label of the third
+6=15 operand. (JR tag can be
A=(IR+S$ |omitted)

C5):3+3

+6+6=

18

A=(IRtS

IM8): 3 +3

+6+3+3

=18

(A < AB) Z,C Lz, |(A,B)=(S |Subtractsthe value of
uz C5, SIR): 3 |the second operand B
change +6=9 from the value of the

(A, B)=(S |first operand A, but
C5,5C5): |does not store the
3+3+6= |resultanywhere, only
12 the flag changes.

(A, B)=(S |For operations other
C5,IM8): |than external memory,
3+3+6= |arelative jumpis

12 performed after the
(JR: +3) operation according to
A=(IR% the description in the
SIR): 3+ 6 |label of the third
+6=15 operand. (JR tag can be
A=(IR+S$S |omitted)

C5):3+3

+6+6=

18

A=(Rt$

IM8): 3 +3

+6+3+3

=18

main register +
SIR

ADCS$ 4,55z,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

ADC $ 4,123;
Main register +
IM8

ADC $ 4,123,
LABEL; Main
letter + IM8
(Jump expansion)
ADC (IX+$4),$
2; External
memory (1) +
Main register
ADC (IX- $ 52), $
2; External
memory (indirect
specification by
SIR) + main
register

ADC (1Z+123), $
2; External
memory (2) +
Main register

SBCS 4,52
Main registers
SBCS$ 4,52,
LABEL; Main
registers (Jump
expansion)
SBCS4,$SZ;
Indirect
designation by
main register-SIR
SBCS$ 4,55z,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)

SBCS$ 4,123;
Main register-
IM8

SBCS$ 4,123,
LABEL; Main
letter-IM8 (Jump
expansion)

Seite 177

AN
(And)

ANC
(And Check)

ANA,B A< AandB |Z,C=0,

[UR)
LABEL

ANCA,
B[, JR)
LABEL]

(A< Aand
B)

LZ, Uz
change

Z,C=0,
LZ, UZ
change

B =SIR: 3 + | The result of the logical
product (AND) of the

6=9
B=SC5,
IM8:3+3
+6=12
(JR: +3)

B=SIR:3+
6=9
B=S$C5,
IM8:3 +3
+6=12
(JR: +3)

value of the first
operand A and the

value of the second
operand B is stored in

A

A=5C5.B=5C5,5SIR,

IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

Performs a logical AND
of the values of the first

operand A and the

second operand B, but

does not store the

result anywhere, only

the flag changes.

A=5C5.B=5C5,5SIR,

IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

SBC(IX+54),S
2; External
memory (1) -
Main register
SBC (IX-$52), $
2; External
memory (indirect
specification by
SIR) -Main
register
SBC(I1Z+123), S
2; External
memory (2) -
Main register

AN $ 4, $ 2; Main
registers

ANS$ 4,52,
LABEL; Main
registers (Jump
expansion)

AN $ 4,$SZ;
Indirect
designation by
main register and
SIR

AN S 4,557,
LABEL; Indirect
specification by
main register and
SIR (Jump
expansion)

AN $ 4,123; Main
register and IM8
AN $ 4,123,
LABEL; Main
letter and IM8
(Jump expansion)

ANCS 4,5 2;
Main registers
ANCS 4,52,
LABEL; Main
registers (Jump
extension)

ANCS 4,5 SZ;
Indirect
designation by
main register and
SIR

ANCS$ 4,552,
LABEL; Indirect
specification by
main register and

Seite 178

NA
(Nand)

NAC
(Nand Check)

NAA,B A& Anand |Z,C=1,

[UR)
LABEL]

NACA,
B[, JR)
LABEL |

B

(A< A
nand B)

Lz, Uz
change

Z,C=1,
Lz, Uz
change

B=SIR:3+
6=9
B=S$C5,
IM8:3+3
+6=12
(JR: +3)

B=SIR:3 +
6=9
B=S$C5,
IM8:3 +3
+6=12
(JR: +3)

The result of NAND

(AND bit inversion) of
the value of the first

operand A and the

value of the second
operand B is stored in

A

A=$C5.B=5C5,SSIR,

IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

NAND of the value of
the first operand A and
the value of the second
operand B (bit inversion
of AND), but the result
is not stored anywhere,
only the flag changes.
A=$C5.B=5C5,S5SIR,

IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

SIR (Jump
extension)

ANC S 4,123;
Main register and
IM8

ANCS$ 4,123,
LABEL; Main
letter and IM8
(Jump expansion)

NA S 4, $ 2; Main
registers
NAS4,S2,
LABEL; Main
registers (Jump
expansion)

NA S 4,5 SzZ;
Indirect
designation by
main register
nand SIR

NA S 4,45z,
LABEL; Main
register nand SIR
indirect
specification
(Jump extension)
NA $ 4,123; Main
register nand
IM8

NA S 4,123,
LABEL; Main
letter nand IM8
(Jump expansion)

NACS 4,5 2;
Main registers
NACS 4,52,
LABEL; Main
registers (Jump
extension)
NACS 4,5 SzZ;
Indirect
specification by
main register
nand SIR

NACS 4,55z,
LABEL; Indirect
specification by
main register
nand SIR (Jump
expansion)

Seite 179

OR
(Or)

ORC
(Or Check)

ORA,B A< AorB

[UR)
LABEL]

ORCA,
B[, JR)
LABEL |

Z,C=1,
LZ, UZ
change

(A& AorB) |Z,C=1,
Lz, Uz
change

B=SIR:3+
6=9
B=S$C5,
IM8:3 +3
+6=12
(JR: +3)

B=SIR:3 +
6=9
B=$C5,
IM8:3+3
+6=12
(JR: +3)

The logical sum (OR)
result of the value of
the first operand A and
the value of the second
operand B is stored in
A
A=5$C5.B=5C5,$SIR,
IMS8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

ORs the value of the
first operand A and the
value of the second
operand B, but does not
store the result
anywhere, only the flag
changes.
A=$C5.B=5C5,SSIR,
IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can
be omitted)

NAC S 4,123;
Main register
nand IM8

NACS 4,123,
LABEL; Main
letter nand IM8
(Jump expansion)

OR S 4, S 2; Main
registers

ORS 4,52,
LABEL; Main
registers (Jump
extension)
ORS4,5$5Z;
Indirect
designation by
main register or
SIR

ORS 4,55z,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)

OR $ 4,123; Main
register or IM8
OR $ 4,123,
LABEL; Main
letter or IM8
(Jump expansion)

ORCS 4,5 2;
Main registers
ORCS 4,52,
LABEL; Main
registers (Jump
extension)
ORCS$ 4,55z
Indirect
specification by
main register or
SIR

ORCS 4,552,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)
ORC$ 4,123;
Main register or
IM8

ORC$ 4,123,
LABEL; Main

Seite 180

XR
(Exclusive Or)

XRC
(Exclusive Or
Check)

XRA,B |[A<& AxorB |Z,C=0,

[, UR)
LABEL |

XRCA,
B[, (JR)
LABEL |

(A < Axor
B)

Lz, Uz
change

Z,C=0,
Lz, Uz
change

B=SIR:3+
6=9
B=SC5,
IM8: 3 +3
+6=12
(JR: +3)

B=SIR:3+
6=9
B=5SC5,
IM8:3+3
+6=12
(JR: +3)

The result of the

exclusive OR (OR) of the

value of the first
operand A and the

value of the second
operand B is stored in

A

A=$C5.B=5C5,SSIR,

IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

XOR is performed on
the value of the first

operand A and the

value of the second

operand B, but the
result is not stored

anywhere and only the

flag changes.

A=$C5.B=5C5,$SIR,

IM8.

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

letter or IM8
(Jump expansion)

XR S 4, S 2; Main
registers

XRS$ 4,52,
LABEL; Main
registers (Jump
extension)
XRS$4,$Sz;
Indirect
designation by
main register xor
SIR

XRS$ 4,55z,
LABEL; Indirect
specification by
main register xor
SIR (Jump
extension)

XR $ 4,123; Main
register xor IM8
XR S 4,123,
LABEL; Main
letter xor IM8
(Jump expansion)

XRCS4,S$2;
Main registers
XRCS$ 4,52,
LABEL; Main
registers (Jump
extension)

XRC S 4, S SZ;
Main register xor
SIR indirect
specification
XRCS$ 4,55z,
LABEL; Indirect
specification by
main register xor
SIR (Jump
extension)

XRC $ 4,123;
Main register xor
IM8

XRCS 4,123,
LABEL; Main
letter xor IM8
(Jump expansion)

Seite 181

Mnemonic Table - Arithmetic operation instruction (16 bits)

Mnemonic

INVW
(Invert Word)

CMPW
(Complement
Word)

ADW
(Add Word)

Operand formats not described in the format examples are not supported.
The flag operation differs from 8-bit arithmetic as follows.
e Z: 0 when all 16 bits of the operation result are 0.
e 7: C: 1 when there is a carry or borrow from the most significant bit (bit 15).
e Z: LZ: 0 when the lower 4 bits of the upper 8 bits are 0.
e Z: UZ: 0 when the upper 4 bits of the upper 8 bits are 0.
To be precise, INVW and CMPW are classified into shift instruction groups, but arithmetic
instructions are easier to understand.
Format @ Function Flag [Tl 17 Description Example format
Clocks
INVWS ((SC5+1,S |Z,C=1, |3+11=14 |Bit-inverts the contents |INVW $ 2;
C5], C5) ¢ & Lz, Uz (JR: +3) of the main register pair |INVW $ 2, LABEL;
(JR) HFFFF-($ C5 |change specified by the first Jump expansion
LABEL] |+1,5C5) operand (1's
complement).
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

CMPW [(§C5+1,$8 Z,C,LZ, |3+11=14 1isaddedtothe CMPW §$ 2;
SC5[, |C5)¢« 2~ uz (JR: +3) contents of the main CMPW S 2,
(JR) 16-(5C5+ |change register pair specified LABEL; Jump
LABEL] |1,5C5) by the first operand expansion

after bit inversion (2's
complement).

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

ADWA A< A+B Z,C Lz, (A B)=(S |Theresultofaddingthe ADW$4,S2;

, B, uz C5, SIR): 3 | value of the first Main registers

(JR) change |+11=14 |operand A and the ADW S$ 4,52,

LABEL] (A, B)=($ |value of the second LABEL; Main
C5,$ C5): | operand B is stored in registers (Jump
3+43+11 |A expansion)
=17 Almost the same as 8- |ADW $ 4, $S5Z;
(JR: +3) bit operation, except Indirect
A=(IR+ that the operation is designation by
SIR): 3+ 6 |performed with 16 bits. | main register +
+3+3+3 |Onlyinthe case of SIR
+3=21 operations between ADW $ 4,557,
A=(IR+S$S |main registers LABEL; Indirect
C5):3+3 |(including indirect specification with
+6+3+3 |specification by SIR), a | main register +
+3+3= relative jump is made SIR (Jump
24 after the operation expansion)

s
Seite 182

SBW
(Subtract
Word)

ADBW
(Add BCD
Word)

SBWA, A< AB
B[, (JR)
LABEL |

ADBW

A,B[, (BCD

(JR) calculation)

LABEL]

A< A+B

Z,C Lz, |(AB)=(S

uz C5, SIR): 3

change |+11=14
(A,B)=($
C5,$C5):
3+3+11
=17
(JR: +3)
A= (IRt
SIR):3+6
+3+3+3
+3=21
A=(IR%S
C5):3+3
+6+3+3
+3+3=
24

Z,C LZ 'B=SIR:3+
uz 11=14
change |B=$C5:3
+3+11=
17
(JR: +3)

according to the

description of the label
of the third operand.
(JR tag can be omitted)

The result of

subtracting the value of
the second operand B
from the value of the
first operand A is stored

in A.

Almost the same as 8-
bit operation, except
that the operation is
performed with a 16-bit

pair register.
Only in the case of

operations between

main registers
(including indirect

specification by SIR), a
relative jump is made

after the operation
according to the

description of the label
of the third operand.
(JR tag can be omitted)

The result of BCD

addition of the value of
the first operand A and
the value of the second
operand B is stored in

A

The BCD format is a

decimal number in

which the upper 4 bits
of SC5+1areinthe
thousands, the lower 4
bits are in the 100s, the

ADW (IX+S4),$
2; External
memory + Main
register >
External memory
ADW (IX- $52), $
2; External
memory (indirect
designation by
SIR) + main
register >
external memory

SBW $4,52;
Main registers
SBWS$4,S2,
LABEL; Main
registers (Jump
expansion)

SBW $ 4,$ SZ;
Indirect
designation by
main register-SIR
SBW $ 4, $SZ,
LABEL; Main
register-Indirect
specification with
SIR (Jump
extension)

SBW (IX +$ 4), $
2; External
memory-Main
register >
External memory
SBW (IX-$ S2), $
2; External
memory (Indirect
designation by
SIR)-Main
register >
External memory

ADBW $4, S 2;
Main registers
ADBW $ 4,52,
LABEL; Main
registers (Jump
extension)
ADBW $ 4, $ SZ;
Indirect
designation with
main register +
SIR

Seite 183

SBBW

(Subtract BCD

Word)

ADCW
(Add Check
Word)

SBBW A |A < AB ZC, Lz,
B[, (BCD uz

(JR) calculation) |change
LABEL]

ADCW (A& A+B) |ZC Lz
A,B], uz

(JR) change
LABEL |

B=SIR:3+
11=14
B=$C5:3
+3+11=
17

(JR: +3)

(A,B)=($
C5, SIR): 3
+11=14
(A,B)=($
C5,5C5):
3+3+11
=17

(JR: +3)
A=(IR%
SIR):3+6
+6+6=
21
A=(IR%S
C5):3+3
+6+6+6
=24

upper 4 bits of S C5 are
in the 10s, and the
lower 4 bits are in the
1s.

Almost the same as 8-
bit operation, except
that the operation is
performed with a 16-bit
pair register.

Relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

The result of BCD
subtraction of the value
of the second operand
B from the value of the
first operand A is stored
in A.

Almost the same as 8-
bit operation except
that the operation is
performed in a 16-bit
pair register.

Relative jump is
performed after the
operation according to
the description of the
label of the third
operand. (JR tag can be
omitted)

Adds the value of the
first operand A and the
value of the second
operand B, but does not
store the result
anywhere, only the flag
changes.

Almost the same as 8-
bit operation except
that the operation is
performed in a 16-bit
pair register.

Only in the case of
operations between
main registers
(including indirect
specification by SIR), a
relative jump is

ADBW $ 4,5 SZ,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

SBBW $ 4,5 2;
Main registers
SBBW $4,S 2,
LABEL; Main
registers (Jump
expansion)
SBBW $ 4, $ SZ;
Main register-
Indirect
specification with
SIR

SBBW $ 4, $ 57,
LABEL; Indirect
specification by
main register-SIR
(Jump extension)

ADCW $ 4, $ 2;
Main registers
ADCW $ 4,52,
LABEL; Main
registers (Jump
expansion)
ADCW $ 4,5 Sz;
Indirect
designation by
main register +
SIR

ADCW $ 4,$ Sz,
LABEL; Indirect
specification with
main register +
SIR (Jump
expansion)

Seite 184

performed after the ADCW (IX + $ 4),
operation according to |$ 2; External
the description of the memory + Main

label of the third register
operand. (JR tag can be |ADCW (IX- $ SZ),
omitted) S 2; External

memory (indirect
specification by

SIR) + main
register
SBCW SBCW A | (A < AB) Z,C,LZ, (A B)=($ |Subtractsthevalueof |SBCW $4,S2;
(Subtract ,B], uz C5, SIR): 3 |the second operand B Main registers
Check Word) | (JR) change |+11=14 |from the value of the SBCW $ 4,52,
LABEL] (A,B)=(S |first operand A, but LABEL; Main
C5,S$ C5): | does not store the registers (Jump
3+3+11 |resultanywhere, only expansion)
=17 the flag changes. SBCW S 4, S SZ;
(JR: +3) Almost the same as 8- Main register-
A=(IR% bit operation, except Indirect
SIR): 3+ 6 |that the operation is specification with
+6+6= performed with a 16-bit |SIR
21 pair register. SBCW S 4,5 SZ,
A=(IR+S$S |Onlyinthe case of LABEL; Indirect
C5):3+3 |operations between specification by
+6+6+6 | mainregisters main register-SIR
=24 (including indirect (Jump extension)
specification by SIR), a |SBCW (IX +$ 4),
relative jump is S 2; External
performed after the memory-Main

operation according to | register
the description of the SBCW (IX- S SZ),

label of the third S 2; External
operand. (JR tag can be |memory (indirect
omitted) specification by
SIR) -Main
register
ANW ANWA |A& AandB |(Z,C=0, |B=SIR:3+ |The result of the logical |ANW $4,S 2;
(And Word) ,B1, Lz, Uz 11=14 product (AND) of the Main registers
(JR) change |B=5C5:3 |value of the first ANW S 4,S 2,
LABEL] +3+11= |operand A and the LABEL; Main
17 value of the second registers (Jump
(JR: +3) operand B is stored in expansion)
A ANW $ 4, S SzZ;

A=S$C5.B=5C5,SSIR. |Indirect

If there is a label for the | designation by

third operand, a relative | main register and

jump is made after the |SIR

operation. (JR tag can ANW S 4,5 SZ,

be omitted) LABEL; Indirect
specification with
main register and

s
Seite 185

ANCW
(And Check
Word)

NAW
(Nand Word)

NACW
(Nand Check
Word)

ANCW
A,B],
(R)
LABEL

(A& Aand
B)

Z,C=0,
Lz, Uz
change

NAWA A& Anand |Z,C=1,

7’ B [I
(JR)
LABEL |

NACW
A,B],
(JR)

LABEL |

B

(A< A
nand B)

Lz, Uz
change

Z,C=1,
LZ, Uz
change

B=SIR:3+
11=14
B=$C5:3
+3+11=
17

(JR: +3)

B=SIR:3 +
11=14
B=SC5:3
+3+11=
17

(JR: +3)

B=SIR:3 +
11=14
B=SC5:3
+3+11=
17

(JR: +3)

Performs a logical AND
of the values of the first

operand A and the

second operand B, but

does not store the

result anywhere, only

the flag changes.

A=5$C5.B=5C5,S$SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

The result of NAND

(AND bit inversion) of
the value of the first

operand A and the

value of the second
operand B is stored in

A

A=S5C5.B=5C5,SSIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

NAND of the value of
the first operand A and
the value of the second
operand B (bit inversion
of AND), but the result
is not stored anywhere,
only the flag changes.
A=$C5.B=5C5,SSIR.

SIR (Jump
expansion)

ANW S 4,123;
Main register and
IM8

ANW S 4,123,
LABEL; Main
letter and IM8
(Jump expansion)

ANCS4,S2;
Main registers
ANCS 4,S2,
LABEL; Main
registers (Jump
extension)

ANCS 4,5 SZ;
Indirect
designation by
main register and
SIR

ANCS 4,5 SZ,
LABEL; Indirect
specification by
main register and
SIR (Jump
extension)

NAW $ 4,5 2;
Main registers
NAW $ 4, $ 2,
LABEL; Main
registers (Jump
extension)
NAW $ 4, $ SZ;
Indirect
designation by
main register
nand SIR

NAW S 4, S SZ,
LABEL; Indirect
specification by
main register
nand SIR (Jump
expansion)

NACW $ 4, $ 2;
Main registers
NACW $ 4,5 2,
LABEL; Main
registers (Jump
extension)
NACW S 4, S SZ;
Indirect

Seite 186

ORW ORWA A& AorB (Z,C=1, |[B=SIR:3+
(Or Word) ,B], Lz, Uz 11=14
(JR) change |B=$C5:3
LABEL | +3+11=
17
(JR: +3)
ORCW ORCW (A& AorB)|Z,C=1, |[B=SIR:3+
(Or Check A,B]|, Lz, Uz 11=14
Word) (JR) change |B=SC5,
LABEL] IM8:3+3
+11=17
(JR: +3)
XR XRWA, |[A&<AxorB (Z,C=0, |[B=SIR:3+
(Exclusive Or | B[, (JR) Lz, Uz 11=14
Word) LABEL] change |B=SC5:3
+3+11=
17
(JR: +3)

s
Seite 187

If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

The logical sum (OR)
result of the value of
the first operand A and
the value of the second
operand B is stored in

A

A=$C5.B=5C5,$SIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

ORs the value of the
first operand A and the
value of the second
operand B, but does not

store the result

anywhere, only the flag

changes.

A=S5C5.B=5C5,SSIR.
If there is a label for the
third operand, a relative
jump is made after the
operation. (JR tag can

be omitted)

The result of the
exclusive OR (OR) of the
value of the first
operand A and the
value of the second
operand B is stored in

A

A=$C5.B=5C5,SSIR.

specification by
main register
nand SIR

NACW $ 4, S Sz,
LABEL; Indirect
specification by
main register
nand SIR (Jump
expansion)

ORW $4,52;
Main registers
ORW $ 4,52,
LABEL; Main
registers (Jump
extension)
ORW $ 4, $ SZ;
Indirect
specification by
main register or
SIR

ORW $ 4,5 Sz,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)

ORCW $ 4,5 2;
Main registers
ORCW $4,5 2,
LABEL; Main
registers (Jump
extension)
ORCW $ 4, 5 SZ;
Indirect
designation by
main register or
SIR

ORCW $ 4, S SZ,
LABEL; Indirect
specification by
main register or
SIR (Jump
expansion)

XR S 4, S 2; Main
registers

XRS$ 4,52,
LABEL; Main
registers (Jump
extension)
XRS$4,$SzZ;
Indirect

If there is a label for the | designation by

third operand, a relative | main register xor

jump is made after the |SIR

operation. (JR tag can XRS$ 4,55z,

be omitted) LABEL; Indirect
specification by
main register xor

SIR (Jump
extension)
XRCW XRCWA (A& Axor |Z,C=0, |B=SIR:3+ |XORis performed on XRCS 4,5 2;
(Exclusive Or ,B], B) Lz, Uz 11=14 the value of the first Main registers
Check Word) | (JR) change |B=$C5:3 |operand A and the XRCS4,S2,
LABEL | +3+11= | value of the second LABEL; Main
17 operand B, but the registers (Jump
(JR: +3) result is not stored extension)
anywhere and only the |XRCS 4, $SZ;
flag changes. Main register xor

A=SC5.B=5$C5,SSIR. |SIR indirect

If there is a label for the |specification
third operand, a relative | XRC$ 4, S SZ,
jump is made after the | LABEL; Indirect
operation. (JR tag can specification by

be omitted) main register xor
SIR (Jump
extension)

Rotate shift instruction (8 bits)

Mnemonic Format Function Flag NUCT;T(:M Description Example Format
ROU ROU S | See figure Z,CLZ 3+6=9 Rotate left between the | ROU $ 2;
(Rotate Up) Cc5], uz (JR: +3) main register specified | ROU S 2, LABEL;

(JR) change by the first operand and | Jump expansion
LABEL | the carry flag.
If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)
ROD ROD S | See figure Z,C,LZ 3+6=9 Rotate right between ROD $ 2;
(Rotate Down) C5], uz (JR: +3) the main register ROD S 2, LABEL;
(JR) change specified by the first Jump expansion
LABEL | operand and the carry

flag.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

s
Seite 188

BIU
(Bit Up)

BID
(Bit Down)

DIU
(Digit Up)

DID
(Digit Down)

BYU
(Byte Up)

BIUS
cs5,
(JR)
LABEL]

BIDS
cs5 |,
(R)
LABEL

DIU S
cs5,
(JR)
LABEL]

DID $
cs5,
(JR)
LABEL]

BYU S
5],

See figure

See figure

See figure

See figure

See figure

Z C, Lz,
uz
change

Z C, Lz,
uz
change

Z,C=0,
LZ=0,
uz
changes

Z,C=0,
Lz, Uz =

change

Z2=0,C
=0, Lz,

3+6=9
(JR: +3)

3+6=9
(JR: +3)

3+6=9
(JR: +3)

3+6=9
(JR: +3)

3+6=9
(JR: +3)

The contents of the
main register specified
by the first operand are
incremented 1 bit to
the left, O is stored in
the least significant bit,
and the carry is stored
in the carry.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register specified
by the first operand are
moved down 1 bit to
the right, the most
significant bit is set to O,
and the carry is stored
in the carry.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register specified
by the first operand are
raised 4 bits to the left,
and O is placed in the
lower bits.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

Decreases the contents
of the main register
specified by the first
operand by 4 bits to the
right and puts 0 in the
upper bits.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

0 is stored in the main
register specified by the
first operand.

BIUS 2;
BIU S 2, LABEL;
Jump expansion

BID S 2;
BID S 2, LABEL;
Jump expansion

DIU S 2;
DIU $ 2, LABEL;
Jump expansion

DID S 2;
DID S 2, LABEL;
Jump expansion

BYUS 2;
BYU S 2, LABEL;
Jump expansion

Seite 189

undisclosed
instruction

BYD

(Byte Down)
undisclosed
instruction

(JR) uz
LABEL] change
BYDS | See figure Z=0,C
c5, =0, Lz,
UR) uz
LABEL] change

Rotate shift instruction (16 bits)

Mnemonic

ROUW
(Rotate Up
Word)

RODW
(Rotate Down
Word)

BIUW
(Bit Up Word)

Format Function Flag
ROUW | See figure Z, C, Lz,
SC5], uz

(JR) change
LABEL |

RODW | See figure Z, C, Lz,
SC5], uz

(JR) change
LABEL]

BIUW S |See figure Z C, Lz,
C5], uz

(JR) change
LABEL |

3+6=9
(JR: +3)

Number of
Clocks

3+11=14
(JR: +3)

3+11=14
(JR: +3)

3+11=14
(JR: +3)

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

0 is stored in the main
register specified by the
first operand.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

Description

16-bit left rotation is
performed between the
main register pair (S C5
+1, S C5) specified by
the first operand and
the carry flag.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

16-bit right rotation is
performed between the
main register pair (S C5,
$ C5-1) specified by the
first operand and the
carry flag.

Note that the register
pairis $ C5, S C5-1.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register pair ($ C5
+1, S C5) specified by
the first operand are
incremented 1 bit to
the left, O is placed in
the least significant bit,
and the carry is stored
in the carry.

BYD S 2;
BYD $ 2, LABEL;
Jump expansion

Example Format

ROUW $ 2;
ROUW S 2,
LABEL; Jump
expansion

RODW §$ 2;
RODW S 2,
LABEL; Jump
expansion

BIUW $ 2;
Register pair is ($
3,52),S2is
lower byte.
BIUW S 2, LABEL;
Jump expansion

Seite 190

BIDW
(Bit Down
Word)

DIUW
(Digit Up
Word)

DIDW
(Digit Down
Word)

BYUW
(Byte Up
Word)

BIDW S | See figure Z,C, Lz,
cs5 |, uz

(JR) change
LABEL |

DIUW $ |See figure Z,C=0,
c5], Lz, Uz
(JR) change
LABEL |

DIDW § | See figure Z,C=0,
cs5], Lz, Uz
(JR) change
LABEL |

BYUW S | See figure Z,C=0,
G, Lz, Uz
(JR) change
LABEL |

3+11=14
(JR: +3)

3+11=14
(JR: +3)

3+11=14
(JR: +3)

3+11=14
(JR: +3)

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register pair ($ C5,
S C5-1) specified by the
first operand are
lowered 1 bit to the
right, 0 is placed in the
most significant bit, and
the carry is stored in
the carry.

Note that the register
pairis $ C5, $ C5-1.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register pair ($ C5
+1, $ C5) specified by
the first operand are
raised 4 bits to the left,
and 0 is placed in the
lower bits.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register pair ($ C5,
$ C5-1) specified by the
first operand are
lowered 4 bits to the
right and O is placed in
the upper bits.

Note that the register
pairis $ C5, S C5-1.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register pair ($ C5
+1, S C5) specified by
the first operand are

BIDW $ 2; The
register pair is (S
2,51),andS2is
the upper byte.
BIDW S 2, LABEL;
Jump expansion

DIUW S 2; Regist
pairis ($3, S 2),
S 2 is the lower
byte.

DIUW $ 2,
LABEL; Jump
expansion

DIDW $ 2;
Register pair is ($
2,51),S52isthe
upper byte.
DIDW $ 2, LABEL;
Jump expansion

BYUW S 2; Regist
pairis ($3, S 2),
S 2 is the lower
byte.

Seite 191

BYDW
(Byte Down
Word)

BYDW $ | See figure

Gl
(JR)
LABEL]

Z,C=0,
LZ, Uz
change

3+11=14
(JR: +3)

Mnemonic Table - Jump / call instructions

Mnemonic

P
(Jump)

JP
(Jump flag)

Format

JP{
IM16 |
LABEL }

JP Flag,
{IM16
| LABEL

}

Function Flag

PC &< IM16 | No
change

If Flag then |No
PC < IM16 | change

Number of
Clocks

3+3+6=
12

3+3+6=
12

increased 8 bits to the
left, and all lower bytes
are setto 0.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

The contents of the
main register pair (S C5,
S C5-1) specified by the
first operand are down
8 bits to the right, and
all upper bytes are set
to 0.

Note that the register
pairis $ C5, $ C5-1.

If there is a label for the
second operand, a
relative jump is made
after the operation. (JR
tag can be omitted)

Description

The 16-bit immediate
value of the first
operand is taken into
the program counter
(PC), and jumps to that
address.

When the condition of
the flag register of the
first operand is
satisfied, the 16-bit
immediate value of the
second operand is
taken into the program
counter (PC) and
jumped to that address.

BYUW S 2,
LABEL; Jump
expansion

BYDW S 2;
Register pair is ($
2,51),52is
upper byte.
BYDW §$ 2,
LABEL; Jump
expansion

Example Format

JP & H703F;
Unconditional
jump

JP Z, & H703F;
JumpifZ=0
(calculation
result is 0)

JP NZ, & H703F;
Jumpifz=1
(calculation
result is other
than 0)

JPC, LABEL; C=1
(carry
occurrence)
jump

JP NC, LABEL;
JumpifC=0(no
carry)

JP LZ, & H703F;
Jump when

Seite 192

JP IPSC5
(Jump register)
undisclosed

instruction

PC<SC5 |No
change

P JP(8C5 PC« ($C5) No
(indirect Jump |) change
register)

unpublished

instruction

3+8=11

3+8=11

The value of the main
register pair specified
by the first operand is
taken into the program
counter (PC) and
jumped to that address.
Note Although this
instruction (opcode
DEH) has been written
as "JP ($ C5)", Mr. Piotr
Piatek used a jump
instruction (opcode
DFH) by indirect
memory addressing ($
C5) by the main
register. Because it was
found, it was changed
to the current "JP $ C5"
notation.

Indirect designation
with the main register
pair $ C5 of the first

operand, that is, the 16-

bit data stored in the
external memory with
the address (S C5+1, S
C5) is taken into the
program counter (PC)
and the address is
Jump.

InJP (S 17),if$17 =00,
$ 18 = & H70, memory
address & H7000 = &
H34, & H7001 = & H20,

the program jumps to &

H2034.

lower digit flag is
0 (lower 4 bits
are 0)

JP UZ, & H703F;
Jump when
upper digit flag is
0 (upper 4 bits
are 0)

JP NLZ, LABEL;
Jump when
lower digit flag is
1 (flag name can
be written in
LNZ)

JPS17;
EU format
JPW S 17;

JP($17);
EU format
JPW (S 17);

Seite 193

JR
(Relative
Jump)

JR
(Relative Jump
flag)

CAL
(call)

JR{#
IM7 |
LABEL }

JR Flag ,
{+IM7
| LABEL
}

CAL{
IM16 |
LABEL }

PC<&PCt No
IM7

If Flag then |No
PC& PCH
IM7

(SS-2) < PC |No

+3 change

SS & SS-2
PC < IM16

change

change

3+6=9

3+6=9

3+3+6+
3+3=18

Adds or subtracts the 7-
bit immediate value of
the operand to the
program counter (PC)
and performs a relative
jump.

Specify a numeric value
+IM7 (0to127)ora
label for the operand.

When the flag condition
of the first operand is
satisfied, the 7-bit
immediate value of the
second operand is
added to or subtracted
from the program
counter (PC), and a
relative jump is made.
For the second
operand, specify a
numeric value + IM7 (0
to 127) or a label.

After the address of the
next instruction is
pushed to the system
stack (SS), the 16-bit
immediate value of the
first operand is stored
in the program counter
(PC) and a subroutine
call is made to that
address.

JR +32; + IM7
JR -32; -IM7

JR LABEL; LABEL
specified

JR Z, LABEL;
JumpifZ=0
(result is 0)

JR NZ, LABEL;
Jumpifz=1
(calculation
result is not 0)
JR C, LABEL;
JumpifC=1
(carry occurs)

JR NC, LABEL;
JumpifC=0(no
carry)

JR LZ, LABEL;
Jump when
lower digit flag is
0 (lower 4 bits
are 0)

JR UZ, LABEL;
Jump when
upper digit flag is
0 (upper 4 bits
are 0)

JR NLZ, LABEL;
Jump when
lower digit flag is
1 (flag name can
be written in
LNZ)
JRZ,+32;IfZ=0
(result is 0),
relative jump in
+ IM7 format

CAL & H703F;
Unconditional
call

Seite 194

CAL
(Call flag)

RTN
(Return)

RTN
(Return flag)

CAL
Flag , {
IM16 |
LABEL}

RTN

RTN
Flag

If Flag then |No
(SS-2) ¢ PC |change
+3

SS & SS-2

PC < IM16

PC & (SS) No
SS & SS+2 |change

If Flag then | No
PC & (SS) change
SS & SS+2

CALL

execution:

3+3+6+
3+3=18
CALL not
executed:
3+43+6=
12

6+3+5=
14

No return:

6
RTN: 6+ 3
+5=14

When the flag condition
of the first operand is
satisfied, a subroutine
call is made to the
address specified by the
second operand.

Stores the 16-bit
immediate value of the
system stack (SS) in the
program counter (PC)
and returns to that
address.

When the flag condition
of the operand is
satisfied, the 16-bit
immediate value of the
system stack (SS) is
stored in the program
counter (PC), and it
returns to that address.

CAL Z, & H703F;
Callifz=0
(result is 0)
CALNZ, &
H703F; Call if Z=
1 (calculation
result is not 0)
CAL C, & H703F;
Callif C=1 (carry
occurs)

CALNC, &
H703F; Call if C =
0 (no carry)

CAL LZ, & H703F;
Call if lower digit
flag is O (lower 4
bits are 0)
CALUZ &
H703F; Call if
upper digit flag is
0 (upper 4 bits
are 0)

CALNLZ, &
H703F; Call if
lower digit flag is
1 (flag name can
be written in
LNZ)

RTN;
Unconditional

RTN Z; Return if
Z =0 (resultis 0)
RTN NZ; Return if
Z =1 (operation
result is not 0)
RTN C; Return if
C=1(carry
occurs)

RTN NC; Returns
if C=0 (no carry)
RTN LZ; Return if
lower digit flag is
0 (lower 4 bits
are 0)

RTN UZ; If the
upper digit flag is
0 (the upper 4

Seite 195

Mnemonic Table - Block transfer / search instructions

Number of

Mnemonic Format Function Fla
g Clocks

Description
BUP BUP See No ? unknown | Transfers the memory
(Block Up) explanation |change block specified by IX
register = transfer
source start address
and IY register =
transfer source end
address to the area
where IZ = transfer
destination start
address.

Since transfer is

performed in ascending

order from IX address

to IY address, it must be
used with IX <IY setting.
Same operation as REP

MOVSB when CLD is
specified on X86.

BDN BDN See No ? unknown | Transfers the memory

(Block Down) explanation |change block specified by IX
register = transfer
source start address
and IY register =
transfer source end
address to the area
where IZ = transfer
destination start
address.
Since transfer is
performed in

descending order from
IX address to 1Y address,
it is necessary to use IX>

IY setting.

Same operation as REP

MOVSB when STD is
specified on X86.

bits are 0),
return

RTN NLZ; Return
if lower digit flag
is 1 (flag name
can be written in
LNZ)

Example Format

BUP;

BDN;

Seite 196

SUP SUP{S |See
(Search Up) c5 | explanation
IM8 }

SDN SDN{S |See
(Search Down) |C5 | explanation
IM8 }

Z C, Lz,
uz
change

Z,C, Lz,
uz
change

? unknown

? unknown

The main register value
or 8-bit immediate
value specified by the
first operand is
searched within the
memory block range
specified by IX register =
search start address
and Y register = search
end address.

If there is, set Z =0 (2)
and terminate the
execution on the spot.
If there is no
corresponding data, the
execution ends with Z =
1(NZ) and IX = IY.

Since the search is
performed in ascending
order from IX address
to IY address, it must be
used with IX <IY setting.
Same operation as
REPNZ SCASB when CLD
is specified on X86.

The main register value
or 8-bit immediate
value specified by the
first operand is
searched within the
memory block range
specified by IX register =
search start address
and Y register = search
end address.

If there is, set Z=10 (Z)
and terminate the
execution on the spot.
If there is no
corresponding data, the
execution ends with Z =
1 (NZ)and IX=1Y.

Since the search is
performed in
descending order from
IX address to Y address,
it is necessary to use IX>
IY setting.

Same operation as
REPNZ SCASB when STD
is specified on X86.

SUP S 2; Specify
main register
SUP 123; 8-bit
immediate
designation

SDN $ 2; Specify
main register
SDN 123; 8-bit
immediate
designation

Seite 197

BUPS

(Block Up &
Search)
(undisclosed
instruction)

BUPS
IM8

BDNS BDNS
(Block Down & |IM8
Search)

(undisclosed

order)

See
explanation

See
explanation

Z C, Lz,
uz
change

ZC, Lz,
uz
change

? unknown

? unknown

The memory block
specified by IX register =
transfer source start
address and |Y register
= transfer source end
address is transferred
to the area where IZ =
transfer destination
start address.

During transfer, when
the transfer data is
searched and the same
data as IM8 in operand
1is detected, the
instruction execution
ends at Z =0 (2) after
the data is transferred.
If there is no
corresponding data, the
execution ends with Z =
1 (NZ) and IX = 1.

Since the search is
performed in ascending
order from IX address
to IY address, it must be
used with IX <IY setting.

The memory block
specified by IX register =
transfer source start
address and Y register
= transfer source end
address is transferred
to the area where IZ =
transfer destination
start address.

During transfer, when
the transfer data is
searched and the same
data as IM8 in operand
1is detected, the
instruction execution
ends at Z =0 (Z) after
the data is transferred.
If there is no
corresponding data, the
execution ends with Z =
1(NZ) and IX = 1.

Since the search is
performed in
descending order from
IX address to IY address,

BUPS & H20;
EU format
BUP & H20;

BDNS & H20;
EU format
BDN & H20;

Seite 198

it is necessary to use IX>
IY setting.

Mnemonic Table - Block transfer / search instructions

Mnemonic Format | Function Flag Nucr:'lol::(rsof Description Example Format
NOP NOP PC<PC+1 [No 6 Just increment the NOP
(No Operation) change program counter (PC),

and nothing else.

CLT CLT TM &0 No 6 Set all timer (TM CLT
(Clear Timer) change register) counters to O.
Caution

During the last 1/65536
seconds of the 60th
second (when it
changes from 59 to 0),
the reset (clear 0) by
the CLT instruction does
not operate normally.
Therefore, in order to
perform the reset
operation reliably, it is
necessary to execute it
twice with a delay so as
to avoid the above
period.

[Example]

CLT; First execution
XRCM S 0, $ 0,8; Delay
processing

CLT; Second execution
(can be reset reliably by
the first or second CLT)

FST FST See No 6 Use the system clock FST
(Fast mode) explanation |change without dividing it.
(High-speed operation
mode) The

system normally
operates in high-speed

mode.
SLW SLW See No 6? Use the system clock SLW
(Slow mode) explanation |change divided by 1/16. (Low

Power mode)

Note that if you return
to the system while
executing the SLW
instruction (low speed
state), you will run out
of control.

The LCD port clock

e
Seite 199

OFF
(OFF)

TRP

(TRaP)

OFF

TRP

See APO bit

explanation | <& SW
bit
(APO bit
is
cleared
when
the
power is
turned
on)

See No
explanation |change

67

67

frequency is not
changed even in the
low-speed mode, and
the bus is confused
during LCD access.
BASIC seems to be able
to maintain the low-
speed mode unless LCD
access occurs. In the
PB-1000, when the
system interrupt
handling routine is
executed, it is
automatically reset to
high-speed mode.

Turn off the VDD power
supply of the internal
logic.

Executing this
command changes the
following register

values.

e PC=0

e IX,IY,1Z=0

e UA=0

e |A=0However,
KO1 pin (BRK
key input
signal) is
selected.

e IE=Bits0,1,5,
6, and 7 are
cleared to 0.

Only the following
interrupts are valid.

e Power ON
control by 1-
minute timer
(depending on
the state of bit
5 of the IB
register)

e Power on by
power switch
ON event.

Or, power is
turned on by
BRK key event

when SW is ON.

When the TRP
instruction (& HFF) is
fetched, the address

OFF

TRP

Seite 200

CANI
(CANCcel
Interrupt)

RTNI
(ReTurN from
Interrupt)

where the TRP
instruction is written is
saved in the SS stack,
and the process from
the fixed address (&
H6FFA for PB-1000) is
executed.

Execution returns from
the address following
the TRP instruction by
the RTN instruction.

CANI See No 67 Of the hardware CANI
explanation |change interrupt request
latches, the one with
the highest priority is

cleared.
RTNI See No 6 +3+5= |Return from interrupt RTNI
explanation |change |14? processing.

Store the contents of
the system stack (SS) in
the program counter
(PC), return to that
address, and add 2 to
the system stack (SS).
When this processing is
executed, the
corresponding interrupt
status flag in the IB
register (Bit4 to Bit0) is
cleared to zero.

Mnemonic Table - Multibyte transfer instruction (2 to 8 bytes) not disclosed

Mnemonic

LDM
(LoaD Multi-
byte register)

This instruction group expands the target register pair to 2 to 8 bytes by specifying operand
3 (operand 2 for PHUM, PHSM, PPUM, PPSM).

With this single command, data of up to 8 bytes (64 bits) can be transferred.

The number that can be specified for operand 3 (operand 2 for PHUM, PHSM, PPUM,
PPSM) is 1 to 8. However, if a value smaller than 2 (= 1) is set, execution will be 2. HD61 is
designed to output an error when 1 is specified.

Second, even when the specific index register SIR is used as an operand, neither the
instruction code nor the operation clock is reduced.

Format Function Flag LG Description Example Format
Clocks

LDM$ |oprli@ $SC5 No 3+3+11 Transfersthe contents |LDM SO, S 8,6;

c5,$ (IM3) ¢ change |+5 * (IM3- | of the main register The contents of §

cs5, opr2 @ $ C5 2)=17+5 | block starting from$C5 |8to$ 13 are

IM3[, |(IM3) *(IM3-2) | of operand 1, starting storedinS0to S

(JR) (JR: +3) from $ C5 of operand 1, |5.

LABEL] starting with $ C5 of LDM SO0, 58,6, IR

operand 2 and the LABEL; The

number of IM3 bytes contents of $ 8 to

s
Seite 201

specified by operand 3.
If the last operand has a
label, a relative jump is
made after the transfer.
(JR tag can be omitted)
For example, LDM $ 2, S

6,3
e $2¢56
o S$3¢&S7
e $4¢5S38
And works.

S 13 are stored in
$S0to$5. (jump
extension)

LDM S0, $ SX, 6;
Indirect
designation by
SIR

LDM S0, $ SX, 6,
JR LABEL; Indirect
specification by
SIR (jump
extension)

KC format

LDW S0, S 8 (6);
The contents of $
8to S 13 are
storedinS0to S
5.

LDW $ 0, $ 8 (6),
JR LABEL; The
contents of $ 8 to
S 13 are stored in
$S0to$5. (jump
extension)

LDW $ 0, $ SX (6);
Indirect
designation by
SIR

LDW $ 0, S SX (6),
JR LABEL; Indirect
specification by
SIR (jump
extension)

EU format

LDL SO, $ 8, L6;
The contents of $
8to S 13 are
storedinS0to S
5.

LDLS 0, $ 8, L6,
J.LABEL; The
contents of $ 8 to
S 13 are stored in
S0to S 5. (jump
extension)
LDLSO, #0, L6;
Indirect
designation by SR
LDLS O, #0, L6,
J.LABEL; Indirect
specification by
SR (jump
extension)

Seite 202

LDM
(LoaD Multi-
byte memory)

LDIM
(LoaD
Increment
Multi byte)

LDM S | SC5(IM3)

C5,(IR (< (Rt$
+$C5), C5)(IM3)
IM3 [,

(JR)

LABEL]

LDIM S | S C5(IM3)

C5,(IR | & (IR:A)

tA), (IM3)

IM3 IR IREA
+1M3

No
change

No
change

3+3+6+
3+5+3*
(IM3-2) =
20+3*
(IM3-2)
(JR: +3)

3+43+6+
3+5+3*
(IM3-2) =
20+3 *
(IM3-2)

Transfers the contents
of consecutive external
memory data for the
number of IM3 bytes
specified by operand 3
to the register block
starting at $ C5 of
operand 1, with (IR+$
C5) of operand 2 as the
start address.

For example, when IX =
& H7000,5$0=1,LDM S
2, (IX+$0), 3 performs
the following operation.

e $2¢ (&H7001
memory
contents)

e S$3& (&H7002
memory
contents)

e S4¢& (&H7003
memory
contents)

e X <& &H7000
(no change)

After storing the
contents of external
memory (IM3 byte)
starting from (IR £ A) in
the main register block
starting at $ C5, add IR
to £ Aand IM3.

A can be specified only
for $ C5 (including
indirect specification by

LDM SO, (IX+$
C5), IM3

LDM $0,(1Z+$
C5), IM3

LDM SO, (IX+$
SIR), IM3;
Indirect
designation by
SIR

LDM $0,(1Z+$
SIR), IM3;
Indirect
designation by
SIR

KC format

LDW SO, (IX£$
C5) (IM3)

LDW SO, (1IZ+$
C5) (IM3)

LDW SO, (IX£$
SIR) (IM3);
Indirect
designation by
SIR

LDW SO, (1IZ+$
SIR) (IM3);
Indirect
designation by
SIR

EU format
LDLSO, (IX£S
C5), IM3
LDLSO, (1Z£$
C5), IM3
LDLSO, (IX t #
0), IM3; Indirect
designation by SR
(#0-#2)

LDLS O, (1IZ £ #0),
IM3; Indirect
specification by
SR (#0-#2)

LDIM S 4, (IX+$
2),6

LDIM $ 4, (IX- S
SX), 6; Indirect
designation by
SIR

KC format

LDIW $ 4, (IX+$
2) (6)

Seite 203

LDDM
(LoaD
Decrement
Multi byte)

LDDM $
cs5, (IR
tA),
IM3

SC5(-IM3) | No

& (IRt A) change
(-IM3) IR ¢

IR £ A-(IM3-

1)

3+3+6+
3+3+43*
(IM3-2) =
18+ 3 *
(IM3-2)

SIR).

For example, when IX =
& H7000,$0=1, LDIM

$2,(IX+$0),3

performs the following

operation.

e $2<¢ (&H7001

memory
contents)

e $3<¢ (&H7002

memory
contents)

e S$4< (&H7003

memory
contents)

e IX<& & H7004
(last accessed

address + 1
enters)

After storing the

contents of external

memory (IM3 byte)

starting from (IR + A) of

operand 2 in main

register block $ C5to $
C5- (IM3-1) of operand
1, IR contains IR+ A

Substitute-(IM3-1).

A can be specified only

for $ C5 (including

indirect specification by

SIR).

Note that LDDM differs
from LDM and LDIM in

that the transfer

direction is the reverse
direction (decrement

direction).

For example, when IX =
& H7000,$0=1, LDDM

$3,(X+5$0),3

performs the following

operation.

e $3<¢ (&H7001

memory
contents)

e $2< (&H7000

memory
contents)

e $1¢ (&H6FFF

memory
contents)

LDIW $ 4, (IX- S
SX) (6); Indirect
designation by
SIR

EU format

LDILS 4, (IX+$
2), L6

LDIL S 4, (IX- # 0),
L6; Indirect
designation by SR

LDDM S 7, (IX+ S
2),6

LDDM $ 7, (1Z- $
SX), 6; Indirect
designation by
SIR

KC format
LDMW $ 7, (IX +
$2)(6)

LDMW $ 7, (1Z- S
SX) (6); Indirect
designation by
SIR

EU format
LDDLS 4, (IX+$
2),L6

LDDL S 4, (1Z- #
0), L6; Indirect
designation by SR

Seite 204

LDCM

(LoaD Check
Multi byte:
undisclosed
instruction)

LDCM $
C5,A,
IM3 [,
(JR)
LABEL |

No
Operation
(Do
nothing)

No
change

3+3+11
+5* (IM3-
2)=17+5
*(IM3-2)
(JR: +3)

e |X & & HEFFF
(Enter the last
accessed
address)

Operands are specified
in the same format as
the LDM instruction,
but nothing is actually
processed and only
instruction decoder
operation (operation to
advance the program
counter after
execution) is
performed.

Neither flag nor register
contents are changed.
(Delay processing is
possible like the NOP
instruction)

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, jump relative. (JR
tag can be omitted)

LDCM $ 4, S 2,6;
Register
specification
LDCM S 4, S SX,
6; Indirect
designation by
SIR

LDCM $ 2,$ 3,6,
LABEL; Register
specification +
Jump expansion
LDCM $ 4, S SX,
6, LABEL; Indirect
designation by
SIR +Jump
expansion

KC format
LDCW $ 4,52
(6); Register
specification
LDCW §$ 4, S SX
(6); Indirect
designation by
SIR

LDCW $2,53
(6), LABEL;
Register
specification +
Jump expansion
LDCW S 4, S SX
(6), LABEL;
Indirect
designation by
SIR +Jump
expansion

EU format
LDCLS 4,S 2, L6;
Register
specification
LDCLS 4, #0, L6;
Indirect
designation by
SIR

LDCLS 2,5 3, L6,
LABEL; Register
specification +
Jump expansion

Seite 205

STM
(STore Multi
byte memory)

STIM
(STore
Increment
Multi byte)

STM §
cs5, (IR
tA),
IM3

STIM $
cs5, (IR
tA),
IM3

$C5 (IM3)
S (IR£A)
(IM3)

S C5 (IM3)
- (IRt A)
(IM3)
IR&IREA
+IM3

No
change

No
change

3+3+6+
3+5+3*
(IM3-2) =
20+ 3 *
(IM3-2)

3+3+6+
3+5+3*
(IM3-2) =
20+3*
(IM3-2)

Stores the contents of
the main register block
(IM3 byte) starting from
S C5 of operand 1 to the
external memory at the
address specified by
operand 2.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

For example, when IX =
& H7000,$0=1,STM $
2, (IX+$0), 3 performs
the following

operations.

e $2->(memory
at & H7001)

e $3->(memory
at & H7002)

e S$4 - (memory
at & H7003)

e [X<& &H7000
(no change)

Stores the contents of
the main register block
(IM3 byte) starting from
S C5 of operand 1 to the
external memory at the
address specified by
operand 2.
After data transfer, IR +
A + M3 is assigned to
IR.
A can be specified only
for $ C5 (including
indirect specification by
SIR).
For example, when IX =
& H7000,$0=1,STIM
$2,(X+50),3
performs the following
operation.

e $2 - (memory

at & H7001)
e S$3 - (memory
at & H7002)

LDCLS 4, #0, L6,
LABEL; Indirect
designation by
SIR +Jump
expansion

STM S 4, (IX+$
2),6

STM $ 4, (1Z- $
SY), 6; Indirect
designation by
SIR

KC format
STWS4, (IX+S
2) (6)

STW S 4, (12-$
SY) (6); Indirect
designation by
SIR

EU format

STLS 4, (IX+S$2),
L6

STLS 4, (1Z-#1),
L6; Indirect
designation by SR

STIMS 4, (IX+$
2),6

STIM S 4, (1Z- S
SY), 6; Indirect
designation by
SIR

KC format

STIW S 4, (IX+$
2) (6)

STIW $ 4, (1IZ-$
SY) (6); Indirect
designation by
SIR

EU format

STILS 4, (IX+S
2), L6

STILS 4, (1Z- # 1),
L6; Indirect
designation by SR

Seite 206

e $4 - (memory
at & H7003)

o IX<& &H7004
(last accessed
address + 1)

STDM STDM S |SC5(-IM3) |No 3+3+6+ |Storethe contents of STDM S 4, (IX+S
(STore C5,(IR |>(IRtA) change |3 +3+3* |the main register block |2),6
Decrement tA), (-IM3) IR & (IM3-2) = | (IM3 byte) starting from |STDM $ 4, (1Z- $
Multi byte) IM3 IR £ A-(IM3- 18 +3 * S C5 of operand 1 in the |SY), 6; Indirect
1) (IM3-2) external memory with | designation by
(IR £ A) as the start SIR
address, and then KC format
assign IR £ A- (IM3-1)to |STMW S 4, (IX+ S
IR. 2) (6)

Note that the STDM STMW S 4, (I1Z-$
transfer direction is the | SY) (6); Indirect

reverse direction designation by
(decrement direction) |SIR

of STM and STIM. EU format

A can be specified only |STDLS 4, (IX+$
for $ C5 (including 2), L6

indirect specification by |STDLS 4, (1Z- #
SIR). 1), L6; Indirect

For example, when IX = | designation by SR
& H7000,$0=1,STDM

$2,(IX+$0),3

performs the following

operation.
e S$2- (memory
at & H7001)
e S$3-(&H7000
memory)
e S$4 - (memory
at & H6FFF
address)
e IX <& & HEFFF
(the last
address
accessed)
PPSM PPSM S |SC5(IM3) |No 3+3+6+ |SSisthestartaddress, |PPSMS 2,6
(PoP by cs5, & (SS) change |3 +5+3* |thecontents of the IM3 |KC format
System stack | IM3 (IM3) (IM3-2) = | byte external memory |PPSW S 2 (6)
pointer Multi SS & SS + 20+3* address block are EU format
byte) IM3 (IM3-2) stored in the main PPSLS 2, L6

register block of
operand 1, and IM3 is
added to SS.
For example, PPSM $
2,6 performs the
following operations.
e (SS)>S§2
e (SS+1)>S$3

e
Seite 207

PPUM

(PoP by User
stack pointer

Multi byte)

PHSM

(PusH System
stack pointer

Multi byte)

PHUM
(PusH User

stack pointer

Multi byte)

PPUM S
c5,
IM3

PHSM $
G,
IM3

PHUM
5C5,
IM3

$ C5 (IM3)
& (US)
(IM3)

US < US +
IM3

S C5 (-IM3)
- (55-1) (-
IM3)

SS & SS-
IM3

$ C5 (-IM3)
- (US-1) (-
IM3)

US & US-
IM3

No
change

No
change

No
change

3+3+6+
3+5+3*
(IM3-2) =
20+ 3 *
(IM3-2)

3+3+6+
3+3+3*
(IM3-2) =
18+3*
(IM3-2)

3+3+6+
3+3+3*
(IM3-2) =
18+ 3 *
(IM3-2)

o (SS+2)>%4
o (SS+3)>$5
o (SS+4)>%6
o (SS+5)>%7
e SS&SS5+6

Stores the contents of
the IM3 byte external
memory address block
in the main register
block of operand 1 and
adds IM3 to US.
For example, PPUM $
2,6 has the following
behavior.
e (US)>$2
e (US+1)>S$3
e (US+2)>S$4
e (US+3)>S5
e (US+4)>5S6
e (US+5)>S87
e US<KUS+6

Saves the contents of
the main register block
of operand 1 to the
external memory whose
address is SS-1 to SS-
IM3 (push).

At this time, the
transfer direction of the
main register and SS is
the descending order
(decrement) direction.
After saving the data, SS
is subtracted by IM3.
For example, PHSM $
7,6 operates as follows.

o $7->(S5-1)
e $6-(S5-2)
e $5->(SS-3)
o $4-5(S5-4)
e $3-5(SS-5)
o $2->(S5-6)
e SS&SS-6

The contents of the
main register block of
operand 1 are saved to
the external memory
whose addresses are
US-1 to US-IM3 (push).
At this time, the
transfer direction of the

PPUM $ 2,6
KC format
PPUW $ 2 (6)
EU format
PPULS 2, L6

PHSM $ 7,6
KC format
PHSW $ 7 (6)
EU format
PHSLS 2, L6

PHUM $ 7,6
KC format
PHUW $ 7 (6)
EU format
PHULS 2, L6

Seite 208

STLM STLM §
(STore Lcd c5,
data port IM3
Multi byte:

undisclosed

instruction)

LDLM LDLM §
(LoaD Lcd data | C5,
port Multi IM3
byte:

undisclosed

instruction)

S C5 (IM3)
— LCD data
port

S C5 (IM3)
& LCD data
port

No
change

No
change

3+3+22
+8 * (IM3-
2)=28+3
*(IM3-2)

3+3+22
+8 * (IM3-
2)=28+3
*(IM3-2)

main register and US is
the decrement
direction.

After saving the data,
US subtracts IM3.

For example, PHUM $
7,6 performs the
following operations.

e S7-(US1)
e S6-(US-2)
e S$5-(US-3)
e $4->(US-4)
e S$3-(US-5)
e $2->(US-6)
o US<& US-6

Operand $ C5to0 S C5 +
(IM3-1) are output to
the LCD data area.
Output is performed in
order of 8 bits.

Assign the value of the
LCD data port to S C5 to
S C5 + (IM3-1) of
operand 1 according to
the transfer protocol
set in advance in LCDC.
Reading is performed in
4-bit units, so when the
graphic data on the
screen is read, the
upper and lower bits
are switched in 4-bit
units.

(Depending on the data

transfer protocol

settings, the read value
can be output directly
to the LCD.) The
reading procedure is as
follows.

(1) Specify drawing
mode (anything)
and LCD coordinate
position to LCDC.
(STLM after PPO &
HDF)

(2) Set read command
(& HE1) to LCDC.
(STL & HE1 after
PPO & hDF)

STLM $ 2,6
KC format
STLW $ 2 (6)
EU format
OCBLS$ 2,6

LDLM $ 2,6
KC format
LDLW S 2 (6)
EU format
ICBL S 2,6

Seite 209

(3) Execute LDLM with
data RAM specified.
(LDLM after PPO &

HDE)
PPOM PPOM S |$C5(IM3) |No 3+3+11 | Outputsthe contents of |PPOM S 2,6
(Put Icd c5, - LCD change |+8 * (IM3- |operand 1 main KC format
control POrt M3 control Port 2)=17+8 |registersSC5toSC5+ |PPOW S 2 (6)
Multi byte: *(IM3-2)? | (IM3-1) to the LCD EU format
undisclosed control port. PCBLS 2,6
instruction) Output is performed in

order of 8 bits.

PSRM PSRM SIR<SC5 |[No 3+3+11 |The contents of PSRM SX, S 2,
(Put Specific SIR,S (IM3) change =17 operand S 2 registers S | IM3
index Register |C5, C5to $ C5 + (IM3-1) are |KC format
Multi byte) IM3 stored in the SIR PSRW SX, $ 2
specific index register. | (IM3)
Since the data is EU format

overwritten and as a PRAL#0O,S 2,
result the contents of $ | IM3
(C5 + (IM3-1)) are

written to the SIR, this
instruction is essentially
unnecessary.

SIR = SX, SY, SZ

For example, when

PSRM SX, $ 2,3 is

executed with$2=0, S
3=21,$4=2,$(2+3-1)

=S 4 =2 Assigned.

Refer to PSR and PSRW

for

precautions when using

this instruction .

Mnemonic Table - Multi-byte arithmetic operation instruction (2 to 8 bytes) not
disclosed

This instruction group expands the target register pair to 2 to 8 bytes by specifying operand
3 (INVM and CMPM are operand 2).

Arithmetic operations up to 8 bytes (64 bits) can be performed with this single instruction.
Strictly speaking, INVM and CMPM are classified into shift instructions, but they are
explained here because they are easier to understand with arithmetic instructions.

The number that can be specified for operand 3 (operand 2 for INVM and CMPM) is 1 to 8,
but if a value smaller than 2 (= 1) is set, execution will be 2. HD61 is designed to output an
error when 1 is specified.

Second, even when the specific index register SIR is used as an operand, neither the
instruction code nor the operation clock is reduced.

The flag behavior seems to be as follows, but it is unknown whether this is accurate.

Z :0 if all bits are 0 as a result of operation.

C :1 when there is a carry or borrow from the most significant bit (MSB).

LZ :0when the lowest 4 bits of the lowest 8 bits are 0.

e
Seite 210

Mnemonic

INVM
(INVert Multi
byte)

CMPM
(CoMPlement
Multi byte)

ADBM
(ADd Bcd
Multi byte)

UZ :0when the upper 4 bits of the most significant 8 bits are 0.

Format @ Function Flag
INVM S ($C5(IM3) |z,C=1,
c5, & NOT (S Lz, Uz
IM3 |, C5 (IM3)) change
(R)

LABEL]

CMPM |$C5(IM3) |Z,C, Lz,
sC5, & NOT (S uz
IM3[, |C5(IM3))+ |change
(JR) 1

LABEL |

ADBM $ $C5(IM3) |Z,C, Lz,
C5,A, &SG5S uz

IM3 |, (IM3) + A change
(R) (IM3) (BCD

LABEL] |calculation)

Number of

Clocks

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

Description

The contents of the
main register block
(IM3 byte) specified by
operand 1 are bit-
inverted (1's
complement).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

The contents of the
main register block
(IM3 byte) specified by
operand 1 are bit-
inverted + 1 (2's
complement).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

BCD adds the IM3 byte
length S C5 register
block of operand 1 and
the IM3 byte length A
register block specified
by operand 2 and stores
the result in the A
block.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

Example Format

INVM S 2,6
INVM S 2,6,
LABEL; Jump
expansion
KC format
INVW $ 2 (6)
INVW $ 2 (6), JR
LABEL; Jump
expansion
EU format
INVLS 2, L6
INVLS 2, L6,
LABEL; Jump
expansion

CMPM S 2,6
CMPM $ 2,6,
LABEL; Jump
expansion

KC format
CMPW $ 2 (6)
CMPW $ 2 (6), JR
LABEL; Jump
expansion

EU format
CMPLS 2, L6
CMPLS 2, L6,
LABEL; Jump
expansion

ADBM $ 8, $0,6;
Main registers
ADBM $ 8, S SZ,
6, LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

KC format
ADBW S$8,50
(6); Main
registers
ADBW $ 8,5 SZ
(6), LABEL;
Indirect
specification
with main

Seite 211

ADBM
(ADd Bcd
immediate
Multi byte)

ADBCM
(ADd Bcd
Check Multi
byte)

ADBM $ | $ C5 (IM3)

cs,
IM5 ,
IM3 |,
(JR)
LABEL |

ADBCM
SC5,A
,IM3 |,
(R)

LABEL

ZC, Lz,
& S$C5 uz
(IM3) + IM5 | change
(BCD

calculation)

SC5(IM3)+ |Z,C, Lz,

A (IM3) uz
(BCD change
operation)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

BCD adds the contents
of the main register
block (IM3 byte)
starting from $ C5 of
operand 1 and the 5-bit
value of operand 2 and
stores the result in the
$ C5 block.

Operand 2 can specify a
BCD value from 0 to 31.
The calculation method
of the BCD immediate
value IM5 specified by
operand 2 is Bit4 * &
H10 + HextoBCD (Bit3
to Bit0).

For example, if IM5 = &
H1A, the number to be
addedis 1 * & H1I0+ &
H10 (& 10 is expressed
as a hexadecimal BCD) =
& H20, and & H20 is
BCD added to the main
register $ C5 (IM3) .

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

BCD adds the IM3 byte
length S C5 register
block of operand 1 and
the IM3 byte length A
register block specified
by operand 2, but does
not store the result
anywhere.

A can be specified only
for $ C5 (including

register + SIR
(with Jump
extension)

EU format
ADBLS$ 8,50, L6;
Main registers
ADBLS 8, #2, L6,
J.LABEL; main
register +
indirect
specification
with SR (with
Jump extension)

ADBM $ 4, &
H1F, 6; Main
register + IM5 (In
the example,
add1* & H10 +
HextoBCD (& HF)
= & H25)

ADBM $ 4,15,6,
LABEL; Jump
expansion

KC format
ADBW S 4, &
H1F (6); Main
register + IM5
ADBW S 4,15 (6),
JR LABEL; Jump
expansion

EU format

ADBL $ 4, & H1F,
L6; Main register
+ IM5

ADBL $ 4,15, L6,
J.LABEL; Jump
expansion

ADBCM $ 8, S
0,6; Main
registers

ADBCM $ 8, $ SZ,
6, LABEL;
Indirect
designation by
main register +
SIR (with Jump
extension)

Seite 212

SBBM
(SuB Bcd Multi
byte)

SBBM $
C5,A,
IM3 [,
(JR)
LABEL |

S C5 (IM3)
&S$C5
(IM3) -A
(IM3) (BCD
operation)

Z,C Lz
uz
change

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

BCD subtracts the IM3
byte-length A register
block specified by
operand 2 from the IM3
byte-length $ C5
register block of
operand 1 and stores
the result in the A
block.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

KC format
ADBCW $8,50
(6); Main
registers
ADBCW $ 8, S SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
ADBCLS$ 8,50,
L6; Main
registers

ADBCL S 8, #2,
L6, J.LABEL; main
register +
indirect
specification
with SR (with
Jump extension)

SBBM $ 8, S 0,6;
Main registers
SBBM S 8, S SZ,
6, LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

KC format
SBBW S$8,50
(6); Main
registers

SBBW $ 8,$SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
SBBLS$ 8,50, L6;
Main registers
SBBLS 8, #2, L6,
J.LABEL; Main
register + SR
indirect

Seite 213

SBBM

(SuB Bcd
immediate
Multi byte)

SBBCM
(SuB Bcd
Check Multi
byte)

SBBM $
cs5,
IM5
IM3 [,
(JR)
LABEL |

SBBCM
$C5,A
,IM3 |,
(JR)

LABEL |

$ C5 (IM3)
& SC5
(IM3) -IM5
(BCD
calculation)

$C5 (IM3) -
A (IM3)
(BCD
operation)

Z,C, Lz,
uz
change

ZC, Lz,
uz
change

3+3+11
+5* (IM-
2)=17+5
* (IM3-2)

(JR: +3)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

BCD adds the 5-bit

value of operand 2 from

the contents of the
main register block

(IM3 byte) starting from

S C5 of operand 1 and
stores the result in the

S C5 block.

Operand 2 can specify a
BCD value from 0 to 31.
The calculation method

of the BCD immediate
value IM5 specified by
operand 2 is Bit4 * &

H10 + HextoBCD (Bit3

to Bit0).

For example, if IM5 = &

H1A, the number to be
addedis1* & H10 + &

H10 (& 10 is expressed

as a hexadecimal BCD)
& H20, and & H20 is
BCD added to the main
register S C5 (IM3) .

If the last operand has a

label, a relative jump is

made after the

operation. (JR tag can

be omitted)

BCD subtracts the IM3
byte length A register

block specified by

operand 2 from the IM3

byte length S C5
register block of

operand 1, but does not

store the result
anywhere.

A can be specified only

for $ C5 (including

indirect specification by

SIR).

If the last operand has a

label, a relative jump is

made after the

operation. (JR tag can

be omitted)

specification
(with Jump
extension)

SBBM $ 4, &
H1F, 6; Main
register + IM5 (In
the example, 1 *
& H10 +
HextoBCD (& HF)
=& H25is
subtracted)
SBBM $ 4,15,6,
LABEL; Jump
expansion

KC format

SBBW $ 4, & H1F
(6); Main register
+ IM5

SBBW $ 4,15 (6),
JR LABEL; Jump
expansion

EU format

SBBL S 4, & H1F,
L6; Main register
+ IM5

SBBL S 4,15, L6,
J.LABEL; Jump
expansion

SBBCM $ 8, S
0,6; Main
registers

SBBCM $ 8,5 57,
6, LABEL;
Indirect
designation with
main register +
SIR (with Jump
extension)

KC format
SBBCW $8,50
(6); Main
registers
SBBCW $ 8, $SZ
(6), LABEL;
Indirect
specification
with main
register + SIR

Seite 214

ANM
(ANd Multi
byte)

ANCM
(ANd Check
Multi byte)

ANM $
C5,A,
IM3 [,
(UR)
LABEL |

S C5 (IM3)
& S$C5
(IM3) and A
(IM3)

ANCM $ | S C5 (IM3)

C5,A,
IM3 [,
(UR)
LABEL |

and A (IM3)

Z,C=0,
Lz, Uz
change

Z,C=0,
Lz, Uz
change

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

3+3+11
+5 * (IM-
2)=17+5
*(IM3-2)

(JR: +3)

The AND of the
contents of the $ C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes) is taken, and the
result is stored in the $
C5 block.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

ANDs the contents of
the $ C5 block of
operand 1 and the
contents of the A block
of operand 2 (both A
and B are IM3 bytes),
but does not store the
result anywhere.

A can be specified only

(with Jump
extension)

EU format
SBBCLS 8, S0,
L6; Main
registers
SBBCLS 8, #2,
L6, J.LABEL; main
register +
indirect
specification
with SR (with
Jump extension)

ANM $ 8,5 0,6;
Main registers
ANM $ 8,552, 6,
LABEL; Main
register +
Indirect
specification
with SIR (with
Jump extension)
KC format

ANW $ 8,50 (6);
Main registers
ANW $ 8,5 SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
ANLS 8,50, L6;
Main registers
ANLS 8, #2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

ANCM $ 8,5 0,6;
Main registers
ANCM $ 8,5 SZ,
6, LABEL;
Indirect
designation by
main register +
SIR (with Jump
extension)

Seite 215

NAM
(NAnd Multi
byte)

NAM $
C5,A,
IM3 [,
(JR)
LABEL |

$C5 (IM3)
& SC5
(IM3) nand
A (IM3)

Z,C=1,
Lz, Uz
change

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

for $ C5 (including
indirect specification by
SIR).

However, the flag
changes.

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

NAND the contents of
the $ C5 block of
operand 1 and the
contents of the A block
of operand 2 (both A
and B are IM3 bytes),
and store the result in
the $ C5 block.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

KC format
ANCW $ 8,50
(6); Main
registers

ANCW $ 8,5 SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
ANCLS$ 8,50, L6;
Main registers
ANCL S 8, #2, L6,
J.LABEL; Indirect
specification
with main
register + SR
(with Jump
extension)

NAM $ 8, $0,6;
Main registers
NAM $ 8, $ SZ, 6,
LABEL; Indirect
specification
with main
register + SIR
(with Jump
extension)

KC format
NAW S 8,$ 0 (6);
Main registers
NAW $ 8, $ SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
NALS 8,S$0, L6;
Main registers
NAL S 8, # 2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

Seite 216

NACM
(NAnd Check
Multi byte)

ORM
(OR Multi
byte)

NACM S | S C5 (IM3)

C5,A,
IM3 [,
(UR)
LABEL |

ORM $
C5,A,
IM3 [,
(UR)
LABEL |

nand A
(ImM3)

S C5 (IM3)
& SC5
(IM3) or A
(ImM3)

Z,C=1,
Lz, Uz
change

Z,C=1,
Lz, Uz
change

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

NAND the contents of
the $ C5 block of
operand 1 and the
contents of the A block
of operand 2 (both A
and B are IM3 bytes),
but do not store the
result anywhere.
However, the flag
changes.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

Performs a logical OR
operation on the
contents of operand 1's
$ C5 block and operand
2's A block (both A and
B are IM3 bytes) and
stores the result in the
S C5 block.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

NACM $ 8,5 0,6;
Main registers
NACM S 8, S SZ,
6, LABEL;
Indirect
designation by
main register +
SIR (with Jump
extension)

KC format
NACW S$ 8,50
(6); Main
registers

NACW $ 8,5 SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
NACLS 8, S0, L6;
Main registers
NACLS 8, # 2, L6,
J.LABEL; Indirect
specification
with main
register + SR
(with Jump
extension)

ORM $8,50,6;
Main registers
ORM $ 8,552, 6,
LABEL; Indirect
specification
with main
register + SIR
(with Jump
extension)

KC format
ORW S$ 8,50 (6);
Main registers
ORW S 8,557
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format

Seite 217

ORCM
(OR Check
Multi byte)

XRM
(eXclusive oR
Multi byte)

ORCM $ | $ C5 (IM3)

C5,A,
IM3 |,
(JR)
LABEL |

XRM $
C5,A,
IM3 [,
(R)
LABEL

or A (IM3)

S C5 (IM3)
< S$C5
(IM3) xor A
(IM3)

Z,C=1,
LZ, Uz
change

Z,C=0,
LZ, Uz
change

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

Performs a logical OR
(OR) operation on the
contents of the $ C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes), but the result is
not stored anywhere.
However, the flag
changes.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

Performs an XOR
operation on the
contents of the S C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes), and stores the
result in the S C5 block.
A can be specified only

ORLS$ 8,50, L6;
Main registers
ORLS 8, #2, L6,
J.LABEL; Main
register +
Indirect
specification
with SR (Jump
extension
available)

ORCM $ 8,5 0,6;
Main registers
ORCM $ 8,557,
6, LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

KC format
ORCW $8,50
(6); Main
registers

ORCW $ 8,557
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
ORCLS$ 8,50, L6;
Main registers
ORCLS 8, #2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

XRM $ 8, S 0,6;
Main registers
XRM $ 8,557, 6,
LABEL; Indirect
specification
with main
register + SIR
(with Jump
extension)

KC format

Seite 218

XRCM
(eXclusive oR
Check Multi
byte)

XRCM $ | $ C5 (IM3)

C5,A,
IM3 [,
(JR)
LABEL |

xor A (IM3)

Z,C=0,
Lz, Uz
change

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

(JR: +3)

for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

Performs an XOR
operation on the
contents of the S C5
block of operand 1 and
the contents of the A
block of operand 2
(both A and B are IM3
bytes), but the result is
not stored anywhere.
However, the flag
changes.

A can be specified only
for $ C5 (including
indirect specification by
SIR).

If the last operand has a
label, a relative jump is
made after the
operation. (JR tag can
be omitted)

XRW $ 8, S0 (6);
Main registers
XRW S 8,5 SZ
(6), LABEL;
Indirect
specification
with main
register + SIR
(with Jump
extension)

EU format
XRLS 8,50, L6;
Main registers
XRLS 8, #2, L6,
J.LABEL; Indirect
specification
with main
register + SR
(with Jump
extension)

XRCM $ 8,$0,6;
Main registers
XRCM $ 8, $ SZ,
6, LABEL; Main
register + SIR
indirect
specification
(with Jump
extension)

KC format
XRCW S 8,50
(6); Main
registers

XRCW $ 8, $ SZ
(6), LABEL; Main
register + SIR
indirect
specification
(with Jump
extension)

EU format
XRCLS$ 8,50, L6;
Main registers
XRCLS 8, #2, L6,
J.LABEL; Main
register + SR
indirect
specification
(with Jump
extension)

Seite 219

Mnemonic Table - Multibyte shift instruction (2 to 8 bytes) not disclosed

Mnemonic

DIUM
(Digit Up Multi
byte)

DIDM
(Digit Down
Multi byte)

BYUM
(BYte Multi
byte)

BYDM
(BYte Multi
byte)

This instruction group expands the target register pair to 2 to 8 bytes by specifying operand
2. This single instruction can shift up to 8 bytes (64 bits), and only DIUM, DIDM, BYUM, and

BYDM are available.

The bit shift system (BIUM, BIDM) and the rotate system (ROUM, RODM) are not prepared,
and BUP and BDN are assigned to the instruction code to which they should have been

assigned.

Format Function
DIUM S |See figure
C5,
M3

DIDM § |See figure
c5,
M3

BYUM S |See figure
c5,
M3

BYDM § |See figure
c5,
M3

Flag

Z,C=0,
LZ=0,
Uz
changes

Z,C=0,
LZ, Uz =

change

Z,C=0,
Lz=0,
uz
changes

Z,C=0,
Lz, UzZ=

change

Number of
Clocks

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

3+3+11
+5* (IM-
2)=17+5
*(IM3-2)

Description

The contents of the
register block $ C5to $
(C5 + (IM3-1)) starting
with the main register
number specified by
operand 1 are increased
4 bits to the left, and 0
is placed in the lowest 4
bits.

The contents of the
register blocks S C5to S
(C5- (IM3-1)) starting
with the main register
number specified by
operand 1 are lowered
4 bits to the right, and 0
is entered in the most
significant 4 bits.

The contents of the
register block $ C5to $
(C5 + (IM3-1)) starting
with the main register
number specified by
operand 1 are increased
8 bits to the left, and all
Os are entered in the
least significant byte.

The contents of the
register block $ C5to $
(C5- (IM3-1)) starting
with the main register
number specified by
operand 1 are down 8
bits to the right, and O is
placed in the most
significant byte.

Example Format

DIUM S 2,6; The
register block is
S2to S 7 (6byte
ascending
order).

KC format
DIUW S 2 (6)

EU format
DIULS 2, L6

DIDM S 7,6;
Register block is
$7to$ 2 (6byte
descending
order).

KC format
DIDW S 7 (6)

EU format
DIDLS 7, L6

BYUM $ 2,6; The
register block is
$2toS7(in
ascending order
of 6 bytes).

KC format
BYUW $ 2 (6)

EU format
BYULS 2, L6

BYDM S 7,6; The
register block is
$7to$ 2 (6byte
descending
order).

KC format
BYDW $ 7 (6)

EU format
BYDLS 7, L6

Seite 220

7-5 Instruction set Table

e HD61700.PDF: HD61700 Instruction Set Table
e HD61700.PDF: HD61700 Instruction Set Table (Open in a new window)

7-6 Appendix

Output Format and Loader

This section describes the BAS format, PBF format, QL format and their loaders that the HD61 cross
assembler outputs as default (no option), / p, and / g, respectively.
For the sake of easy understanding, the list in Table 6-1 will be given in a file output in each format.

Table 6-1. Sample list
HD61700 ASSEMBLER Rev 0.41-ASSEMBLY LIST OF [quick-loader.s]

0001: 0000 ;

0002: 0000 ; quick-loader.s

0003: 0000 ; relocatble quick loader for FX-870P / VX-4

0004: 0000 ;

0005: 0000

0006: 0000 CGRAM: EQU & H153C ; address of DEFCHR $ ()
0007: 0000 LEDTP: EQU & H123C ; address of LCD dot matrix
0008: 0000

0009: 153C ORG CGRAM

0010: 153C START CGRAM

0011: 153C

0012: 153C D6403C12 PRE 1Z, LEDTP

0013: 1540 D6003C15 PRE IX, CGRAM

0014: 1544 D6205315 PRE 1Y, CGRAM + 23

0015: 1548 D8 BUP ; BlockUP

0016: 1549 566054 PST UA, & H54

0017: 154C F7 RTN

0018: 154D ; end of program

BAS Format

The BAS format files listed in Table 6-1 are shown in Table 6-2. As can be easily understood from
Table 6-1 and Table 6-2, the BAS format is as follows.

e Atextfile to be included in a BASIC program.

e The first line of data consists of the machine language file name, machine language start address,
machine language end address, and machine language execution address from the beginning.

e The second and subsequent lines are machine language data, and each line consists of a string
consisting of 8 bytes expressed in hexadecimal notation and two pieces of data, the least significant
byte of the 8-byte checksum. If the last line is less than 8 bytes, no extra data is added at the end.

BAS Format Files in Table
999 DATA QUICK-LOADER.EXE, & H153C, & H154C, & H153C

e
Seite 221

1000 DATA D6403C12D6003C15,8B
1001 DATA D6205315D8566054,40
1002 DATA F7, F7

Writing a machine language prepared as data in the DATA statement in this way with a POKE statement is
common in pocket computers, especially when there is no way to read a machine language such as BLOAD
from an external device. This is the basis of how words are placed in memory. When stored as a DATA
statement, a 1-byte code requires 2 bytes even in hexadecimal format, which is not good in terms of the use
efficiency of the pocket computer memory. However, usability is generally good due to a device such as a
loader.

A loader called Trans.b is attached to the HD61 cross assembler, and the list is shown in Table 6-3.

Table 6-3. Trans.b (loader for BAS format; for PB-1000 / C, Al-1000)
"*** ASC2BIN for PB-1000 / C, Al-1000 ***

10 CLEAR: READF S, ST, ED, EX: A=ST: ED=ED + 1: L = 1000
20READAS,S55:5=0

30 FORI=1TOLEN (AS) STEP2

40D =VAL("& H"+MID S (A S, 1, 2)): POKE A, D
50S=S+D:A=A+1: NEXT

60 IF RIGHT S (HEX S (S), 2) <> S $ THEN BEEP: PRINT "SUM ERROR: LINE ="; L: END
70IFA<EDTHENL=L+1: GOTO 20

80 IF EX <> 0 THEN BSAVE F S, ST, ED-ST, EX ELSE BSAVE F S, ST, ED-ST
90 BEEP1: PRINT "FILE CREATED": END

Trans.b is for PB-1000 / C and AI-1000 and saved as a binary file using BSAVE at line number 80, but FX-870P /
VX-4 / VX-3 There is no BSAVE instruction. Therefore, to use Trans.b on FX-870P / VX-4 / VX-3, it is necessary
to comment or delete line number 80.

Line number 60 checks whether the data in each DATA statement is correct using checksum data. This helped
to make it easier to find typographical errors during program execution in an era when the Internet and
personal computer communications were not common and you had to manually enter the program published
in the magazine. Therefore, the checksum is basically useless in the present age when the network has
developed and it is no longer necessary to input another person's machine code.

PBF format

PBF format files listed in Table 6-1 are shown in Table 6-4. Although there are parts that cannot be understood
from Table 6-1 and Table 6-4, the PBF format is as follows.
e Atextfile to send to a pocket computer from a personal computer.
e The first line of data consists of the machine language file name, machine language start address,
machine language end address, and machine language execution address from the beginning.
e The second and subsequent lines are machine language data, consisting of a string of characters
expressed in hexadecimal notation at every 120 bytes from the start address and two pieces of
checksum for each data. If the last line is less than 120 bytes, no extra data is added at the end.

Table 6-4. PBF format file in Table 6-1

QUICK-LOADER.EXE, 5436,5452,5436
D6403C12D6003C15D6205315D8566054F7,1730

The PBF format is a text file of a machine language program used for software distribution on the home page
of CASIO PB-1000 FOREVER by Jun Amano. This file is transferred from the personal computer to the pocket
computer via RS-232C, loaded as a machine language code into the memory, and then filed on the pocket
computer side. At that time, a PBF file reception program is required on the pocket computer side.

e
Seite 222

A loader for FX-870P / VX-4 / VX-3 called TransVX.b is attached to the HD61 cross assembler. The list is shown
in Table 6-5.

Table 6-5. TransVX.b (loader for PBF format; for FX-870P / VX-4 / VX-3)
'PbfToBinVX.BAS (c) JUN AMANO / BLUE

10 CLS: CLEAR: OPEN "COMO:" FORINPUT AS # 1

20 INPUT #1, F S, ST, ED, EX: AD = ST: BEEP

30 PRINT "Converting:"; F $: PRINT "Start:"; HEX S (ST); "H End:"; HEX $ (ED); "H"
40 INPUT#1,AS$,S:SUM =0

50 FOR I =1 TO LEN (A $) STEP2

60 A=VAL("& H'+MID$ (A S, 1, 2))

70 POKE AD, A: SUM =SUM + A: AD = AD + 1: NEXT

80 IF S <>SUM THEN PRINT "SUM ERROR": BEEP: CLOSE: END

90 IF ED> AD THEN GOTO 40

100 CLOSE: PRINT "Completed!": BEEP1

110 IF EX <> 0 THEN PRINT "Execute MODE110 ("; EX; ")";

Note that the setting value of F.COM is used for the communication parameter of TransVX.b. When changing
the setting, modify the file descriptor "COMO:" part of line number 10 . In addition, TransVX.b (for FX-870P /
VX-4 / VX-3) attached to HD61 is written in BASIC only from the viewpoint of portability, but the version
accelerated in machine language is Jun Amano. Published on his website "CASIO PB-1000 Forever!" The URL is
http://homepage3.nifty.com/Isigame/pb-1000/softlib/pbsoftl.htm

The machine language data is divided in units of 120 bytes when reading data into A . This may be due to the
BASIC limit of 255 characters.

QL Format

QL format files listed in Table 6-1 are shown in Table 6-6. As can be understood from Table 6-1 and Table 6-6,
the QL format is as follows.

e Atextfile to be included in a BASIC program.

e The data of the first line is the machine language start address, machine language end address,
machine language execution address from the beginning.

e The second and subsequent lines are machine language data, and four character strings expressed in
hexadecimal notation every 6 bytes from the start address are stored in one line, and 24 bytes are
stored in one line. If the last line is less than 24 bytes, add 0 to the shortage to make it 24 bytes.

Table 6-6. QL format files in Table 6-1

1000 DATA 5436,5452,5436
1001 DATA D6403C12D600,3C15D6205315, D8566054F700,000000000000

The QL format is a data format for use with a quick loader that is about 10 times faster than loading
machine language into memory in BAS format.

The quick loader was devised by Mr. Ao, the creator of HD61.

In the HD61 cross assembler, there is no detailed explanation about the QL format, and no loader is attached,
but the list of the quick loader used in the programs that can be downloaded with "CASIO PB-1000 FOREVER!"
And "HD61700 SPIRITS" Is shown in Table 6-7.

Table 6-7. Quick loader example (QL type loader; FX-870P / VX-4)

5 'Expanded CLEAR 0.04 for VX-4 / FX-870P 2003 BLUE

100 GOSUB900: BEEP1: PRINT "MODE110 (& H"; HEX S (EX); ")" ;: END
900 'Machine Code Loader (FX-870P / VX-4)

910 RESTORE1000: READ ST, ED, EX: C=INT ((ED-ST) / 24)

e
Seite 223

920 DEFCHR $ (252) = "D6403C12D600": DEFCHR $ (253) = "3C15D6205315"

930 DEFCHR $ (254) = "D8566054F700": MODE110 (& H153C)

940 FORI=0TO C:READA S, BS,CS, DS

950 DEFCHR $ (252) = A $: DEFCHR $ (253) = B $: DEFCHR $ (254) = C $: DEFCHR $ (255)=D $
960 POKE & H123E, (ST MOD 256): POKE & H123F, INT (ST / 256)

970 IF (ED-ST) <24 THEN POKE & H1246, & H3C + (ED-ST)

980 MODE110 (& H123C): ST = ST + 24: NEXT: CLS: RETURN

Table 6-5 shows the loader part of the extended CLEAR that secures the machine language area in the memory
with FX-870P / VX-4 that can be downloaded with "CASIO PB-1000 FOREVER!" .
Quick loader

e Load machine language data to the CGRAM in the system area at high speed with the DEFCHR $
instruction .

e The machine language loader loads the machine language (up to 24 bytes) into CGRAM to the target
address at high speed.

High speed is realized by this method.

In the case of BAS format, the 1-byte data fetched with "D =VAL (" & H"+ MID $ (A S, |, 2))" as shown in Table
6-3, line number 60 is "POKE AD, The process of writing to memory with D "is to extract the byte data
character string from the character string, digitize it, convert the BCD floating point data of the numeric
variables AD, D to the integer type with the POKE statement, and then write to the memory. The work to write
to is done inside the BASIC system, and is more complicated than the program has seen, making it inefficient.
On the other hand, the quick loader shown in Table 6-5 uses a system area as a relay point for memory
transfer, but is a ROM routine that is optimized for 6 bytes x 4 = 24 bytes in the DEFCHR S statements of line
numbers 920, 930, and 950. After the transfer, the transfer destination address is rewritten with the line
number 960, and the machine language transfer routine performs the transfer to the target address,
minimizing unnecessary character string manipulation and numerical conversion, and speeding up. It has been
realized.

In fact, even in the BAS format, do not perform "D =VAL (" & H"+MID $ (A S, |, 2))", store once in CGRAM in
the system area with DEFCHR S, and then transfer with PEEK, POKE It has been confirmed that the speed can
be increased by about 35% just by using the method.

The list in Table 6-1 is the source equivalent of the machine language transfer routine, and it can be confirmed
that they match by comparing line numbers 920 and 930 in Table 6-6 and Table 6-7. . The behavior is

e After specifying the transfer source start address and end address (CGRAM 24 bytes) and transfer
destination (system area LEDTP) with IX, IY, IZ,
e Use block transfer instruction BUP to transfer 24 bytes of data and return

Perform the operation. This action transfers its own code to the LEDTP in the system area. As can be seen from
Table 6-1, since the absolute jump instruction is not used, this machine language transfer routine is relocatable
and can be executed at the transfer destination. Therefore, a routine for high-speed transfer from CGRAM to
an arbitrary address is realized by rewriting the I1Z transfer destination address with a POKE statement such as
line number 960.

Although the quick loader in Table 6-7 is compact, it is difficult for humans to read for the first time, and it is
not easy to modify the program. Table 6-8 shows quick loaders with improved readability, operability, and
portability.

Table 6-8. Quick loader Example (QL loader; FX-870P / VX-4)

90 'quick-loader rewritten for readability, usability and portability

100 CLS: GOSUB 850: MODE110 (EX): END

110"

840 'Quick Loader (FX-870P / VX-4)

845 'LDAD + 2,3: destination addr; LDAD + 6,7: source start addr; LDAD + 10,11: source end addr

e
Seite 224

850 CGRAM = & H153C: LDAD = & H1A3C: 'addr of DEFCHR $ () and Mac-loader (in SAVE / LOAD buffer)
855 DEFCHR $ (252) = "D6403C1AD600": DEFCHR $ (253) = "3C15D6205315": DEFCHR $ (254) =
"D8566054F700"

860 MODE110 (CGRAM): 'relocatable mac-loader is transfered to LDAD by itself

865 IOBF = & H1895: I0BF = PEEK (IOBF) + PEEK (IOBF + 1) * 256

870 RESTORE 1000: READ ST, ED, EX: C = INT ((ED-ST) / 24)

875 IF ED> = IOBF THEN BEEP: PRINT "Cannot alloc memory!": PRINT "Make mac area at least"; ED-ST +
1; "bytes": END

880 GOSUB 980

885P=0

890 FORI1=0TO 23

895 IF PEEK (ST + 1) = PEEK (CGRAM + I) THENP =P + 1

900 NEXT

905 IF P <> 24 THEN 915 ELSE BEEP 1: PRINT "Mac codes already loaded.": PRINT "Hit any key."
910 AS=INKEYS: IFAS=""THEN 910 ELSE RETURN

915 CLS

920STO=ST

925FORI=0TOC

930 POKE LDAD + 2, (ST MOD 256): POKE LDAD + 3, INT (ST / 256): 'change destination

935 IF (ED-ST) <23 THEN POKE LDAD + 10, & H3C + (ED-ST): ST = ED-23: 'change transfer size
940 MODE110 (LDAD): ST = ST + 24: 'execute data transfer by 24 bytes, basically

945 LOCATE 0,2: PRINT "BLOAD:"; ST-STO; "bytes";

950 IF | <C THEN GOSUB 980: 'data preparation for mac-loader

955 NEXT

960 PRINT "-completed."

965 RETURN

970"

975 '"* DATPRE:' data preparation

980READAS,BS,CS, DS

985 DEFCHR $ (252) = A $: DEFCHR $ (253) = B $: DEFCHR $ (254) = C $: DEFCHR $ (255)=D $
990 RETURN

995 ' Line number 850 defines the start address CGRAM of DEFCHR $ and the transfer destination (execution)
address LDAD of the machine language transfer routine. Line number 845 indicates the location of the transfer
destination address, transfer source start address, and transfer source end address of the machine language
transfer routine. If the transfer destination address is changed with the POKE statement, such as line numbers
930 and 935, Good.

e
Seite 225

7-7 References and Links

(1) Ao: “HD61700 Assembly Language Manual”, http://www.geocities.jp/hd61700lab/
(2) Piotr Piatek: "Description of the HD61700 microprocessor assembly language",
http://www.pisi.com.pl/piotr433/index.htm

(3) Kota-chan: PJ August 1990 issue, p.35, "KC-Disassembler".

(4) P, H, M ,: P) December 1992, p.51, ** Assassembler ".

(5) Aya Toji: PJ April 1993, p.83, *" FX-870P Assembler "'.

(6) Hakkun: PJ September 1993, p.83, " HD61700 X-Assembler Ver.4.05 ".

(7) N. Hayashi: PJ February 1995, p.42, "~ HD61700 X-Assembler Ver.6 ".

Seite 226

7-8 Figure

ROU-Betriebsdiagramm

ROU
$C5
(«——00000000«~—
C MSB LSB
BIU-Betriebsdiagramm
BIU
$C5
0«——00000000«— 0"
C MSB LSB
DIU-Betriebsdiagramm
DIU
$C5
void +— [0 000000« *o000”
MSB LSB
BYU-Betriebsdiagramm
BYU
$C5
void «— [JJ000000 «— “o000 0000”
MSB LSB
DIUM Funktionsdiagramm
DIUM
$C5+ (IM3 - 1) $C5
vid < [J0000000+ --- <~ 00000000+ +o000”
MSB LSB
BYUM-Betriebsdiagramm
BYUM
$C5+ (IM3 - 1) $C5
vid (0000000 --- < 00000000+ 0000 00o0*
MSB LSB

ROD-Betriebsdiagramm

ROD

$C5

[——— 00000000
G

MSB LSB

BID-Funktionsdiagramm

BID

$C5

<o-—[0000000——-0

MSB LSB C

DID Betriebsdiagramm

DID

$C5

“o000”— (0000000 voia

MSB LSB

BYD-Betriebsdiagramm

BYD

$C5

“0000 0000 — [JO000000 —— veid

MSB LSB

DIDM-Betriebsdiagramm

DIDM

$C5 $G5 - (IM3-1)

“o000” = [0000000~ --- -~ 00000000 voi

MSB LSB

BYDM-Betriebsdiagramm

BYDM

3C5 $C5 - (IM3-1)

“o000 0000” = [0000000- --- = 00000000 voia

MSB LsSB

Seite 227

ROUW-Funktionsdiagramm

ROUW
$C5+1 $C5
0—C00000000«-—00000000
BIUW-Betriebsdiagramm o
$C5+ 1 $C5
0-— 00000000«-—00000000«— o~
C MSB LSB
$C5+ 1 $C5

vid —[0000000-—00000000+ 000"

MSB LSB

BYUW-Betriebsdiagramm

BYUW

$C5+ 1 3C5

void +[JO000000«-0000000 [+ o000 0000

MSB LSB

| RODW
$C5 $C5H-1
0— [000000D0—[000obooo
BIDW-Betriebsdiagramm o
3C5 $C5-1
«o"—[J000000—000o0oo0—0
MSB LSB C
$C5 $C5-1
“o000”—[JO000000—00000000- veid
BYDW-Betriebsdiagramm o
3C5 $c5-1
“0000 oooo” ~[1000000-U0000000- veid
MSB LSB

7-9 Revision Information

Ed.1 2011/6/12

Completed the HTML of the manual attached to HD61. The original description mistakes have been
corrected, but there is a possibility that you have made a mistake.
In the future, correction of description errors and addition of information are planned.

Seite 228

VIII. CASL

In advance:
Information about the programming language CASL, as a book or on the Internet, is only available in Japanese.
Furthermore, there is no German or English manual for the Casio FX-870P and the VX-4.

Despite extensive research, no comprehensive reference was found. The few PDFs on the Internet (Springer,
CoFl, CANape, Crosstalk) do not describe the VX-4 - CASL language.

The few CASL websites found and the "readable" pages of the original manual are listed here. The compiled
writings on CASL are just an attempt to give some insight into the language itself. For a deeper insight into the
CASL language, you probably have to learn Japanese and the ones described in Section IX. Work through the
books shown in the manuals.

Information shown in this chapter is translated from:

- Japanese WIKIPEDIA article

- Pages from the original manual

- TeamCASL website found:
http://www5a.biglobe.ne.jp/~teamcasl/caslkozatop.htm

8-1 Whatis CASL / COMET?

CASL is simple implementation of CASL assembler and COMET simulator written in Perl. The CASL assembler
and the COMET simulator are designed for users to study principle operations of computers. In particular,
CASL and COMET are used in a qualifying examination called as Japan Information-Technology Engineers
Examination so that these programs would be of value for people who would like to acquire this qualification.
Since both the CASL assembler and the COMET simulator are written only in Perl version 5, these should work
on almost all operating system including UNIX flavors, MS-DOS, Windows, and Macintosh.

CASL, the Common Algebraic Specification Language, was designed by the members of CoFl, the Common
Framework Initiative for algebraic specification and development, and is a general-purpose language for
practical use in software development for specifying both requirements and design. CASL is already regarded
as a de facto standard, and various sublanguages andextensions are available for specific tasks.

COMET is the name of a virtual computer designed to be used for assembler language questions in information
processing engineer tests .

Since the assembler language depends on hardware , COMET was developed as a non- existent computer, so-
called virtual computer, to be fair to candidates for information processing engineer tests .

COMET is 16 bits per word and has five general-purpose registers , a program counter, and a flag register . Its
main memory capacity is 65536 words, and it has a two-word instruction word that is sequentially controlled .
The assembler language for COMET is called CASL, and in the assembler language section of the information
processing engineer test , the program is written in CASL .

Although COMET is a virtual computer, several simulators have been created that run on Windows OS, etc.,
and are useful for understanding the operating principles of computers .

As of 2007, COMET Il , the successor to COMET, is being used in the trial . In the past tests, a virtual machine
called COMP-X was used , and the specifications are constantly being reviewed in this way for educational
considerations . Among such virtual machines , MIX, which was devised by the author of the famous book "
The Art of Computer Programming " on algorithms, is known.

e
Seite 229

WIKIPEDIA:

The Common Algebraic Specification Language (CASL) is a general-purpose specification language based on
first-order logic with induction. Partial functions and subsorting are also supported.

CASL has been designed by CoFl, the Common Framework Initiative (CoFl), with the aim to subsume many
existing specification languages.

CASL comprises four levels:
basic specifications, for the specification of single software modules,
structured specifications, for the modular specification of modules,
architectural specifications, for the prescription of the structure of implementations,
specification libraries, for storing specifications distributed over the Internet.

The four levels are orthogonal to each other. In particular, it is possible to use CASL structured and
architectural specifications and libraries with logics other than CASL. For this purpose, the logic has to be
formalized as an institution. This feature is also used by the CASL extensions.

8-2 Japanese CASL Wikipedia Article

This document describes the COMET/CASL implementation on the Casio PB-1000C which may differ from the
original specification. It is based on the Japanese Wikipedia article <http://ja.wikipedia.org/wiki/CASL> and on
the analysis of the PB-1000C ROM disassembly.

Overview

COMIET is a virtual computer specially designed for educational purposes and programming ability testing in
the Japanese Information Technology Standards Examination (JITSE). CASL is an assembly language for this
computer. The revised versions of COMET and CASL, called COMET Il and CASL Il, are not supported by the PB-
1000C and therefore are out of the scope of this document.

COMET Specification

COMET is a virtual machine with a von Neumann architecture. It operates on words of a fixed length of 16 bits.
The processing is sequential. Negative numbers are represented in two's complement format.

The following Data Types are Supported:

1. arithmetic, refers to signed integers in range -32768 to 32767

2. logical, refers to unsigned integers in range 0 to 65535

3. character, using an 8-bit Japanese standard JIS X 0201 that defines
encoding for Latin and Katakana characters, stored one character per word
in the lower 8 bits while the upper 8 bits are filled with zeros

The Registers are as Follows:
1. General purpose 16-bit registers GRO, GR1, GR2, GR3, GR4

These registers contain one of the operands and store results of the arithmetic, logical and shift operations.
The other operand is a memory location referenced by the effective address, specified either directly by an

absolute address, or by a sum of an absolute address and the contents of an index register (XR). GR1 to GR4
can be used as index registers.

GR4 is used as a stack pointer. It holds the address of the top of the stack. When a value is pushed onto the

stack, GR4 is decremented by one, then the value is placed at the memory location pointed to by it. When a

e
Seite 230

value is popped off the stack, the contents of the memory location pointed to by GR4 is transferred, then GR4
is incremented by one.

An address range from #FF80 to #FFFF is allocated for the stack, but actually the stack and the object code
occupy different address spaces. Therefore it is not possible to access the object code memory with the
commands PUSH or POP, nor the stack area through an effective address.

2. Program counter PC

This register holds the memory address of the instruction currently being executed. After completing the
instruction it is incremented so as to point to the next one, except on branches, subroutine calls and
subroutine returns which load it with a new value.

3. Flag register FR

When the executed instruction is an arithmetic or logical operation, it is set to 10 (binary) if the result is
negative, 00 if positive, and 01 if zero. Similarly, for comparison instructions it is set according to the
comparison result.

Instruction Format:
All instructions have a fixed length of two 16-bit words. These 32 bits are divided into the following fields:
1. The OP field (8 bits) is the instruction opcode that specifies the operation to be performed.

2. The GR field (4 bits) specifies the number of the register to be used in the operation. It is ignored for the
branch and PUSH instructions.

3. The XR field (4 bits) specifies the number of the register whose contents is added to the adr field to form an
effective address. A value of 0 does not mean GRO, but that no address modification is performed.

4. The adr field (16 bits) specifies the memory address, optionally modified by the XR. Both the adr and XR
fields are ignored for the POP and RET instructions.

bit# 0123456789101112131415

word 1 | OP field | GRfield | XR field |

word 2 | adr field |

Instruction set summary:
The items within brackets [] are optional and can be omitted.

LD GR, adr [, XR] - LoaD
Load the contents of the effective address to the specified GR register.

ST GR, adr [, XR] - STore
Store the contents of the GR register at the effective address.

LEA GR, adr [, XR] - Load Effective Address
Calculate the effective address and store it in the GR register.

ADD GR, adr [, XR] - ADD arithmetic
Adds the contents of the effective address to the contents of the GR and stores the result in the GR. The FR is
set according to the result of the operation.

SUB GR, adr [, XR] - SUBtract arithmetic

e
Seite 231

Subtracts the contents of the effective address from the contents of the GR and stores the result in the GR.
The FR is set according to the result of the operation.

AND GR, adr [, XR]

Performs a bitwise AND operation between the contents of the GR and the contents of the effective address.
The result is stored in the GR. In other words, the operation clears the bits of the contents of GR which
corresponding bits of the contents of the effective address are cleared. The FR is set according to the result of
the operation.

OR GR, adr [, XR]

Performs a bitwise inclusive OR operation between the contents of the GR and the contents of the effective

address. The result is stored in the GR. In other words, the operation sets the bits of the contents of GR which
corresponding bits of the contents of the effective address are set. The FR is set according to the result of the

operation.

EOR GR, adr [, XR] - Exclusive OR

Performs a bitwise exclusive OR operation between the contents of the GR and the contents of the effective
address. The result is stored in the GR. In other words, the operation toggles the bits of the contents of the GR
which corresponding bits of the contents of the effective address are set. The FR is set according to the result
of the operation.

CPA GR, adr [, XR] - ComPare Arithmetic
Compare the contents of the GR with the contents of the effective address. The FR is set to 00 if the contents
of GRis larger, 01 if equal, and 10 if smaller. The operands are treated as signed values.

CPL GR, adr [, XR] - ComPare Logical
Similar to the CPA except that the operands are treated as unsigned values.

SLL GR, adr [, XR] —
Shift Left LogicalThe contents of the GR is shifted to the left by the effective address. The shifted out bits are
discarded and the vacated bits are filled with zeros. The FR is set according to the result of the operation.

SLA GR, adr [, XR] - Shift Left Arithmetic

The contents of the GR, except for the sign bit, is shifted to the left by the effective address. The shifted out
bits are discarded and the vacated bits are filled with zeros. The FR is set according to the result of the
operation.

SRL GR, adr [, XR] - Shift Right Logical
Right shift version of SLL.

SRA GR, adr [, XR] - Shift Right Arithmetic
Right shift version of SLA. The vacated bits are filled with the sign bit instead of zeros.

JPZ adr [, XR] - Jump on Plus or Zero
Branch to effective address (i.e. change the value of PC to the contents of the effective address) when the
value of FR is 00 or 01.

JMI adr [, XR] - Jump on Minus
Branch to effective address when the value of FR is 10.

JNZ adr [, XR] - Jump on Non Zero
Branch to effective address when the value of FR is 10 or 01.

JZE adr [, XR] - Jump on ZEro
Branch to effective address when the value of FR is 00.

JMP adr [, XR] - unconditional JuMP
Branch to effective address unconditionally.

PUSH adr [, XR] - PUSH effective address
Calculate the effective address and store it on the top of the stack.

POP GR - POP a value

e
Seite 232

Retrieve the address stored at the top of the stack to a GR.

CALL adr [, XR] - CALL subroutine
Push the address of the subsequent instruction (=PC+2) onto the stack then pass the control to specified
effective address.

RET - RETurn form subroutine
Branch to address popped from the stack.

CASL Specification

A CASL program consists of a sequence of statements. Each statement is written in a single line and consists of
up to four fields: [label] [instruction] [operands] [;comment]

A label is an identifier that is assigned the address of the first word of the instruction. Labels are limited to 6
characters. A label must start at the first column and begin with an upper case letter, followed by upper case
letters or digits.

An address in an instruction operand may be specified by a decimal number or by a label.

General purpose registers may be specified using a shorthand notation. The GR part may be omitted, so for
example 0 is equivalent to GRO.

CASL supports the following pseudo instructions:

label START [optional entry point]

This instruction begins a program block. The preceding label is mandatory and specifies the name of the block.
It is assigned the address of the optional entry point specified by a label defined within the block, and if it is
omitted, the address of the beginning of the block. A CASL program can consist of multiple blocks. The block
names are global, while the labels defined in a block are local to this block.

END
Marks the end of a program block.

DC ... - Define Constant

Allocates a word (or words) of memory with initialized values. The operand may be a numeric constant or a
string of characters.

Numeric operands may be specified in decimal or hexadecimal notation, or by a label. Decimal constants may
be signed or unsigned. Hexadecimal constants are unsigned only and preceded with a # character. The value is
truncated to 16 bits and stored in a single word of the object program. String operands must be surrounded by
apostrophes.

DS n - Define Storage
Allocates the required number of words without initialization. The operand is a decimal number.

EXIT
Terminates the program execution.

CASL includes macro instructions for Input and Output:

IN input buffer, input length

When this instruction is encountered during program execution, the program halts and waits for the user to
enter a string of characters. When the user presses the EXE key, program execution continues. The input
length contains the string length. Both IN operands are specified by label names. The size of the input buffer
must be at least 80 words.

OUT output buffer, output length

The contents of the output buffer is displayed as characters. The output length contains the data size. After
displaying the string, the program execution pauses until any key is pressed. Both OUT operands are specified
by label names.

e
Seite 233

Error Messages
Errors detected during assembly (CASL):

OM out of memory

LA label undefined or multiply defined

OC operation error

OR operand error

SO block definition error, for example missing START or END

Run-time errors (COMET):

ST stack overflow/underflow
CD illegal opcode
AD illegal address

CASL Menu

[asmbl]
Assemble the selected sequential file.

[source]
View and edit the sequential file with an empty name. If such file doesn't already exist, it will be created.

[edit]
View and edit the selected sequential file.

[PRT SW]
Select whether to output the assembly listing to a printer.

key EXE
Assemble the selected sequential file then execute the resuling object code from the beginning (i.e. at the
entry point of the first block) without asking the user any questions.

COMET Menu

[go]
Run the object code at the specified address.

[dump]
Invokes the following submenu:

[object]
Display the memory contents starting from the specified address. The screen can be scrolled with the up/down
arrow keys. The value in the top row can be modified by pressing the left or right arrow key.

[regist]

Display and edit the contents of the registers.

[bpoint]

Specify a breakpoint address. The breakpoint can be cleared by typing an address outside the allowed range,
for example -1.

key EXE

Invokes the same function as the menu entry [object], but sets the starting address to #0000 without asking
the user.

[edit]

View and edit the source file.

[TRSW]

e
Seite 234

Select the trace mode allowing single-stepping through the code. The trace information can be directed to a
printer (with the menu entry LTRON).

key EXE
Run the object code from the beginning.

Seite 235

Example Programs

; Program to solve the Tower of Hanoi puzzle using recursive calls,

; taken from the Japanese Wikipedia
; http://ja.wikipedia.org/wiki/CASL
MAIN START

LD GRO,N

LD GRLA

LD GR2,B

LD GR3,C

CALL HANOI ;hanoi(3,A,B,C)

EXIT

; hanoi(N,X,Y,2)

HANOI CPA GRO,ONE ;if N==1 then
JZE DISP ;move it, return
SUB GRO,ONE ;N-1
PUSH 0,GR2 ;swap GR2 GR3
LEA GR2,0,GR3
POP GR3
CALL HANOI ;hanoi(N-1,X,Z2Y)
ST GR1,MSG1
ST GR2,MSG2 ;now GR2 holds Z
OUT MSG,LNG ;'from Xto Z'
PUSH 0,GR2 ;rotate GR1-GR3
LEA GR2,0,GR1
LEA GR1,0,GR3
POP GR3
CALL HANOI ;hanoi(N-1,Y,X,Z)
PUSH 0,GR2 ;restore registers
LEA GR2,0,GR1
POP GR1
ADD GRO,ONE ;also restore N
RET

DISP ST GR1,MSG1 ;'from XtoZ'
ST GR3,MSG2
OUT MSG,LNG
RET

ONE DC 1
N DC 3 ;number of disks
LNG DC 11 ;message length
A DC 'A
B DC 'B
C DC 'C
MSG DC 'from'
MSG1 DS 1
DC 'to'
MSG2 DS 1
END

; Executing this code yields the following result (where from A to C means to

; move the disk at the top of A to C):

’

Seite 236

; FromAto C
; From Ato B
;FromCto B
; FromAto C
; FromBto A
;FromBto C
; FromAto C

; Program to solve the eight queens puzzle,
; taken from the Calculator Benchmark web page
; http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=700

BGN START
LEA GRO,8
ST GRO,DIM
LEA GRO,0
LEA GR1,0

LOO CPA GR1,DIM
JZE 105
LEA GR1,1,GR1
LD GR3,DIM
ST GR3,ARY,GR1

LO1 ADD GRO,ONE
ST GR1,TMP
LD GR2,TMP

L02 LEA GR2,-1,GR2
JZE L0O
LD GR3,ARY,GR1
SUB GR3,ARY,GR2
JZE L04
JPZ LO3
EOR GR3,FFH
LEA GR3,1,GR3

L03 ST GR2,TMP
ADD GR3,TMP
ST GR1,TMP
SUB GR3,TMP
JNZ L02

L04 LD GR3,ARY,GR1
LEA GR3,-1,GR3
ST GR3,ARY,GR1
JNZ L01
LEA GR1,-1,GR1
JNZ L04

LO5 EXIT

ONE DC 1

FFH DC #FFFF

DIM DS 1

TMP DS 1

ARY DS 9
END

; The result is stored in the array ARY. Also the register GRO contains the

; number of iterations (876).

e
Seite 237

; This program calculates and displays a square root of an integer number
; entered by the user. It illustrates the usage of multiple blocks.
MAIN START
IN BUF1,SIZE1
LEA GR1,BUF1
LD GR2,SIZE1
CALL ATOI
ST GRO,TEMP
LEA GR1,BUF3
CALL ITOA
LD GRO,TEMP
CALL SQRT
LEA GRO,0,GR1
LEA GR1,BUF4
CALL ITOA
OUT BUF2,SIZE2
EXIT
BUF1 DS 80
SIZE1IDS 1
BUF2 DC 'SQRT ('
BUF3 DS 5
DC)=
BUF4 DS 5
SIZE2 DC 20
TEMP DS 1
END

; convert a string to an unsigned integer in GRO
; string address in GR1, length in GR2
ATOIl START
LEA GRO,0
L01 LEA GR2,-1,GR2
JMI LO2
LD GR3,0,GR1
LEA GR3,-48,GR3
JMI LO3
ST GR3,TEMP1
LEA GR3,-10,GR3
JPZ LO3
SLL GRO,1
ST GRO,TEMP2
SLL GRO,2
ADD GRO,TEMP2
ADD GRO,TEMP1
LEA GR1,1,GR1
JMP LO1
L02 LEA GR2,1,GR2
LO3 RET
TEMP1DS 1
TEMP2DS 1
END

; convert an unsigned integer GRO to decimal
; result at the address GR1
ITOA START

e
Seite 238

LEA GR2,4
LO1 LD GR3,ZERO
LO2 CPL GRO,TENS,GR2
JMI LO3
SUB GRO,TENS,GR2
LEA GR3,1,GR3
JMP LO2
LO3 ST GR3,0,GR1
LEA GR1,1,GR1
LEA GR2,-1,GR2
JNZ LO1
ADD GRO,ZERO
ST GRO,0,GR1
RET
ZERO DC '0O'
TENS DC 1
DC 10
DC 100
DC 1000
DC 10000
END

; square root of an unsigned integer
; radicand = GRO, root = GR1
SQRT START
LEA GR1,0 ;root
LEA GR2,0 ;remainder
LEA GR3,8 ;number of root bits
; shift 2 bits from the radicand to the remainder
LO1 SLL GR2,2
ST GRO,TEMP1
SRL GRO,14
ST GRO,TEMP2
ADD GR2,TEMP2
LD GRO,TEMP1
SLL GRO,2
; try to subtract 4*root+1 from the remainder
SLL GR1,2
LEA GR1,1,GR1
ST GR1,TEMP2
SRL GR1,1
CPL GR2,TEMP2
JMI LO2
SUB GR2,TEMP2
LEA GR1,1,GR1
; next bit of the root
LO2 LEA GR3,-1,GR3
JNZ LOo1
RET
TEMP1DS 1
TEMP2DS 1
END

Seite 239

8-3 CASL From the Original Manual

get it start with ON / CASL

/ o~ 7 0

{- CASL)

F ol 2 3 4 5 6 7 8 8 33558
F1>Assemble/Source/Cal

A)¥ — (Assemble) -+ V¥ — R 70 77 LDT LTIV
()% — (Source) *+++-+- Vv — ZDIERK - SRiE

€% — (Cal)+++rrrmeee vz A TAREE— KRS
@)% —(Go) ATV 27 V70 AOETHEICED 2T,
@)% — (Dump) Fr7DA=2—HEAICED 2T,
(8)% — (Source) Tty FREAN, =2 uXILERELET,
€)% —(Cal) v=aTAREE-FICADET,
(A% — (Print) 7 ¥DON/OFF&fREL T,
@M* — (Trace) FL—2ZDON/OFF 2fELET,
B ¥ — (F17) FT7V 2 VTR ARETLET,

e
Seite 240

a CASL Project ,Jozan™

(oS 4af] BYVENIOYS5L (A+-B=SHO%') AMARI)

7~ mEa—F FRFF B A

JOZAN START HNHEGRE) 7o s 7 L2HE
LEA GR1, 0 GR1IzE 2 AN 5, #IHAEO
LD GRO, A GROICAFZBHOHE 2 ANLS

LOOP SUB GRO, B GRO% & BEHONE 25§
ITMI ANS FEHE 7 bIF ANS B o e
LEA GR1, 1, GR1 GR1i21 %z 3
JMP LOOP LOOPF: i e

ANS ADD GRO, B GROIZBEHONEEZMZ 5
ST GR0O, AMARI GRO%Z 4 & L T AMARIICH%#N
ST GR1, SHO GR1#Z1 & L TSHOIZHS#Y
EXIT TO TS LADETRT

A DC 13 g 505813

B DC 5 25 H5

SHO DS 1 xS 2 B

AMARI DS 1 RN BENT 5 EM
END TRTSLADRT

T yrITNEDOAZ 2 —

{ CASL)
Go/Dump/Source/Cal/Print/Trace
PC:0000 JOZAN fott]l ‘faott]
o AZa—
(CASL)

ObJdect/Register/Break point

¥ 70*—#fF F7ezo b DTT
B i@x—| Frzu—N e SISEEN }EEE
= — Qeea2
@* LR7m—N eoe3 o014

Seite 241

LI XY DYERE

®

™
s
m

B B & B

0000 JOZAN LEA GRI, 0000
0000 0000 0000 0000 FFFF 1
0002 LD GRO,0014
000D 0000 0000 0000 FFFF 1
0004 LOOP SUB GRO,0015
0008 0000 0000 0000 FFFF 0
0006 JMI 000C
0008 0000 0000 0000 FFFF 0
0008 LEA GR1,0001, GR1
0008 0001 0000 0000 FFFF 0
000A JMP 0004
0008 0001 0000 0000 FFFF 0
0004 LOOP SUB GRO,0015
0003 0001 0000 0000 FFFF 0

LR, FRiEmsL ET.

RTRDRT

PC
l

Tkl Tape 2 T NS

l l 1

0000 JOZAN LEA GR1,0000

0000 0000 0000 0000 FFFF 1

fottretmmgioiobal st ontuadf
GR0O GR1 GR2 GR3 GR4 FR

GRO
!
GR4

VIS DAR

&£ R A A

FR

77 DA 0 00
01
2 10

HAFE L 3R+ - ¥ —DODCOMETHEREN Z ¥ T,

Seite 242

CASLAZ1—[HE Y—A704 5 LANER
(CASL) []
Folea34567838 33558 =
Fl)Agsemble/Snurce/Gal] (8)%- { 12
©*
! OEF Y- VEIIN)),
¥—(Tev7n) CALE-F) |
) ¥ ——(CASL X = 2 —[HH
A B%-
A2 —EE RTEE
(CASL) PC:000@ JOZAN
Go/Dump/Source/Cal/Print/Trace g
PC:000@ REI [off] [off] (G)*%¥— |go?-
[@*—— btV —A0N, OFFY]) # L ¥— ETRBR7 FLAAD
P)*——7" » #ON, OFF]) #k £
D% - . ¥ —F 7212 7RI LR X -
©%-—(CALE-F) b L — 2OFF b L — 2OFF
L)% ——Y=-ZANEEA Lg% — kL —2ZON
kL —2Z0N
FuFAz1—-EHE PL—2EE
{ CASL)} o002 JOZAN LEA GR1.0000
: P000 0Q0Q QQQ@ @QO@@ FFFF 1
ObJect/Register/Break point oeoe LD GRO.0014
00D 0000 Q000 Q0@@ FFFF 1
o ¥ — EFAZ21-E@E
R)*x— B)*%— T
i fidy 35081
VRS Y v TEE
GRO: 0000 © GR1:0000 @ PC: 0000 JOZAN
GR2: 0000 © GR3:0000 @ >
GR4:FFFF 65535 FR :0@
GRO7? - address?-

% — —FEAZ2-BE

—(ZFraAn) B

Break point

address?-

A72x2957EM §
2000 JOZAN 1210
eeo!] 2000
eoe2 1000
eoe3 ee14

Lﬂ?v—aﬁ{vbﬁﬁ7rvzxn) L{E%————iﬁ!Z:-ii

*—

EFTAZ21—EER

Seite 243

The CASL Code in the Original Manual

START.END.DC.DS #{lens

i # X
4 | Bt START
% LABEL START (adr)
| 7077 s0RBECLTEI LTI E) FRAadt DT NN ADEMS LTITEN,
e | BWESND L7077 AOKED LETENET,
il = G
4 | #%7T7 END
% END
B 7orsoniTisEblEt, 7077 20RGRT 7L —F L ORBZRICILTED,
ge | HFNIZR D ERA, TN, AT FRIBD TRA
A4 7095 L05RE H 7 —F o DECHRA
MAIN START SUBR START
| 77> A B 7a 7S5 A
EXIT RET
END : END

AL r7arssakitdt sl X3, RBEICSTART®F2EE, RIZ7Tv /7 L0RE2R
EEXHBICNEERPRTIEHLEXITLENDZEZ Y,
H7N—F > bEkIC, EEICSTART 2 &% ICEND2EE X,

fr & 2\

4 | EXEFE Define Constant

2 (LABEL) DC & #&

M| 23)— BB T — 7 R LE T, EHICIE 1058 (-65535=n=65535) , 164 (44f1) . 3L F*
ge | B, TPV ZAZERONERESEATE £,

il e A

4 | #EHIREF Define Storage

2 (LABEL) DS n

o n(20) 12k - THE% L 2380 i i A TR L 37, ndf0 & X [3REIIFERR S
ge | TRAY, FNBEBTT.

e
Seite 244

LD. ST. LEA #EHS:A—RANP@HS,. O—RPRKRLAWS

& = K
4 |o— F Load
% (LABEL) LD GR, adr (, XR])
Bl EgT7 FL 212t > TRAN-BHONESE. LYZRP(GR) IKHELE T,
BE
il e R
4 | A +T7 STore
% (LABEL) ST GR, adr (, XR)
Bl L2292 GRONER . EMT FLRICE > TRENLEHICHEMNL 3.
e
W m—FT kL2 = A
1’2 Load Effective Address (LABEL) LEA GR, adr (,XR)
B 297 FL R > TRANIBIONE 2310 ERE. LYRAFTICRELET,
fe | /o, COEEDMHICL > TFROEZREL 27
705 L5
Z L Gl FRF P fE W
BGN START T, ARSI N TV 2 EEAGR
LD GR1, A 1IN ET(LD), KIC.GR2IZE
LEA GR2, 1 1M ENE 3 (LEA), w&ICLA+
ST GR1, A, GR2 GR2OWNEOEFM. T4bbA+ 1 FH
EXIT IZGR1DNZE3SDHEME N 3(ST).
A DC 35
DS 1
END
R e LEA
A i 0023H '—L_[jomH 0001H
R

Seite 245

ADD.SUB ##izEmn® | BifiEEmT

i : _ & .
A | Efvin®E ADD arithmetic
% (LABEL) ADD GR, adr (, XR)
B GRONAELENT FLRIZL > TRENZBHONE » EHME L TE£OER%EGRIZ
pe | HELEY, HEREREICEH->T. FRERELE T,
| SR Gl A
n . .
4, | SUBtract arithmetic (LABEL) SUB GR, adr (,XR)
B GROWEELEDHT FL 2L > TRENZBHONE 2 BMIEE L T2 0BE2GRIC
ge | RELEYT, BEMERICL-T, FREHRELZT,
70495 Lf)
F ol Ty F* 2 R i @
BGN START TP, ABMICEAINT V516 £
LD GR1, A B #0029 GRIICEREZI N F T iK1,
ADD GR1, B ZOBEIZBEMONETH 5 #000EZ
SUB GR1, C BN E L 728 #00375° . GR 1 I2#5#4
ST GR1, ANS 2N F T (ADD) fEERIC . CHRHONE
EXIT THHH001AZGR1A & B L 72
A DC #0029 fE #001DA. GR1UICHEMZI N F T,
B DC #000E (SUB) H#I2.GR1OHNE#* ANS &
C DC #001A HIARL 2T, 0029
ANS DS 1 +) 000E (ADD)
0037
EAD —) 001A (SUB)
001D

Seite 246

AND.OR.EOR ###zEinS: mEREGT

o & R
4 | i iE AND
% (LABEL) AND GR, adr (, XR)
| GROWE L EHT FL 2L > TRENZBHONEOE v + T L DR % . GRIC
| BELET, WEREICE-T. FREZELET,
| & iy
4 | @A OR
= (LABEL) OR GR, adr [, XR)
B | GROWE L EHT FL Ak > TRENZBFHOWNENL v b TL OHEME, GRI
fe | BELET. WHARICL T, FRERELIT,
& | BetbiREA # A
el
| Exclusive OR (LABEL]) EOR GR, adr (, XR]
B GROWELENT FL AL > TURENDZBHONEDE v I 2 L DHEMATRIEH % |
e |GRICRRELZ¥T., EEKRICLE->T. FRERELZT,
7y L)
7~V WA . e S i i
BGN START T3, GRUZ16HEZE B #55555FHI S
LD GR1, A 3, ko, 2NEARMONETH S
AND GR1, B HI37TF L BB E R #11550°G
EXIT RUICHEMI N ET,
A DC #5555 #5555 = 0101 0101 0101 0101
AND) £137F = 0001 0011 0111 1111
B DC #137F #1155 = 0001 0001 0101 0101
END (Zn7a 75 AMETH AND LIS
OR*EORLEHTEZT,)

—— ASLORIBERO

WHEAND)TlE 2 2ofik b 1L DA 124, B AND| or | EOR
WEMOR TIREL L A1 51 E 1%) B
FIGREER (EOR) TIX 2 DNANRL L ENA LI 0
9, ChEHTERLTEHEDEHIITLNET, 0
1
1

- o - O

o o O
O =
< =)

e
Seite 247

CPA. CPL #mWsEns hKREEGS

B | A R i A
aL . .
%, | ComPare Arithmetic (LABEL) CPA GR, adr (, XR)
B GROMBELENT FL AL > TOREN D FHONE 2 ML L FoERICEY .,
ge | FROEZHREL T,
| e & i
T :
% | ComPare Logical (LABEL) CPL GR,adr (, XR]
B | GROWELEDT KL RISk > TRINZ FHOWE 2 RBELILH L ZORRICL D
g | FROM%HE LT,
i AN
7~ W FRZ7 - F e W
BGN START F9. GRICEH -2 NF T,
LEA GR1, —32 Iz, CPATAICE D AFBONE #20
CPA GR1, A =(32)10& i I L E T, ZDEAEI.
CPL GR1, A GR1(—32)10< AFZBHDNE (32) 10
EXIT % DTFRAOE v MEIZ(Q0)2027%) 77,
A DC #0020 FIkEIC. (RO CPL&A T L A T b
END NI, S THETIERLEL DS

By MERIC L mBELEERSIT b E
T, ZHDBAEII.
GR1(FFE0) 16> A
 N Z (0020) 16
ZNHTFROE vy MEIZ(00)202% D T,
GR1=(—32)10D
v FRERK 1111 1111 1110 0000
AFEHDOAE #20=(32) 100
E . MHEREC 0000 0000 0010 0000

Seite 248

SLA. SRA. SLL. SRL ##HEmS:

VI NREGS

| i 7 b & £y
L . . 5
% | Shift Left Arithmetic (LABEL) SLA GR,adr [, XR)
| GROWEZFEDT KL ADOEITIEIZL 7 P LET.2770 . Fe b v b (2L
ge | IS 7 PAIDEFRGFIN.ZEE Yy MITIZOHFADET,
| BT b & E:)
L : : . "
%, | Shift Right Arithmetic (LABEL) SRA GR, adr [, XR])
B GROWEREDT FLRAOKIZHAEIZL 7 LET. 2770, bt v M3y 7 M
ae | DEDRIESN ., ZOETEEE v b2EHLNE T,
Pl Lt & A
%, | Shift Left Logical (LABEL) SLL GR,adr [XR) (, XR)
¥ | GROWEREDT FL R TREN-KRSTEICS7FLET,
e | Y7 PORERICEBEZE Y FMIZIZOHFAD T,
W REEA L7 & 2y
H 5 . .
% | Shift Right Logical (LABEL) SRL GR, adr (, XR)
| GROWBE R EDT FL R TRENLBKLETHIY 7 FLET,
Be | Y7 FORERICEBZEEE Y MR OHFAN T,
7075 LF
F -~ woa HT fi#
BGN START 3. GRUCABHDOHNETH 57FFF
LD GR1, A (16:) I Z N F 3, RICGR1IOWE
SLA GR1, 5 MEWZSHTEME 7 E3NTT, FOH
EXIT HBGRI1ICIZ7FE0 (16:#) 255N £ 3,77
A DC # 7FFF ZWRETTHTO0)202%) 7,
END 7FFF = 0111 1111 1111 1111
0111 1111 1110 0000 =7FE0

Seite 249

JPZ. JMI. UNZ. JZE. JMP

RS T [YIRS

b
Gr

i | Esi & R

E Jump on Plus or Zero (LABEL) JPZ adr (, XR)

B FROE & MEA (00),TIE12 (01)fE 0 5 ET7 Frricakl 23, #2hlisno
g | LB, ROGRICEAZ T,

W S & R

E Jump on MlInus (LABEL) JMI adr (, XR)

B FROE v M2 I0).TBEIOL A ERT FLAIIHELET., 2l s X3, K
fe | DEAIEAZ T

| FeF o & A

E Jump on Non Zero (LABEL) JNZ adr (, XR)

B | FROE v MlEA(00).TE1A2(10).TH 0L & EHT FL I L+, 2N D
g | L 23 ROBAITEATT,

@ | o Gl A

% Jump on ZEro (LABEL) JZE adr (, XR)

B FROY v MED (0D T Einr &, ET7 FLRICHELEYT, #hlitok 213, K
Be | DEERICESAFT,

ﬁ 4 5 3l &)

E unconditional JuMP (LABEL) JMP adr [, XR)

| FRoE v MEICEbL LT, BRMICEDHT FL oo LT,

Seite 250

a9y 7 L6

F -~ Gy A7k ;)
BGN START con7Turs s, BROT—F &R
LD GR0, MAX HRAHB, FDOT—F DD L IEDOEIME
ST GR0, MIN PHEL, 2T E2RETHEENSG D
LEA GRI, 0 o W oy A ML G AT B B i R
L1 LD GRO,DATAGR1| ¥&3. ZD7T— 27217 2B/ L TREA
CPA GRO, A ATV ET,
JMI L2 3 LSHIC.CASLTHONZ 550 &
CPA GRO, B DEcANE TFFFH % MIN #c & L T
JZE L2 B X T .DATAEH LN T7T—2%GRO
CPA GRO,MIN IZWtA AR, ZID,
JPZ B CABHONELIN DIV (0RHED
ST GRO,MIN F—2 3TN TS,
L2 LEA GR1,1,GR1 * BEHONEIIZHE LW (33BN T
CPA GR1,C %)
JTMI L1 - MINFHOHEL D KELPELY,
EXIT L& L2V r7TLET. £5ThW
A DC 1 ¥ EIIGRODHMEZ MINICHEML 7,
B DC 3 L2LIF i3, GR1% 177008 L Tk
C DC 5 T—F ®HAADSE LI ITLET.GRI
MAX DC #7FFF HCHEOAEG=T—2%) L0323
MIN DS 1 WE EZLUCY > 7 L CEU LS 21T
DATA DC 5 TwET,
DC -1 %12 3 LIS IEDEIME 4 A*MINE
DC Wi EINT 7o 77408 TLET
DC
DC
END

Seite 251

PUSH. POP ##WaEGS: AYvIREDLS
CALL. RET ®#®WESS:2—-/LUSY—VmSs
ﬁf Foiig & £
2% PUSH effective address (LABEL) PUSH adr (, XR)
Bl 2207842 SP)2b1 32T FLARE L L, ENT FLRIZES>TREN.
g | B2 SPARTHEMICHMIL £ 7.
ﬁ K7 & X
H
% | POP up (LABEL) POP GR
| 22975422 (SP)ORTRMBONEZGRICEEL, SPI2127 FLamBELE T
RE
%\Lﬁ =)L | =3 "
%, | CALL subroutine (LABEL) CALL adr ([, XR)
B EHT FLRIORSNL2BHUCHIEL . REOFAI Y 7L —F 2B INET, 2D
ge | L&, RDBHHZSY v 7 IRFINFET,
: ﬁ i B =4 Fay
% RETurn from subroutine (LABEL) RET
W 28y 2 RSN TRV T IS arT 82ty &R, 7 L—F >
ge | AL 70T T AREBORNPRINE T,
0y S5 LE
Z i *=F vk P
MAIN START TP AL TR ARTTIN—F
CALL SUBR BIRPUH T 2T ORI > T ET,
EXIT B 7N —F » TIZPUSH. POP &4 & 14T
END , Zrvn, R¥ v 7 #BLTGRIIZ100 %2 A
SUBR START hFEd, #FLT.RET®&#SICL-TAA
PUSH 100 y7a S AR ET, ‘
POP GR1
RET
END

e
Seite 252

IN. OUT. EXIT vZ0O8&%

Gl = 3\
£ | IN &4
(LABEL) IN AhfEif, ANXTER
Bl X—FK—FrolLa—FOXET—F 52 AL, 80EEDANEBIZENZT XNVED
e Rihh LML 2T, ANMNXFEEICIE., XFEIBHINET,
@ & &
41 OUT &%
% (LABEL) OUT H hms, HAhXFR
B RSN TW AR ET— P . EREREICILva—FLLTHAILET,
ge | 7275l MAXFRORSZTLRRNLEEA,
iy % =
A | EXIT &4
% (LABEL) EXIT
B 24707 LnETERTLET,
HE
707 7 L5
Z W FRZ ¥ it Wi
BGN START 9. ARMICS0FENEE L L), IN
IN A, B HAIZED X —FR— F2 o XFEF AR
ouT A B Hih S—XETOMEFIE NS, BE
EXIT I II X FBHHEHI N F T, KIC.0OUT
A DS 80 AL D ABD HBHINTWEX
B DS 1 FH &, BEMICRT XFERIZTHA L
END L. HEIZERLET,
B ICEXIT& S T7 0 75 L55%
F80E 5 g

Seite 253

(C LS DRRE> (COREE>

Pcodex ') 7
L 2T Ia
£l 5 BT
|
=IT Symbols Y T
1280/ 4R LA
L) T
} NSO
TS FET S VAV TN
TPANTI)T ZrANZ)FE Stackx) 7
774N (global
L0 e 2048734 R L), b) TEL)
ZY—x)F |} B

o i D2—F— X) P(TR T FL - T—7ZNT+CZIUT)
A 8KB RAMHE: 361134 |
40KB RAMEF 3637934 b
sk L. CLEAR, 1280/%f F DBETY,
77+ bl 8~16KBFEf CLEAR, 1536
40KBRs CLEAR, 8192 TTY.

o C kT 21213, ZRT) THRALIZB0/54 k7 74 AT) —x 1) T H452048 %
4 N LETT,

e
Seite 254

Seite 255

8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp ...

The next sides are tranlated from the Inet-side: http://wwwb5a.biglobe.ne.jp/~teamcasl/caslkozatop.htm
The TeamCASL pages prasent the CASL Il instruction.

The CASL introduction corner - Table Contents

1. Basic structure of CASLII

5. Branch instruction

program
(D Basic rules of the
program

@ Program example 1
@ Program example 2

(D JPL instruction
@2 JMI instruction
@) JNZ instruction
@ JZE instruction
®) JOV instruction
® JUMP instruction

9. Other orders

(@ SVC instruction
(2 NOP instruction

2. Load store instruction

(D LD instruction
@ ST instruction
@ LAD instruction

6. Shift operation instruction

10. Macro instruction

(D SLA instruction
@ SRA instruction
@ SLL instruction
@ SRL instruction

(D IN instruction

@ OUT instruction
@ RPUSH instruction
@ RPOP instruction

3. Operation instruction

(1 ADDA instruction
@ ADDL instruction
@ SUBA instruction
@ SUBL instruction
® AND instruction
® OR instruction
(7 XOR instruction

7. Stack operation
instruction

(D PUSH instruction
@ POP instruction
@ Program example

11. Assembler instructions

(D START instruction
@ END instruction
@ DS instruction

@) DC instruction

4. Comparison operation

instruction

(1 CPA instruction
2 CPL instruction

8. Call return instruction

(1) CALL instruction
@ RET instruction
@ Program example

Seite 256

1. Basic structure of CASL II Program

Basic rules of CASLII program

® Write in labels, instructions, and operands (arguments)

® Command words are written in uppercase letters

® Start with START command, end program with END command
® Label the START instruction line

Examples 1 and 2 show the basic structure of the program.

Example 1

label order operand

PROGI START GO

DATA1 DC 1

DATA2 DC Two

ANS DS 1

GO LD GRO, DATALI
ADDA GRO, DATA2
ST GRO, ANS
END

Example 2.

PROG2 START
LD GRO, DATALI
ADDA GRO, DATA2
ST GRO, ANS
RET

DATAI1 DC 1

DATA2 DC Two

ANS DS 1
END

Seite 257

2. Load / store instruction

Assembler languages such as CASL first read data from memory into a storage device called a
register, and then perform calculations.

This section describes the instructions for exchanging data between memory and registers.

| (1) LD instruction Instruction to read data from memory to register

Description method

| label

| LD

| GRx, address [, GRx]

The contents of the address are stored in GRx.

The register described after the address specifies the index register. (Optional)
The relative position of the address can be specified by using the index register.

Omit the index address specification.

When trying to process data in a program, you must use the LD instruction.

Program example.

PROG LD START GO; Start processing from label GO

ADR DC 10; Define constant 10

GO LD GRO, ADR; 10 is stored in GRO
END

(2) ST instruction Instruction to write data in the register to memory

Description method

| label

| ST

| GRx, address [, GRx]

This is an instruction to write the data in the register to the memory.

Program example.

PROG ST START GO
ANS DS 1; Secures one word length for data storage area
GO ST GR1, ANS; GR1 content in ANS
END
(3) LAD instruction Instruction to store address directly

Description method

label

| LAD

| GRx, address [, GRx]

Store the address in a register.

Difference from LD instruction The LD instruction reads the contents of the specified address .
The LAD instruction reads the specified address .

Program example.

PROG LAD START GO
ADR DC 1
GO LAD GR2, ADR; GR2 contains ADR address instead of
1
END

Seite 258

3. Operation instruction

CASL provides arithmetic and logic instructions.

| (1) ADDA arithmetic addition instruction

Description method

| label |ADDA |r, address [, x]

Adds the contents of the address to the value stored in r and stores it in r.
In the expression, r =r + the contents of the address.

Program example.

PRG_ADDA START
LD GRO, DATA1; Read data to register
ADDA GRO, DATA2; Add contents of DATA2 to GRO
ST GRO, ANS; Store result in ANS
RET ;The end of the program
DATALI DC 1; Define data
DATA2 DC 2; Define data
ANS DS 1; Secure data storage area
END

| (2) ADDL instruction Logical addition instruction

Description method

| label | ADDL | r, address [, x]

Adds the contents of the address to the value stored in r and stores it in r.
Works the same as r = r + contents of address.

The difference from the ADDA instruction is handled as if there is no sign (+,-).
In other words, we don't think about minus.

Program example.

PRG ADDL START
LD GRO, DATAT1; Read data to register
ADDL GRO, DATA2; Add contents of DATA2 to GRO
ST GRO, ANS:; Store result in ANS
RET ;The end of the program
DATALI DC 1; Define data
DATA2 DC 2; Define data
ANS DS 1; Secure data storage area
END

| (3) SUBA instruction Arithmetic subtraction instruction

Description method

| label | SUBA | r, address [, x]

This is equivalent to the expression r = r — address content.

Program example.

PRG SUBA START Start processing from GO

DATAI DC 3; Data definition

DATA2 DC 1; data definition

ANS DS 1; data definition

GO LD GR2, DATALI; Load the contents of DATA1 into GR2

Seite 259

SUBA
ST
END

GR2, DATA2; Subtract the contents of DATA2 from GR2
GR2, ANS; Store result in ANS

| (4) SUBL instruction Logical subtraction instruction

Description method

| label

| SUBL

| r, address [, x]

This is equivalent to the expression r = r — address contents.

Program example.

PRG SUBL
DATAL
DATA2
ANS

GO

START
DC

DC

DS

LD
SUBL
ST
END

Start processing from GO

3; Data definition

1; data definition

1; data definition

GR2, DATALI; Load the contents of DATA1 into GR2
GR2, DATAZ2; Subtract the contents of DATA2 from GR2
GR2, ANS; Store result in ANS

| (5) AND instruction Logical product instruction

Description method

| label

| AND

| r, address [, x]

Performs a logical AND with r and the contents of the address, and stores the result in 1.

Program example (Example of a program that retrieves the first bit information of DATA)

PRG AND
DATA
MASK
ANS

GO

START
DC

DC

DS

LD
AND

ST
END

Start processing from GO

#FFFF; Data definition

0001; Data definition

1; data definition

GR2, DATAL1; Load the contents of DATA into GR2
GR2, MASK; Perform logical AND with the contents of
GR2 and MASK

GR2, ANS; Store result in ANS

| (6) OR instruction OR instruction

Description method

| label

|OR

| r, address [, x]

Perform a logical sum of r and the contents of the address, and store the result in r.

Program example (Example of overlapping the contents of DATA and MASK)

PRG AND
DATA
MASK
ANS

GO

START
DC
DC
DS
LD
OR

ST
END

Start processing from GO

OFFO0; Data definition

3001; Data definition

1; data definition

GR2, DATALI; Load the contents of DATA into GR2
GR2, MASK; Perform a logical OR operation on the
contents of GR2 and MASK

GR2, ANS; Store result in ANS

Seite 260

| (7) XOR instruction Exclusive OR instruction

Description method

| label |XOR | r, address [, x]

Performs an exclusive OR operation on r and the contents of the address, and stores the result in r.

Program example (Program example for bit-reversing the contents of DATA)

PRG _AND START Start processing from GO

DATA DC # 1010; Data definition

MASK DC #FFFF; Data definition

ANS DS 1; data definition

GO LD GR2, DATAI; Load the contents of DATA into GR2
XOR GR2, MASK; Perform exclusive OR on the contents of

GR2 and MASK

ST GR2, ANS; Store result in ANS
END

Seite 261

4. Comparison operation instruction

In CASL, the comparison instruction only performs a comparison operation.
Performs the same operation as IF in combination with a branch instruction.

Here, only the comparison operation instruction is described.

See the branch instruction for the specific selection syntax. ((5) branch instruction)

| (1) CPA instruction Arithmetic comparison instruction

Description method

[label ICPA I, address [, x]

This instruction internally subtracts (r-the contents of the address) and stores the result in the flag
register.

The difference from the subtraction instruction is that the result is not the value of the subtraction,
and whether the result of the subtraction is positive, negative, or zero is stored in the flag register.

Program example.

PRG CPA START
LD GRO, DATAT; Read data to register
CPA GRO, DATA2; Compare the contents of DATA2 to GRO
RET ;The end of the program
DATAI DC 1; Define data
DATA2 DC 2; Define data
END
(2) CPL instruction Logical comparison instruction

Description method

| label | CPL | r, address [, x]

This instruction internally subtracts (r-the contents of the address) and stores the result in the flag
register.

The difference from the subtraction instruction is that the result is not the value of the subtraction,
and whether the result of the subtraction is positive, negative, or zero is stored in the flag register.

A logical operation is an operation in which the contents of an address are treated as numbers that do
not handle signs (positive numbers).

Program example.

PRG CPL START
LD GRO, DATAT; Read data to register
CPA GRO, DATA2; Compare the contents of DATA2 to GRO
RET ;The end of the program
DATAI DC 1; Define data
DATA2 DC 2; Define data
END
PRG_CPA START
LD GRO, DATA1; Read data to register

Seite 262

5. Branch Instruction

In CASL, a branch instruction is combined with a comparison instruction to create an IF structure.
In addition to unconditional branch instructions, there are conditional branches that branch

depending on the value of the flag register.

| (1) JPL instruction Instruction to branch if the flag register is positive

Description method

[label IPL

|Address [, x]

Branches to the address when the value of the flag register is positive.

Program example.

(Compares the contents of DATA1 and DATAZ2, ends if DATA1> DATAZ2, adds if DATAIL =

DATA2)
PRG JPL START
LD GRO, DATAT1; Read data to register
CPA GRO, DATA2; Compare the contents of DATA2 to GRO
JPL JMP; If CPA result is positive, go to JMP
ADDA GRO, DATAZ2; Addition
ST GRO, ANS:; Store addition result in ANS
IMP RET ; End of program * Here is the jump destination
DATALI DC 1; Define data
DATA2 DC 2; Define data
ANS DS 1
END
(2) JMI instruction Instruction to branch if the flag register is negative

Description method

| label M1

|Address [, x]

Branches to the address when the value of the flag register is negative.

Program example.

(Compares the contents of DATA1 and DATAZ2, ends if DATA1 <DATA2, subtracts if DATAI =

DATA2)
PRG_IMI START
LD GRO, DATA1; Read data to register
CPA GRO, DATA2; Compare the contents of DATA2 to GRO
IMI JMP; If CPA result is negative, go to JMP
SUBA GRO, DATA2; Subtraction
ST GRO, ANS; Store addition result in ANS
JIMP RET ; End of program * Here is the jump destination
DATALI DC 1; Define data
DATA2 DC 2; Define data
ANS DS 1
END
(3) INZ instruction Instruction to branch if the flag register is not zero

Description method

[label INZ

|Address [, x]

Branches to the address when the value of the flag register is not zero.

Program example.

(Compares the contents of DATA1 and DATAZ2, ends if DATA1 <> DATAZ2, and adds if DATAI =

DATA2)

Seite 263

PRG JNZ

IMP
DATALI
DATA2
ANS

START
LD
CPA
INZ
ADDA
ST
RET
DC
DC

DS
END

GRO, DATAT1; Read data to register

JMP; If CPA result is not zero, go to JMP
GRO, DATA2; Addition
GRO, ANS:; Store addition result in ANS
; End of program * Here is the jump destination
1; Define data
2; Define data
1

| (4) JZE instruction Instruction to branch if the flag register is positive

Description method

[label UZE

|Address [, x]

Branch to the address when the value of the flag register is zero.

Program example.

(Compares the contents of DATA1 and DATAZ2, ends if DATA1 = DATAZ2, adds if DATA1 <>

DATA2)
PRG JZE START
LD GRO, DATAT1; Read data to register
CPA GRO, DATA2; Compare the contents of DATA2 to GRO
JZE JMP; If CPA result is zero, go to JMP
ADDA GRO, DATA2; Addition
ST GRO, ANS; Store addition result in ANS
IMP RET ; End of program * Here is the jump destination
DATAI DC 1; Define data
DATA2 DC 2; Define data
ANS DS 1
END

| (5) JOV instruction Instruction to branch if the flag register overflows

Description method

| label IPL

|Address [, x]

Branches to the address when the value of the flag register is positive.

Program example.

PRG_JOV

JIMP
DATALI
DATA2
ANS

START
LD
ADDA
JOV

ST
RET
DC

DC

DS
END

GRO, DATAT1; Read data to register

GRO, DATA2; Add contents of DATA2 to GRO
JMP; If the addition result overflows, go to JMP
GRO, ANS; Store addition result in ANS

; End of program * Here is the jump destination
#FFFF; Define data

1; Define data

1

(6) JUMP instruction Instruction that branches unconditionally

Description method

[label

TuMP

|Address [, x]

Seite 264

GRO, DATAZ2; Compare the contents of DATA2 to GRO

Branch to address unconditionally.

Program example. (3x2 calculation program)

PRG JUMP START
LAD GR1,0; Set GR1to 0
LOOP CPA GR1, LIMIT; Compare the contents of GR1 and LIMIT
JPL OWARI; to OWARI
JZE OWARI; to OWARI
ADDA GRO, DATA
LAD GR1,1, GR1; Count up
JUMP LOOP
IMP ST GRO, ANS
RET ; End of program * Here is the jump destination
DATA DC 3; Define data
LIMIT DC 2; Define data
ANS DS 1
END

6. Shift operation instruction

CASL provides an operation instruction to perform a bit shift.

Multiplication and division can be performed by combining shift operations.

| (1) SLA instruction Instruction to perform arithmetic left shift. |
Description method

| label |SLA |r, address [, x] |
The data in r is shifted to the left by the number of bits specified by the address , leaving the sign bit
unchanged . Empty bits are filled with 0.

Program example.
(The contents of DATA are shifted left by 2 bits. Perform 8 x 4.)

PRG SLA START
LD GRO, DATA; Read data into register
SLA GRO,2; Shift left by 2 bits
ST GRO, ANS; Store result in ANS
RET ;The end of the program

DATA DC # 0008; Define data

ANS DS 1
END

(2) SRA instruction This instruction performs an arithmetic right shift.

Description method

| label |SRA |r, address [, x] |
The data in r is shifted right by the number of bits specified by the address , leaving the sign bit as it
is . The vacant bits are the same as the sign bits.

Program example.
(The contents of DATA are shifted right by 2 bits. Perform 8 + 4.)

PRG_SRA START
LD GRO, DATA; Read data into register
SRA GRO,2; shift right by 2 bits
ST GRO, ANS; Store result in ANS
RET ;The end of the program

e
Seite 265

DATA DC # 0008; Define data
ANS DS 1

END
(3) SLL instruction Instruction to perform logical left shift.

Description method

| label |SLL |r, address [, x] |
The data in r is shifted to the left by the number of bits specified by the address without regard to the
sign bit . Empty bits are filled with 0.

Program example.
(The contents of DATA are shifted left by 2 bits.)

PRG SLL START
LD GRO, DATA; Read data into register
SLL GRO,2; Shift left by 2 bits
ST GRO, ANS; Store result in ANS
RET ;The end of the program

DATA DC # 0008; Define data

ANS DS 1
END

(4) SRL instruction Instruction to perform logical right shift

Description method

| label |SRL |r, address [, x] |
The data in r is shifted to the left by the number of bits specified by the address without regard to the
sign bit . Empty bits are filled with 0.

Program example.
(The contents of DATA are shifted right by 2 bits.)

PRG_SRL START
LD GRO, DATA; Read data into register
SRL GRO,2; shift right by 2 bits
ST GRO, ANS; Store result in ANS
RET ;The end of the program

DATA DC # 0008; Define data

ANS DS 1
END

Seite 266

7. Stack operation instructions

COMET has a memory area called a stack.
The stack has a special way of remembering that the data stored later is retrieved first.
By using the stack, you can reverse the order of the data and use it in various ways.

| (1) PUSH instruction An instruction to store data on the stack.

Description method

| label IPUSH |Address [, x]

Store the address on the stack and store the address in the stack pointer.

| (2) POP instruction An instruction to retrieve data from the stack.

Description method

| label IPOP Ir

Reads the data stored in the stack into r.

| Program example (Change the order of DATA1 and DATA?2)

PUSHPOP START
LD GR1, DATA1
LD GR2, DATA2
PUSH 0, GR1
PUSH 0, GR2
POP GR1
POP GR2
RET

DATALI DC 1

DATA2 DC Two
END

8. Call return instruction

A call return instruction is an instruction that calls a subroutine.

| (1) CALL instruction Instruction to call a subroutine. (Jump to subroutine)

Description method

| label ICALL |Address [, x]

Processing is passed to the subroutine at the address.

| (2) RET instruction Instruction to return processing to main processing.

Description method

| label RET |

Processing returns to the caller.

| Program example (Data is read in main processing and sub processing)

[CALL RET START
LD GRO, DATAI

Seite 267

CALL

RET
DATAI DC
END

TEST START
LD
RET
DATA2 DC
END

TEST; The processing moves to the subroutine of the
TEST label.

, Process moves to OS. That means the end of the program
1

GR1, DATA2
; Process returns to CALL RET side.
Two

9. Other instructions

Introduces SVC and NOP instructions that call OS functions.

| (1) SVC instruction An instruction that calls the OS function. (Jump to subroutine defined by OS)

Description method

[label sve

|Address [, x]

Used to call OS functions.

* Note : The operation is determined by the CASL processing system (simulator, etc.). Check the

specifications of the simulator used.

CASL2000 allows input, output and decimal output.
For details, refer to the help included with CASL2000.

| (2) NOP instruction An instruction that does nothing.

Description method

[label INOP

As the name implies, it is an instruction that does nothing.
Only the count up of the program register is performed.

Seite 268

10. Macro instruction

Predefined instructions combining machine language instructions are called macro instructions.
In CASL, input / output instructions do not exist as machine language. Defined as a macro
instruction combining SVC instructions. There are some other macro instructions.

| (1) IN instruction Input instruction

Description method

label

IN

[nput data storage address , input character number storage

address

Instruction to enter. In CASL2000, input from the keyboard.
Note that the input method differs depending on the simulator used.

Input characters are stored from the first address.
The number of characters entered is stored in the second address.

Note that if you enter a number, it will be treated as a number (character).
If you want to perform calculations such as addition on the "number" you have entered, you need to
convert it to a number.

Example. Converts the entered single digit to a numeric value.

PROG IN START
IN IDATA, SUU; Enter characters
LD GRO, DATA
SUBA GRO, HENKAN; Convert numbers to numbers
ST GRO, ANS
RET

DATA DS 1

SUU DS 1

ANS DS 1

HENKAN DC # 0030; Data for conversion
END

(2) OUT instruction Output instruction.

Description method

| label |OUT |Output data storage address, number of output characters

Instruction to output.

Outputs the data stored from the output data storage address for the number specified by the number
of output characters.

Example. Outputs the input character string.

PROG _OUT START
IN DATA, SUU; Input
OUT DATA, SUU; Output the input data as it is
RET
DATA DS 20
SUuU DS 1
END

| (3) RPUSH instruction An instruction to store the contents of GR on the stack.

Description method

Seite 269

| label RPUSH |

This instruction stores the contents of GR on the stack in the order of GR1, GR2, ..., GR7.

| (4) RPOP instruction This instruction stores the contents of the stack in GR.

Description method

[label IRPOP |

This instruction stores the contents of the stack in the order of GR7, GRG6, ..., GR1.

Example. Temporarily save the contents of the register and restore it.

RPUSHPOP START
USH
OP
ET
ND

11. Assembler instructions

Assembler instructions are instructions for controlling the assembler. It is not converted directly to
machine language.

| (1) START command Command that indicates the start of a program

Description method

| label ISTART hddress

Indicates the start of a program.
This line must be labeled.

If an address is described in the operand, the program starts from that address.

| (2) END instruction Instruction indicating the end of the program

Description method

| [END I

Indicates the end of the program.

| (3) DS instruction Instruction to secure area

Description method

| label DS INumber of words

Allocates a memory area for the number of words specified.

| (4) DC instruction Instruction for defining constants

Description method

| label IDC |C0nstant [, constant] -

Define a constant.
The constant is
Decimal number: Number between -32768 and 32767

Hexadecimal: #hhhh 4-digit hexadecimal number starting with a sharp (0 to 9, A to F)
Character string: " Enclose in single quotation Address: Write the label

Seite 270

Seite 271

IX. Manuals

Sticiiid. RS
NN~} A SNV |

.jf. CASIO

AT oS

NI =L}

CASIO

Seite 272

CASLICL
Z075=27 A

.0 1.“_“
107)
oald " x ’.ﬂ
,ﬂ 1
1

BEDDDLD. “ﬂ‘ﬁbﬁ‘-ﬁo

IEIHJDA&UH-:H{“&M -3 m (=7
:Hmb»u SEML L, AubLARA

FEYISEE

CASLI

A

B LRl

© 2020 created and translated from P.Rost

Seite 273

Seite 274

	Casio FX-870P Casio VX-4
	Table of Contents
	Introduction about FX-870P / VX-4
	I. Basic Operation
	1-1 Casio VX-4
	1-2 Battery replacement
	1-3 Power ON / OFF and contrast adjustment
	Power on
	Power off
	Contrast adjustment

	1-4 VX-4 - FX-870P - Modi
	1-5 Calculation in CAL- or RUN-Mode
	1-6 Display
	Display 4 Lines and virtuell Display 8 Lines
	Selftest:

	1-7 Accessories for the FX-870P / VX-4
	FP-40:
	FA-6:
	MD-110
	FA-8:
	RS232C:
	RP-8 = 8Kb, RP-33 = 32Kb RAM Speicher:
	USB-Interface-Kabel for FX-850P to VX-4 (Inet 2020)

	1-8 Romaji – Tabellen (Shift CAPS & …)

	II. BASIC - Referenz
	Table of Contents
	The FX-850P, FX-870P, FX-880P, FX-890P, VX-1 to 4, Z-1 and PB-1000 Series
	2-1 The BASIC Token
	2-2 How to enter BASIC Mode
	2-3 Grammar Overview
	2-4 BASIC Manual Commands
	2-5 BASIC Program Commands
	2-6 File Descriptor
	2-7 BASIC Built-in Functions
	2-8 BASIC Logical Operations, etc.
	2-9 Arithmetic Priority
	2-10 BASIC Error Messages
	2-11 Character Code Table

	III. Internal Information
	Table of Contents
	3-1 Machine language related
	Memory Map
	System Area (BASIC)
	ROM Routine

	3-2 BASIC Related
	Hidden BASIC Instructions
	BASIC Program and (Text) File Storage Format
	Storage Format of Variable Data

	3-3 Appendix
	3-4 BASIC Programs

	IV. C - Referenz
	4-1 Sides from the Original Manual:
	4-2 The C-Code in Original Manual

	V. F:COM
	VI. STAT
	VII. HD61700 Cross Assembler
	Table of Contents
	List of Pseudo Instructions
	List of Registers
	List of Mnemonics
	7-1 HD61700 Cross Assembler
	Assembling Method
	Assembler Options
	Execution of Output Format and Machine Language
	BAS format
	PBF format
	QL format

	Error Message

	7-2 MPU architecture
	Features
	Register Configuration
	2) Six 16-bit registers

	7-3 Assembler
	Assembler format
	Pseudo instructions
	Programming points
	Mnemonic Format

	7-4 Mnemonic
	7-5 Instruction set Table
	7-6 Appendix
	Output format and loader
	BAS Format
	BAS format files in Table
	PBF format
	QL Format

	7-7 References and links
	7-8 Figure
	7-9 Revision information

	VIII. CASL
	8-1 What is CASL / COMET?
	8-2 Japanese CASL Wikipedia Article
	Overview
	COMET Specification
	The following Data Types are Supported:
	The Registers are as Follows:
	Instruction Format:
	Instruction set summary:
	CASL Specification
	CASL supports the following pseudo instructions:
	CASL includes macro instructions for Input and Output:
	Error Messages
	CASL Menu
	COMET Menu
	Example Programs

	8-3 CASL From the Original Manual
	a CASL Project „Jozan“
	The CASL Code in the Original Manual

	8-4 CASL from Inet-Site: http://www5a.biglobe.ne.jp …
	The CASL introduction corner – Table Contents
	1. Basic structure of CASL II Program
	2. Load / store instruction
	3. Operation instruction
	4. Comparison operation instruction
	5. Branch Instruction
	6. Shift operation instruction
	7. Stack operation instructions
	8. Call return instruction
	9. Other instructions
	10. Macro instruction
	11. Assembler instructions

	IX. Manuals

