sHARP,
DCKET COMPUTER

PC-1403

~ OPERATION MANUAL

wio9qyyoswoud

INTRODUCTORY NOTE .. e e 1
CHAPTER 1 HOWTOUSETHISMANUAL 2
CHAPTER?Z2 INTRODUCTIONTO THECOMPUTER 5
Descriptionof System 5
Keyand SwitchOperations o i 6
MO .. e e 7
AlIRESET BUION ...ttt e e 10
Contrast Comtrol e 11
CellReplacement e 11
CHAPTER3 USINGASACALCULATOR e 15
£ 7= T 1 1) o 15
U DWW L o e e e 15
AU OFF L o e 15
Calculationsinthe CALMode ... i i 16
Howto Readthe Displayo e 20
BasicOperations it e i 22
Scientific Calculationsinthe CALmodeo i 25
Useof Parenthesisottt e e e e s 28
Decimal Plates o e 28
Priority levelinthe CALMode 29
Statistical Caloulation i i e e 35

1. Single-variable Statistical Caleulation oL 36

2. Two-variable Statistics and LinearRegression 37
CalculationRange SN 4
Matrix Calculation Function oo i e 44
Manual Galculationinthe BASICMode ... i, 55
HowtoManuallyCaiculate 56
Recaling Entriesot e 57
o) -~ TP 60

Serial CalculationS i 61
Negative Numbers i i 63
Compound Calculationsand Parentheses 63

Using VariablesinCalculationso 64
ChainedCalculations oo 66

Error MESSa0E . - o ot e i e 66
Scientific NOtation o 66

15 Y1 £ N 67

LastAnswearFeatlure e e 68
Lengthof Formuta 70
Scientific Calculationsinthe BASICmodeo ..., 70

DirectCalculation Feature e 74

Priority in Manual Calculation 76
CHAPTER 4 CONCEPTSANDTERMSOFBASIC. 77
StNG CONStaNtS i 77
Hexadecimal NUMDEIS e e 77
VA AD BS L . ea 78
Fixed Vanables e e 79
SimpleVariables 80
ArrayVariables 81
Variagblesinthe FormofA{)o . e 84

B XPrESSIONS L oot e 85
NUmeric Operalors 86
SHrNg EXDresSIONS ..o e 86
Relational EXpressions i a6
Logical EXPreSsionst e 87
Parenthesesand OperatorPrecedence.o iiiiii ... a9
RUNMOGE . .. o e e e 20
UM OIS . . oo e e e 90
CHAPTER S5 PROGRAMMINGTHECOMPUTER N
PGS et e 91
BASICStatement U 91
LINENUMDEIS | e e e e e e 91
BASI VOIS . . e 92
BASIC ComMmMands vi ittt e e e 92
OB ... i e et 92
Beginningto Programonthe COMPUTER 93
Example 1—Enteringand RunningaProgram 93
Example2-EditingaProgram 94
Example 3—Using Variables inprogramming 98
Example 4—More ComplexProgramming, 98
Storing ProgramsintheMemory ... i 99
CHAPTER & SHORT CUTS .. e i
The DEF KeyandLabelledPrograms i, 101
=]« =T = 102

CHAPTER7Y USING CE-126P PRINTER/CASSETTEINTERFACE, 103

Using Printer ... o e 103
UsingCassettelnterdace 105
Cassette Tape ReCOrder e 105
Operating the Cassetteinterfaceand Recorder 107
TapeNOoles e 110
CHAPTERS BASICREFERENCE, 111
COMIMIANAS o e e 115
VIS 131
FUNGHONS .. e et 176
Pseudovariables o e 176
Numeric FUNClions e 179
Sting Functions e 185
CHAFTER 9 TROUBLESHOOTINGo 187
Machine Operation i e 187
BASICDebugging - ... e e 189
CHAPTER10 MAINTENANCEOF THECOMPUTER 191
APPENDICES .. 193
APPENDIX A ErrorMessages . ..o i e 193
APPENDIX B CharacterCodeChart coii.. 197
APPENDIX C FormattingQutput 199
APPENDIX D Expression Evaluationand Operator Priority 203
APPENDIX E Key FunctionsinBasicMode 205
APPENDIX F Specifications ... 211
APPENDIX G Using Programs Writtenon OtherPCModels 213
PROGRAM EXAMPLES ... 219
BN DX e e 241

iii

wo9oyyoswoud

Introductory Note

Welcome to the world of SHARP owners!

Few industries in the world today can match the rapid growth and technological
advances being made in the field of personal compuiers. Computers which just a short
time ago weuld have filled a huge room, required a Ph.D. to program, and cost
thousands of dollars, now fit in the palm of your hand, are easily programmed, and
cost so little that they are within the reach of nearly everyone.

Your new SHARP COMPUTER was designed to bring you all of the iatest state-of-the-
art features of this computing revolution and it incorporates many advanced
capabilities:

* SCIENTIFIC CALCULATOR - It had been normal to use two different tasks,
scientific calculation (including statistics) and computing, before this computer.
But now only one tool is enough. The computer operates both as a scientific
calculator and a pocket computer incorporating many programmed scientific func-
tions plus BASIC command keys for simple programming.

* MEMORY SAFEGUARD - The computer remembers stored programs and variab-
les even when you turn it off.

* Battery-powered operation for true portability.

* AUTO POWER OFF function which conserves the batteries by turning the power off
if no activity takes place within a specified time limit.

An expanded version of BASIC which provides formatted output, two dimensional
arrays, variable length strings, and many other advanced features.

-

CE-126 printer/cassette interface is provided.

Congratulations on entering an exciting and enjoyable new world. We are sure that you
will find this purchase one of the wisest you have ever made. The SHARP COMPUTER
is a powerful tool, designed to meet your specific mathematical, scientific, engineer-
ing, business, and personal computing needs. With the SHARP COMPUTER you
can begin NOW providing the solutions you'll need tomorrow!

woo'yyoswoud

How to Use this Manual

CHAPTER 1

HOW TO USETHIS MANUAL

This manual is designed to introduce you to the capabilities and features of your
COMPUTER and to serve as a valuable reference tool. Whether you are a “first-time
user" or an "old hand" with computers, you should acquaint yourself with the
COMPUTER by reading and working through Chapters 2 through 6.

* Chapter 2 describes the physical features of the COMPUTER.
* Chapter 3 demonstrates the use of the COMPUTER as a scientific calculator.,

*

Chapter 4 defines some terms and concepts which are essential for BASIC program-
ming, and tells you about the special considerations of these concepts on the
COMPUTER.

* Chapter 5 introduces you to BASIC programming on the COMPUTER, showing you
how to enter, correct, and run programs.

* Chapter 6 discusses some short cuts that make using your new COMPUTER easier
and more enjoyable.

Chapter 8 is a reference section covering all the commands, verbs, and functions of
BASIC that are grouped and alphabetically arranged within each group for your
convenience.

Experienced BASIC programmers may go direct from Chapter 6 to Chapter 8 to learn
the specific features of BASIC as implemented on the COMPUTER. Since every
dialect of BASIC is somewhat different, read through this material at least once before
starting serious programming.

If you have never programmed in BASIC before, we suggest that you buy a separate
hook on beginning BASIC programming or attend a BASIC class, before trying to work
through these chapters. This manual is not intended to teach you how to program,

The remainder of the manual consists of:
* Chapter 7— Basic information on the optional CE-126P Printer/Cassette interface.

* Chapter 8 — A troubleshocting guide to help you solve scme operating and
programming problems.

* Chapter 10 — The care and maintenance of your new COMPUTER.

Detailed Appendixes provide you with useful charts, comparisons, and special
discussions concerning the use and operaiion of the COMPUTER.

How to Use this Manual

Using the Hard Cover
When the computer is not being used, place the hard (plastic) cover over the

operation panel of the computer.

¢ When the computer is to be used
Remove the hard cover irom the computer as shown in figure below

Step(D)

DUDDunrﬁ

Step(2)

DDD

TD

3
—

- "5E
1D
’ DDD

* When the computer is not used

Introduction to the Computer

Description of System |
The SHARP COMPUTER system consists of:
* 77-character keyboard.

> 24-digit display.

* Powerful BASIC in 72K-byte ROM.
* B-hit CMOS processor.

* Option: CE-126P Printer/Cassetie Interface

SHAIRP rocksT compUTER Fe-1203

POWER
QN

HRTR K DF‘EE:QTIEIHM

MODE DEL NS

Eﬂ-m-mmm-m
@-Em---mmm

INFLIT IF THEN GOTO 7O STEP NEXT LIST ALIN

ex e 2 e e R Y s um Rmm] L

PRINT LSING GOSUB RAETURN _BiM END CSAVE CLOAD

m----m@-mﬁ -@--

To familiarize you with the placement and functions of parts of the COMPUTER
keyboard, we will now take up each section of the keyboard. First, just locate the keys
and read the description of each. In Chapter 3 we will begin using your new machine.

Introduction to the Computer

Key and Switch Operations

This COMPUTER has 77 keys and one slide switch on its panel. Each key function is
identified by various letters, numbers, or symbols inscribed on or above the keys.

(1) Power on
To begin with, turn your computer on.

The POWER switch is located at the upper left corner of the computer. Slide the switch
to the ON position.

Power switch

O
(IA

IEIIEIEI

INPUT 1F THEN GOTO FOR TO

21 (33 &3 (=1 =1 &3

PRINT LSING GOS5U3 RETURN DIM EMD

HIMEIE]

\RI

You will see the following initial information in the display:

DEG
-
T l—l—m T T T
QAL RUN PRO } MATRIX STAT PRINT

A dash (=) indicator in the lower left area of the display shows the mode in which the
computer is now set. When this computer has just been turned on, it functions as a
calculator. To show that the computer is in the calculator mode, a dash indicator
appears ahove the CAL (CALculator) label.

For calculator operations in the CAL mode, refer to CHAPTER 3, USING THE
COMPUTER AS A CALCULATOR.

Introduction to the Computer

The computer can operate basically in three difierent modes. One mode is the CAL
mode, in which you can use your computer just like a calculator.

Another mode is the RUN mode, in which you can execute your program or manual
calculation using BASIC commands.

The third mode is the PRO mode, which allows you to store your program inte the
computer or correct or amend a stored program.

Switching between these modes can be accomplished by the green [CAL and
keys. The selected mode is identified with a dash (=} indicator displayed just above
the CAL, RUN, or PRO label in the lower left area of the display.

SHAREP ookt wast

Green keys

INPUT IF THEN GOTO FOR =}
(3 i i e

PRINT USING GOSUB RETURN _DIM END

) EG

Now switch your computer off, then on again. The CAL mode will be selected.

e
—
-1

AL th ik PR A

if you press the key when in the CAL mode, the RUN mode will be selected.

=
CaL RUN PR EEE

If you press the key when in the RUN mode, the PRO mode will be selected.

Ay Hul PR [ZERTE

Introduction to the Computer

Thus the RUN and PRO modes are selected alternately each time you press the
key.
The computer will return to the CAL mode if you press the key.

Mode switching

CAL mode
C
Bress Press
RUN mode
-
Press [mst) BASIC mode
Y
PRO mode
1. CAL mode

Now let's operate the keys.

Set your computer in CAL mode
first. In CAL mode the keys and
functions shown at right can be used
for calcuiation.

nAaTAIX
Bla)=]c

@ x ¥ 0RG »
-]
Display
(Red key) — 0.
o - 12
- 12
Y -+ 3.
=] - 15,

Introduction to the Computer
2. RUN and PRO modes

GChange the CAL mode to BUN or PRO by using the key, and press the
following keys whilte watching the display:

In RUN and PRC modes the keys shown below can be used for calculations.

. .)
o) [Geg

POWER
QH

orr

11 GRL -

C r e R Al
IHS

| e o |
= = o E e
= :

H 1" o 5 P 13 7 fir: H H @ - -
DEmOoAOnOodn o]
INPUT IF THEN GOTO FOR TQ STEP NEXT LIST RUN @ @ E
ol hal o) [Jaa fa e

PRINT USING GOSUB RETURW Dbt END CSAVE CLOAD PP

HESEOMSScHE bOEE

Example:

PAINT usinG - ZXC_

i] Iil [% i} - ZXC12.3_

CA > >

el i] lil E%"] - A=4 + ST
CTursor

If you press an alphabet or number key, the item denoted on the key will be entered.
When you wish to enter the character or symbol dencted in brown above each key,
press the yellow key before operating the key.

ox G (1) ~ PRINT_
W O > PRINT “ vV _

The key is used to enter the characters or symbols inscribed in brown above
each key that has two or three functions. If you repeatediy press the key, the
SHIFT symbol at the top of the display will go on and off. The SHIFT symbol indicates
that the key is activated and the characters in brown can be entered.

Introduction to the Computer

AllRESET Button

ALL RESET: Reset button. This button is used to reset the computer when Clear
(c-ce]) or CA is not sufficient to correct a problem.

To reset the computer, hold down any key on the keyboard and simuitaneously press
the RESET button an the back. This preserves all programs and variables in memory.

Resetbutton

Haold down
anykey

Note: When you press the RESET button, keep pressing it for at least 2 or 3 seconds.
i you press the button for a shorter duration, the RESET bution may not be
activated.

Press the RESET button with a pointed object such as a ballpoint pen. Da not
use easily broken points, such as mechanical pencils or the tips of needles, nor
points thicker than the hole for the button,

If you get no response from any key even when the above operation is performed, push
the RESET hutton only and the following message will appear on the display.

MEMORY ALL CLEAR O.K.?

Then press one of the [ENTER], cand (=] keys.
Note: If none of the keys is pressed for about 2 minutes after the above display, the
COMPUTER is automatically powered off,

This operation will clear all the memory contents {program and data), so do not
press the RESET button without depressing any key unless absclutely necessary.,

10

Introduction to the Computer

‘Contrast Control

Your computer has on its right side when viewed from the front, a control for adjusting
the contrast of the display. Adjust the display for visibility.

Contrast Control

Turn the control in the arrow direction (coun-
ferclockwise) for a higher conirast and in the
opposite direction (cloclkwise) for a lower con-
frast.

Cell Replacement

The COMPUTER normally operates on the two built-in lithium cells.

When replacing the cells, following these cautionary instructions will eliminate many
problems:

® Always replace both cells at the same time.
Do not mix a new cell with a used ceil.

® Use only the specified type of lithium cells (CR-2032) (two required).

When to Replace the Cells

If the display is dim and difficult to see when viewed from the front even after the contrast
control has been turned counterclockwise as far as it goes, the cell voltage is too low.
In this case, replace the cells promptly.

Note: If you are using the optional CE-126P cassette interface, save your programs
and data in memory onto a cassette tape before replacing the cells.

1

Introduction to the Computer

How to Replace the Cells
(1) Turn off the computer by sliding the power switch to the OFF position.

(2) Remove the screws from the back cover with a small phillips screwdriver. (Fig.

1)
ﬂq B
1 E
— :_Z _©

.
Fig. 1 et

(3) Remove the cell cover by sliding it in the arrow direction shown in Figure 2.

Cellcover

Fig. 2

{(4) Replace the two cells (Fig. 3).

Always replace
both of the cells at
the same time

Lithium cell

Fig. 3

introduction to the Computer

(5) Replace the cell cover by sliding it in the reverse direction of the arrow shown in
Figure 2.

{6) Hook the claws of the back cover into the slits of the computer proper. (Fig. 4)

Fig. 4

(7) Push the back cover in slightly while replacing the screws.

(8) Turn on the computer by sliding the power switch to the ON position and press the
RESET button to clear the computer. And then press .
The display should look like this:

PO

CAL

———
|

If the display is blank or display any symbol other than “ - 0.”, remove the cells
and install them again, then check the display.

Note: Keeping a dead cell in the computer may result in damage to the computer from
solution leakage of the cell. Remove a dead cell promptly.

CAUTION: Keep cell out of reach of children.

13

wo9oyyoswoud

Using as a Calculator

'CHAPTER 3

USING ASACALCU LATOR

Now that you are familiar with the layout and components of your new SHARP
COMPUTER, we will begin investigating its exciting capabilities.

Because the COMPUTER allows you the fuil range of calculating functions, plus the
increased power of BASIC programming abilities (usefu! in more complex calcula-
tions), it is commoenly referred to as a “smart” calculator. That, of course, makes
you a “smart” user!

{Before using the COMPUTER, be sure that the two lithium cells supplied as an
accessory have been correctly installed.)

To turn ON the COMPUTER, slide the power switch up.

"When you wish to use your COMPUTER as a scientific calculator, place the COMPUT-
ER in the CAL mode. The CAL mode is selected when the COMPUTER is switched on
or the key is pressed. When the CAL mode has been selected, a dash {=)
indicator will appear just above the CAL label in the lower left area of the display

CAl Rl PRG

If the dash (=)-indicator is above the RUN or PRO label, press the key or turn the
power off and then on again to select the CAL mods,

To turn off the COMPUTER, slide the power switch to the OFF position.

Each time you turn off the machine, the display will be cleared.

To conserve on battery power, the COMPUTER automatically turns off when no keys
have been pressed for about 11 minutes. (Note: The COMPUTER will not AUTO OFF
while you are executing a program.)

ON
To restart the COMPUTER after an AUTO OFF, press the key located at the right
of the green key.

Using as a Calculator

Note that the computer returns to the CAL mede when the key is pressed after the
AUTQ OFF,

Calculations inthe CAL Mode

In the CAL mode, the keys and functions
shown at right can be used for calculation.

Note: In the CAL mode, the results of
calculations cannot be oufput on the
printer.

ATAIX

-@-

_ Ffl
= -@-@-
:

=) [) |

Now let us try some simple calculations. Press the following keys while watching the
display:

cr x:r

Input Display

v s
2]

123.

123. |

654. |
777. |

o2

- BB B

{123 + 654 = 777)
Press the equal key

Did you get the correct answer? If you didn't, turn the computer off, then on again,
and try the same calculation.

Now iet us call the value of pi (7).

Symbol “r” is inscribed just above the (Exp] key in brown. The functions identified by
brown letters can be used by first pressing the yellow [SweT] key, and then pressing the
required function key.

Now press

16

Using as a Calculator

ATRIE STAT (RIWT

Yellow key
_Input Display
A
3.141592654

(r=3.141592654)

What you see in the display is the value of 7.

Next, let us compute 10* For this calculation, you should use the function 10%, This
function is also identified by a brown letter, so the key must be pressed before
the function key is pressed:

Red key

Input Display
T 10%F
(zwer] [log] 10000,
(10% = 10000)

The following outlines the major key functions:

*

c-ce| (clear) (red key)

If this key is pressed immediately after numeric data is entered or the contents of the
memory are recalled, that data will be cleared. In any other case, operation of the
key will clear the operators and/or numeric data that have been entered. The
contents of the memory are not cleared with the [c:cg] key operation.

17

Using as a Calculator

Input Display Inout Display

123 456 456. 6 X] 2 (¥] 12.

cce) 0. 9.

789 (=] 912. 8 [(F] 2 3.

(123 + 789 = 912) 5 (=) -]

The key may also be used to clear an etror.
input Display
5 (5] o =) 0 j<— Error symbol
[e-ce] 0.

* (display mode switch)

This key is used to switch the display mode for the result of a calculation from the
floating point decimal system {normal mode) to the fixed point decimal, scientific
notation, or engineering notation system, or vice versa.

[nput Display

o 50 e =1[23009, | (Noma)
FSE | FIX 23000.000 (FIX)
Fsel | SCI 2 .300E 94 (SC)
FSE |ENG 23.900E 93| (ENG

* [TAB] (specifies the number of decimal piaces)

This key is used to specify the number of decimal places when used in conjunction with
a numeral key. Turn off the power switch and then on again. Press key and the
display will show “@.888" (FIX mode).

Input Display
TAB
(1) Specifies 2 decimal (23 |{FIX 0.00
places. n

18

Using as a Calculator

s) s =) | FIX p.63
ILF)E Display
(2) Specifies 5 decimal (5] FIX 0.62500
places. (2)

* DRG] (specifies angular unit.)

This key is used to specify the angular units for numeric data used in trigonometric
functions, inverse trigonometric functions, or coordinates conversion.

Input Display
"] (Degrees)

DRG nag .
=] {Radians)

DRG GRAD
] {Grads)

DRG (13
[IL {Degrees)

180° = i {rad) = 2008 DEG: Degree [°]

RAD: Radian [rad]
GRAD: Grad [g]

* [0] to (97, [+ . [Exp] and (4]

(ExP]: Used to enter a number in exponential form (the display shows “E"
following the number entered).

19

Using as a Calculator

Input Display

4 3 4.E 93|
{4 x 109

= 4900. |

&4 ~4000. |

+/-] : Used to enter a negative number {or to reverse the sign from negative to

positive).
Input Display
1.23 -1.23 }
= s —1.23E—05 |
(—1.23 x 10°%)
(=] —0.00800123
.0000123

How to Read the Display

This section describes the display formats and symbols used in the CAL mode.

DEG
i Al alwln]
Normal display format L |'.| i I.|I - }
CP:L RUN PRO MATR\lX ST;’\T F‘;?INT
BEG
- - -
Exponential display format _1) LA, Fih l i :I'I:::E 1:1::,
L]
Cﬁ{L RUN PRO ELE® MATFUX STIAT PRINT
—_

Mantissa (12 digits) Expanent {4 digits)

The computer has a 24-digit display, of which 16 digits are used to display numbers. In
the CAL mode, calculation results are normally displayed in the floating decimal point
system. If the result is smaller than 0.000000001 or greater than 9999999989
(greater than —0.000000001 or smaller than —9999889999), it is displayed in
expanential format. In the exponential format, the mantissa part of a number is
displayed to 12 significant digits, while the exponent part is displayed to 4 significant
digits (inctuding a decimal point, sign, and symbol).

20

Using as a Calculator

Display symbols
The following describes the symbols and indicators that appear in the display to show
the mode, status, or condition of the computer.

BUSY SHIFT HYP SML DEGRAD () ME

T T T T
CAL RUN PRO MATRIX STAT PRINT

The computer uses the symbols and indicators shown above, whose meanings are the
following:

SHIFT: This word comes on when the key is activated, indicating that the
second function of a key identified by a brown label can be selected.
To release the SHIFT mode, press the key a second time.

HYP: This word comes on when the key is pressed, indicating that a
hyperbolic function has been selected. If are pressed, a
phrase, SHIFT HYP, comes on to indicate that an inverse hyperbolic
function has been selected.

SML: This word comes on when the key is pressed, indicating that the fow-
er case mode for the alphabetic characters is selected.

DEG

RAD

GRAD: These words are selected sequentially each time {_D%] keys are
operated. Each of these words indicates the angular units for trigonometric
functions, inverse trigonometric functions, and coordinates conversion,
respectively.

DEG: Degree []

RAD: Radian [rad]
GRAD: Grad [g]
(180 deg. = 7 rad = 200g)

{ » This symbol comes on when parentheses are used in a calculation formula
by means of the [] key.

M B This symbol comes on when a number other than zero is stored in the
calculation memory, to indicate that the mermory is in use.

E: This symbol comes on if an error has occurred. The error can be cleared by
operating the key.

21

Using as a Calculator

ST-AT: Pressing the % keys in the CAL mode causes a dash (=)
indicator to appear just above the STAT label in the lower right area of the
display. The STAT stands for statistics and indicates that the computer is in
the STAT (statistical calculation} mode.

CRL: It a dash (=)indicator appears just above the CAL label in the lower left area
of the display, it indicates that the computer is in the CAL (calculation)
mode.

BUSY: This indicator comes on while the computer is performing an arithmetic
operation.

MATRIX: Pressing [Bmer)(&] or (swFT];(1]) in the CAL mode causes a dash indicator
(~) to appear above the MATRIX label in the lower right area of the display.
The MATRIX indicator indicates that the computer is ready to perform a
matrix operation.
To release the MATRIX mode, press either key combination a second time.

Basic Operations

This section describes the basic operations of the computer in the CAL mode. Before
starting, turn on the power of your computer. First, press the key to place the
computer in the CAL mode. Then press , and make sure that the display
shows the following initial information.

E)] (&
¥ ¥
DEG “—i5"
i «—
Al |
-
T T T T
CAL RUN PRO LELEI¥ MATRIX STAT FRINT
+

e
If not, read the following description and take the necessary action:
(1) More than one zero is displayed (e.g., 2.08):
The number of fractional digits is being specified. Clear the TAB setting by turning

off the power switch then on again. The COMPUTER is now in the normal display
mode.

(2 A dash (=) indicator is displayed at the STAT or MATRIX label:
The computer is in the statistical calculation mode. Press ETaT 1o release
the STAT mode. Press (] or [smeT] T to release the MATRIX mode.

(@) RAD or GRAD is displayed instead of DEG:
The RAD, GRAD, and DEG indicate angular units for display data. Any of these
symbois may be displayed unless a trigonometric function, inverse trigonometric
function, or coordinate conversion is to be executed. Each of these symbols can be
sequentially selected by operating .

22

Using as a Calculator

(d; Symbal [M] is displayed:
Numetic data is already in the memary. This symbol can be cleared by [c:cE]
2o
(53 All symbols displayed in the upper area of the display can be cleared with the [¢-ce]
key, with the exception of those described in the above items r3) and (4).

In this manual, the key functions are shown as follows:

R (SHIFT) [sin] © 8in? key
(sin]
i N (i)

Sin key

I {pEL) : Deletion key
DEL

Left arrow key

j—» (a4 : Factorial key
n

R 0] © Close parenthesis key

\——’ These keys are operable when

the statistical calculation mode
is set.

1. Addition, Subtraction
Key in the following: 12 456 (=] 321 789 (=] 741 213 (=]
Answer: 286.5

2. Multiplication, Division
a. Key in the following: 841 586 (=1 12 (=]
Answer: 41068.83333

b. Key in the following: 427 [¥3 54 [XJ 32(£17 (=] 39 A 2 [=]
Answer: 595.8571429

Note that multiplication and division have priority over addition and subtraction. In
other words, multiplication and division will oceur before addition and subtraction.

23

Usling as a Calculator

Constant Multiplication: The first number entered is a constant.
Key in: 3 5 =] Answer: 15

A 1 30
Key in: 10 (=) nswer

Constant Division: The number entered after the division sign is a constant.

Key in: 156 (213 (=] Answer: 5
A o1
Key in: 30 (=] nswer: 10

Note: The machine places some calculations in pending status depending on their
priority levels. Accordingly, in successive calculations the operator and numer-
ical value of the calculation last performed in the computer are handled as a
calculating instruction and a constant for the next calculation, respectively.

athbxe= +be (Constant addition)
axbtc= Tc {Constant division)
atbxe= 2« {Constant muitiplication)
o b Constant subtracti
axb—c= e (Constant subtraction)

3. Memory Calculations

The independently accessible memory can be accessed by using the three keys: x=m,
(RM™), (M* . Before starting a calculation, clear the memory by pressing and

T+M .

Key in: 12 5 Answer; 17
To subtract, key in: 2 5 =]
Answer to this equation: —7
Key in to recall memory: 10 is displayed.
Key in: 12 2 (=]
Answer: 24 (Also takes place of 10 in memory)
Keyin: 8 (£] 2
Answer: 4 {RM] : 28

Note: Memory calculations are impossible in the STAT (Statistical calcutation)
mode.

When subtracting a number from the memory, press the and keys.

24

Using as a Calculator

To perform trigonometric or inverse trigenometric functions, and coordinates conver-
sion, designate the angular unit far the calculation. The angular unit “DEG, RAD, or
GRAD?” is designated by the and [DRG] keys.

1. Trigonometric functions

Set the angular unit to "DEG".

Calculale: Sin 30° + Cos 40° =

Key in the following: 30 (3] + 40 [ces) [Z]
Answer: 1.266044443

Calculate: Cos 0.257

Set the angular unit to "RAD".

Key in: .25 [X] 38T} (] [=] [eos] (Remember to use the key.)
Answer; 0.707106781

2. Inverse Trigonometric Functions:
Calculate: Sin 0.5
Set the angular unit to “DEG”.
Key in: .5 [sin-T] Answer: 30
Calculate: Cos™ —1
Set the angular unit to "RAD™.
Key in: 1 3/ cos) To enter a negative number, press the +/7) key
after a number.
Answer: 3.141592654 (Value of)

The caiculation results of the respective inverse trigonometric functions will be
displayed within the following limits.

@=sin" y, B=tan’y O=cos™y

DEG: -90=6<90/[°] DEG: 0=6=180[°]
RAD: — 72 =6=g2[rad] RAD: O=b<n [rad]
GRAD: —100=6<100[g] GRAD: 0<8=200[g]

3. Hyperbolic and Inverse Hyperbolic Functions
Calculate: Sinh 4

Key in: 4 (sin] Answer: 27.2899172
Calculate: Sinh™ 9
Keyin: 9 forcers) Answer: 2.893443986

4. Power Functions
Calculate; 20°
Key in: 20 (3%] Answer: 400

25

Using as a Calculator

Calculate: 3° and 3*

Key in: 3 3 =) Answer: 27
Key in: 3 4 =] Answer: 81
5. Roots

Calculate: V25

Key in: 25 Answer: 5
Calculate: Cubic root of 27

Key in: 27 Answer: 3
Calculate: Fourth root of 81

Key in: 81 4 =] Answer: 3

6. Logaritbmic Functions
Calculate: In 21, log 173
Natural Logarithms:

Key in: 21 On] Answer: 3044522438
Common Logarithms:
Key in: 173 Answer: 2238046103

7. Exponential Functions
Calculate: >
Key in: 3.0445
Answer: 20.99952881 (21 as in item "6" above)
Calculate: 10228
Key in: 2.238
Answer: 172.9816359 (173 as in item “6” above)

8. Reciprocals
Calculate: 1/6 + 1/7

Key in: 6 7 =] Answer: 0.309523809
9. Factorial
Calculate: 69!

Key in: 69 (r1]
Answer: 1.711224524E 98 (=1.711224524 x10%)

Note that the section on Errors deals with the calculation limits of the computer.

. 8!
Calculate: gP; = B =30 =
Key in: 8 (smer) (A7) (3 (11 8 (=) 3 (O Guwd (AD (=]

Answer: 336

10. Percent calculations

Calculate: 45% of 2,780 (2,780x%)

Key in: 2780 45 Answer: 1251

26

11.

12.

Using as a Calculator
547 — 473

473
Key in: 547 [=1 473 (8%]
Answer: 15.6448203

Calculate: x100

Angle/Time conversions
To convert an angle given in the sexagesimal system (degrees/minutes/sec-
onds) to its decimal equivalent, a value in degrees must be entered as an integer
and values in minutes and seconds as decimal fractions, respectively.
Convert 12°47'52" to its decimal equivalent.
Key in: 12.4752
Answer. 1279777778

When converting an angle in decimal degrees to its sexagesimal equivalent
(degrees/minutes/seconds), the answer is broken down: integer part =
degrees; 1st and 2nd decimal digils = minutes; 3rd and 4th digits = seconds;
and the 5th digit and up = fractional seconds.
Convert 24.7256 io its sexagesimal equivalent (degrees/minutes/seconds)
Key in: 24.7256
Answer: 24.433216 or 24°43'32"

A racehorse has the track times of 2 minutes 25 seconds, 2 minutes 38 seconds,
and 2 minutes 22 seconds. What is the average running time of the horse?
Key in: .0225 [+7.0238 (+].0222 [oed [=]
Answer 1: 0.123611111
Keyin: [£] 3 (=]
Answer 2: 0.041203703
Key in:
Answer 3: 0.022833333 or the average time is 2 minutes 28 seconds

Coordinates Conversion
Converting rectangular coordinates to polar (x, y — r, 8)

. 9)r=\/x2 +y? DEG: 0g£I181<180
RAD: 0<I61<n
6 = tan™! % GRAD: 0< 16 1< 200

Solvefory =6andy = 4
Angular unit: DEG

Keyin: 6 (] 4 [+ Answer: 7.211102551 ()
Key in: (%] Answer: 33.69006753 (0)
Calculate the magnitude and direction (phase) in vectori = 12 + |9
Keyin: 12 (3] 9 Answer: 15 (n)

Key in: (2] Answer: 36.86989765 (0)

27

Using as a Calculator

Conwverting polar coordinates to rectangular (r, 8 — x, y)
Solve for P (14, #/3), r = 14, & = #/3)
Angular unit: RAD

Key in: [smrr] (1) (31 3 (=] (3] 14 (3] (s 737

Answer: 7.000000002 (x} T
Key in: [($]
Answer: 12.212435565 (y) In the above example, &

= /3 is input first and is
replaced with r = 14 by
pushing the (37 key after
ris input.

Use of Parenthesis

The parentheses keys are needed to cluster together a series of operations when it is
necessary to override the priority system of algebra. When parentheses are in use on
the COMPUTER, the symbol “{)" will appear in the display.

Calculations in parentheses have priority over other calculations. Parentheses in the
CAL mode can be used up to 15 times in a single level. A calculation within the
innermost set of parentheses will be performed first.

Calculate: 12 + 42 = (8 — 6)
Keyin: 12 [#J 42 () kJ 8 =) 6 (11 [=]
Answer: 33
Calculate: 126 = [(3 + 4)x (3 — 1)]
Keyin: 126 (=]] 13 (%] 4 (] s =t 03 =]

Answer: 9

Note: The [T keys located just before the (=] or key can be omitted.

Decimal Places

The [ERFET]. and keys are used to specify the number of decimal places in the
calculation result. The number of decimal places after the decimal point is specified by
the numeral key (~ (8]) pressed aiter the and keys. In this
case, the display mode must be FIX (fixed decimal point), SCi (scientific notation),
or ENG (engineering notation).

— Designates 0 decimal place.
{The 1st decimal place is rounded.)

(TAB] — Designates 1 decimal place.
((The 2nd decimal place is rounded.)

TaB] (8] — Designates 9 decimal places.
(The 10th decimal pface is rounded.)

28

Using as a Calculator

To clear the TAB setting (designation of the decimal places), turn off the power switch
and then on again. The display is now in the normal display mode.

Example:
[sHiFT] [TAB] &Il — 0.055555556 {FiX mode)
L2 B (#1030 [=1 (The 10th decimal place is rounded.)
FSE — 5.555555556E-02 (SCI mode)
(The 10th decimal place of the mantissa part is rounded.)
sHrr] [TaB] (3) — 5.556E-02 (SCI mode)
{The 4th decimal place of the mantissa part is rounded.)
FSE — 55.556E-03 {(ENG mode)
[FSE) — 0.055555555

This is determined by the computer in the
form of 5.55555555555 x 10, Rounding
the 11th digit of the mantissa results in
5.555555556 X 102, When changed to
the floating decimal point display, the
rounded part may nct be displayed as in
this example.

Priority Levels in CAL Mode

The machine is provided with a function that judges the priority levels of individual
calculations, which permits keys to be operated according to a given mathematical
formula. The following shows the priority levels of individual calculations.

Level Operations
(1) Functions, such as sin, x’

@ ¥y Vy

(3 x + {Caiculations which are given the same priority level are executed in
their sequence of input.)

(4) +, -

5y =, M+, A%

29

Using as a Calculator

Ex. Key operation and sequence of calculation in 5 + 2xsin 30 + 24 x5° =
5 3 2 X130] (#2124 X5 7 3 =]
' J [v

' |
; 1 ' |
i ' ﬁ
R ——

@ @
@ &
®

1}
A

|
|
[
|
|
1

The numbers (3) ~ (&) indicate the sequence in which the calculations are carried out.

When calculations are executed from the higher priority one in sequence, a lower
priority one must be set aside. The machine is provided with a memory area for up to
eight levels of pending operations.

As the memory area can also be used in a calculation including parentheses,
caleulations can be performed according to a given mathematical formula uniess the
levels of parentheses and/or pending operations exceed 8 in total.

& Single-variable functions are calculated immediately aiter key operation without
being retained. (x2, 1/x, nl, >DEG, —DMS, etc.)

Calculation without using parentheses

Ex. 1[F)2[=) Pending of 1 level
O
1 2 3 =] Pending of 2 levels
0] @

1 2 3 4 =] Pending of 3 levels

MRS P

ORNNE) @
1 213 4 [£]1 5 With the (7] pressed, 3 calculations
“’"“‘é"” ‘”“5’”‘ ”"é)‘”" remain pending. Pressing the (] key
executes the calculations of “y** high-
@ est in priority level and “x” identical in

priority level. After the (=] key Is
pressed, the other 2 calculations will
remain pending.

30

Using as a Calculator
Calculation using parentheses

Ex. i) 112030 3 (I 4 numerals and calculation instructions
- are left pending.

tre [2 3:

4[=]6

i) 1 2 (17713 [=] Pressing the [) | key executes the cal-

culation of 3 — 4 + 5 in the paren-
theses, leaving 2 calculations pending.

a (@ 3

4 (=] 5[]

P s

4

e Parentheses can be used unless pending calculations exceed 8. However, paren-
theses can be continuously used up 1o 15 times.

Ex. ax(((b — cx{({{d + e)xf) + g .cceuen.

Parentheses, if conlinued, can be used up to 15.

Conversion between Decimal and Hex Numbers, and Hex Calculations

([wex) }

[shex] : Allows you to convert a decimal number inte its hexadecimal equiva-
lent and, at the same time, places the computer in the HEX mode.
(The display shows the symboel “HEX".)

: Allows you to convert a hexadecimal number into its decimal equiva-
lent and, at the same time, releases the computer from the HEX
mode. {Symbol "HEX” disappears from the display.)

Hexadecimal notation is one of the notation systems broadly used in the computer field.
The radix for hex notation is 16 and hex numbers consist of numerals O through 9 and
uppercase letters A through F used in place of 10 through 15 of decimal notation.

{Hexadecimal) (Decimal)
A —— 10
§ §
F —_— 15

3

Using as a Calculator

Hex numbers A through F can be entered by first placing your computer in the Hex mode
(with [=x key), then pressing the respective keys shown in figure.

The symbol HEX indicates that the numeric
data shown in the display is a hex number,
and that you can perform any basic arithmetic
operations on hex numbers.

a8

To clear the Hex mode, operate &g . You cannot clear it with the key.

1.

Decimal to hex conversion

Example:

Example:

Example:

Convert decimal number 30 into its hexadecimal equivalent:

Key in: 30 [#x Answer: 1E. HEX

To perform a new conversion, temporarily clear the HEX mode with
.

Convert decimal number —2, into its hexadecimal equivalent.
Temporarily clear the HEX mode with [oec .

Key in: (2] [reei]
Answer: FFFFFFFFFE. HEX

e |If you attempt decimal-to-hex conversion on a negative decimal
number, the computer internally performs "two's complement”
calculation and shows the result in 16’s complement.

e The /- key may be used to reverse the positive or negative sign
of the numeric data now in the display. If the sign of a positive hex
number is reversed, the complement of the positive number will be
abtained in the display.

Convert decimal number 123.4 into its hexadecimal equivalent.
Key in: 123.4 =5
Answer: 7B. HEX

¢ If a decimal number having a fractional part is converted
into a hex number, the fractional part of the decimal
number is truncated and only its integer part is converted
into a hex number.

az

Using as a Calculator

2. Hex to decimal conversion

Example;

' Example:

Convert hex number 2BC into its decimal equivalent
Keyin: [ecel () 2BC (<o)

Answer: 700.

Convert hex number FFFFFFFF12 into its decimal equivalent:
Key in: [x FFFFFFFF 12

Answer: FFFFFFFF12., HEX

—238, |

¢ [f any of hex numbers FFFFFFFFFF to FDABF41C01 is converted
into its decimal equivalent, the corresponding decimal number will
become negative.

3. Hexadecimal calculations
Hexadecimal calculations can be done after your computer is placed in the Hex
mode. Press [rx) and the symbol HEX will be displayed.

Example:

Example;

Example:

A4 + BA =
Key in: A4 (+1 B A [=]
Answer: 15 E. HEX]
{360 in decimal}
Bx3 =
Keyin: 8 3 =)
Answer: 18. HEX
(24 in decimal}
(12 + D)xB =
Key in: CO12=D[L1] [XIB =]
Answer: 155. HE x—,

(341 in decimal)

33

Using as a Calculator

Example: 43A — 3CB
+)A38 — 2FB

Il

fl

Total
Key in: E<g
43A(= 3CB

Answer: 6F. HE):](

A38 (=] 2FB

Answer; 73D. HEX

Answer: 7AC. HES'J(

For hex calculations, you should note the following points:

In hex calculations, the computer igriores alt fractional parts. This means that the
decimal point key, [+, is meaningless even if pressed for a hex calculation.

It an intermediate result in successive hex calculations includes a fractionat part, an
error will result,

Example: B (=3 3 ... Error {Symbal “E” is displayed.)

If a fractional part is in the result of the final calculation, it will be truncated and only
the integer part of the result will be displayed.

Example: B (=] 3 [=] ... 3. HEX

In the Hex mode, the key may be used to obtain a complement for the hex
number now shown in the display.

Example: AB —» FFFFFFFF55. HEX
— AB. HEX
in the Hex mode, the function keys on the computer are not usable.

When the computer is in the STAT or MATRIX mode (a dash (=)} indicator is shown
at the STAT or MATRIX label), neither conversion between decimal and hex
numbers nor a hex calculation is executabie.

34

Using as a Calculator

-Statistical Calculatio
To perform statistical calculation, press the and [E7a1) keys (under the red
key) in the CAL mode, a dash {~} indicator will appear just above the "STAT" |abel
in the lower right area of the display. The “STAT” stands for STATistics, and
indicates that the computer is in the statistical calculation mode.

When the computer is inthe RUN or PRO mode, press the [Cat] and then [sHier
to perform a statistical calculation.

STAT

Display a dash indicator in this position by
pressing the andfsTatlkeys.

Keys that are used mainly in the statistical calculation mode.

ppm—

When a statistical calculation is performed, the following statistics are automatically
stored in the memory area for fixed variables used in the BASIC mode. And these
statistics can be used in the BASIC mode, because these statistics are retained even
when the statistical calculation mode is reset. These statistics are cleared when the
statistical calculation mode is reset and then set again for another statistical calcula-
tion.

Memory Z Y X W \' U

Statistic n Zx x? | Zxy Ty Tyl

35

Using as a Calculator

To clear previous statistical inputs and calculations, reset the statistical calculation
mode once and set this mode again. Otherwise, when a new statistical calculation is
performed, incorrect answers will be obtained.

When the statistical calculation mode is set, the following cannot be performed:
* Memory calculation

* Calculation with parentheses

*

Coordinates conversion

*

Conversicn between hexadecimal and decimal numbers

*

Hexadecimal calculation

1. Single-variable Statistical Calculation
The following stafistics are abtainable in a single-variable statistic calculation:

(1) n: Number of samples

(2) Sx: Sum total of samples

(3) =x2 Sum of squares of samples

{4) X Mean value of samples ¢ _ Zx

n
Standard deviation with population parameter taken to be
ﬂn_1 ll- N

S 5 (Used to estimate the standard deviation of
sx= /2% " apopulation from the sample data extracted
: n—1

from that population.)

(5) Sx:

{6) ox: Standard deviation with population parameter taken to be

FTpyt}

n-.

(Used when all the populations are taken as
¥x? - nx?* sample data or when finding the standard
n deviation of a population with samples taken

as that popuiation.}

ax =

Data for single-variabte statistic calculations are input by the following key operations;
(1) Data {used to enter data one by one}
(2) Data Frequency (used to enter two or more of the same data)

Example:

Calculate standard deviation, mean, and variance (sx)? from the following data:
Set the computer in the statistical calculation mode.

Value 35 45 55 65

Frequency 1 1 5 2

36

Using as a Calculator

As each sample is entered, the number of data of that sample will appear at the right of
the display.

Key in: Display

[sHiFT] fsTatl 0.

35 1
45 2.
55%5 | 7.
5% 2 9

Notes: 1. Aiter all the data have been entered, statistics such as mean value,
standard deviation, etc., may be obtained in any desired order.

2. After a mean value, standard deviation, or any other statistic has been

obtained as an intermediate result, more data can be entered and

statistical calculations can be performed continuously on additional data

entry.
Key in: Display:
Mean: () (X 53.88288889
Standard Deviation: (55] 9.279607271
Variance: [x7) 86. 11111111

Correct Data (CD): The last data entry in the above example is an error and must be
changed to 60x2.

Key in: Display:
65 [X] 2 7.
680 [X] 2 9.

2. Two-variable Statistics and Linear Regression

In addition to the statistics for both variables x and y which are the same as those of x in
single-variable statistics, the sum of the products of samples Zxy is obtained in two-
variable statistics. Two-variable statistics make possible the developrment of a relation-
ship (correlation) between two sets of data. Each pair of data has x and y values.
From these sets of data a line of regression can be established. The relationship of the
two sets of data by use of the straight line method is called Linear Regression. In Linear
Regression there are three important values, r, a, and b.

The equation of the straight line is y = a + bx, where a is the point at which the line
crosses the Y-axis and b is the slope of the line.

The correlation coefficient r shows the relationship between two sets of data. A perfect
correlation between two values is an r equal to 1 (~1 is a perfect negative correla-
tion); in other words, by knowing the value of one variable you can predict with 100%
accuracy the value of the other variable. The further the value of ris from 1, the less
reliable will your predictions be. The following table can be used as a set of definitions of
the values of the correlation coefficient:

a7

Using as a Calculator

Positive
Correlation

Negative
Correlation

Correlation coefficient

Value of r

+0.80 to +1.00
+0.60 to +0.80
+0.40 to +0.60
+0.20 to +0.40
—-0.20t0 +0.20
—0.20 to —0.40
—0.40 to —0.60
—0.60 to —0.80
—0.80 to —1.00

Coefficient of linear
regression equation

r = ________Sxy
v Sxx ’ Syy
a=y — bx
Sxy
b:
Syx

English?

Student No.
I3

3

o3 I &1 IEF SRR ¥V B AV

y=a+bx

Mark in Math.

X
82
53
61
74
51
51

DATA

[X] 2 [oATA

D AW

Call it

Extra High
High
Moderate
Low

Nil

Low
Moderate
High

Extra High

Example 1: If we know a student’s mark in mathematics, can we predict the mark in

The exam marks for five students chosen at random are given in the following table:

Mark in English

Y
79
50
87
96
73
73

Display

{Note: To input muliiple
identical samples, pro-
ceed as indicated.)

Using as a Calculator

(] 0.571587901
La] 34.26190476 (y-axis)
e 0.678571428 (stope)

The value of 0.571587901 for r indicates that the correlation is moderate. The
equation for the straight line for this data is y = 34:26 + 0.68x when truncated to
second decimal places.

Key in: Display
90 95.33333333

If we had a student whose mark in mathematics was 90, the student would have a mark
of 95 in English based on this analysis.

Example 2: Is weight a good predicior of longevity among men 65 years of age? In

1950, 10 men, each six feet tall, were selected for an experiment to
determine if their weight effected their life span.

Sample 1 2 3 4 5 6 7 8 8 10

Age at death 72 67 69 8 91 BB 77 74 70 82

Weight at age 66 | 185 226 200 169 170 195 175 174 198 172

Key in: Display
s 0.
72 185 1.
67 G 226 2
inue to place in al d :
(-_Eﬁff'mfe:]f place in all data) —0.792926167

The value for rindicates a relatively high negative correlation. A higher weight means a
shorter lite span. To graph the regression line, coefficients « and b are used.

(a7 321.9292125 (y-axis)
b1 —1.795088908 (slope)

Predict the age of death of a 6-foot man weighing 190 pounds in 1950.
190 [X]) 73.4945283 years

To reach age 90, what should a man's weight be in 19607
90 160.3712108 pounds

To reach age 150, what should a man's weight be? Obviously, the answer will make
no sense, indicating the danger of carrying a straight-line extrapolation too far,

39

Using as a Calculator

CAUTION

The following statistical data obtained in the CAL mode can be used in the BASIC
mode.

Memory Z Y X W \' U

Statistic n Zx zx? Zxy Ty zy?

When performing calculations using this statistical data, use the RUN mode.
For example, to determine the sum of squares (5% of four pieces of data, 205, 221,
226, and 220, operate your computer as follows:

Tix—x)?

Ix? —nk?

Tx? — % {Zx)?

82

® Enter the data in the CAL mode.

0

205 221

226 220 4.

¢ Change the CAL mode to RUN and calculate S2.

>
X =) (1 =) (] E3 (T X-Y*xY/Z_
246.

40

Caloulation Range_

Using as a Calculator

Four arithmetic calculations:
1st operand, 2nd operand, and
calculation result: *+1x10"% ~ +9.999990899% 10 and 0

Scientific functions;

Functions Dynamic range Naote
DEG: [x <1 %10
. _m 10
RAD: |x|<180x10
, GRAD: 1x1<18y 100
sin x 9
cos X .
can x In tan x, however, the following cases are exciuded.
DEG: lx1=901(2n -1}
RAD: Ixl=T1(2n-1 n = integer
GRAD: 1x1=100{2n -~ 1)
P
Sm-1x ex<h
cos™! x =" =
tan~! x fx 1< 1x10'%
fn x 1x107" < x <1 x 10" (Inx = logg x)
log x =
X o 100 (e =
e Tx 100" < x < 230.2585092 2.718281828)
10¥ S 1% 109 < x < 100
>0 —1x10'° <xlogy < 100
=0 x>0
yX i~ .y X - 1pnx-log
) e << 0: x:integer or %: odd number ¥ 10 i’
—1x10' <xloglyl< 100
>0 —1x107° <%I0gy<100, X#0
1
x ey=0 x>0 x —-logy
v = 10X
Vr ey <0 x or %: integer (x + 0} vy
~1x10'% < Liogiyi< 100
Ux Ix1<1x10w®
sinh x
cosh x —227.9559242 < x £ 230.2585092
tanh x
sinh™' x Ix1<1x10%
cosh™! x T x<1x10%
tanh™! x lx1<

41

Using as a Calculator

Functions Dynamic range Note
Vx 0gx<1x10'®
x? ix1<1x10%
1 Ix1<1x10'™
x x=0
n! 0Ln <69 {n: Integer)
D.MS—~DEG lx1<1x10!
DEG — D.MS lx1<1x10"
HEX -» DEC 0 < x £ 2540BE3FF X is an integer
FDABF41CO1 < x £ FFFFFFFFFF in HEX mode
DEC —+ HEX | x| £ 9999999999 x {5 an integer.
{x?+y*) <1 x10'% r=y/x1 + 3
x, y—>r 8 ¥ ¥
—< 1 x 10! 6 =tan"' —
x x
r< 1 x 1019, X =rcos®
re—xy Irsing | <1x10'%° y=rsing

§ is in the same
condition as x
of sin x, cos x.

Ircos@ | < 1x 10t

Pxl<1x10%
fyl<1x10%
[Zx 1< 1x10'°
DATA| T x* <1x10'®
cD lZyl<ix10'
£y < ix10'®
| Zxp | <1x100
lnl<1x10'®
X n#0
n=+1
1 P2
Statistical | °F | g< X NET 1o
calculation - n—1
n=*0
1 _ -l
ax Uéir_;;___r.‘x_<1x1oloo
¥ n+0
n+1
2 _ np?
Sy 0$u<1x1olﬂb
="
n#0
ag 1 __qpl
¥ 0< Zy ny < 1 x 1O
- n

42

Using as a Calculator

Functions Dynamic range Note
n+0
<) {Ex? —nX?) - (21? —np?)l <1 x10°%
x s« Ly
rxy— ZXTEN g qgee
n
T _ Bx. Sy
nxy - =
e e < 1 ® 10‘00
VIEx? —nk?)-tuy? —np?)
n#0
OD<IEx? —nk?1 < 1x10'°
XX
rxy — xR L 1 x 10'%
Statistical b n
i Zx-XZy
calculation £xy - X
n <1 x 101
£x? — nk?

a is the same condition as b, and
1§ —bX1<1x10'"

¥ la+bx| < 1x10'

y-ea | < 1 % 10'%
b

* ‘

For the accuracy of functions other than shown above, the error is =1 at the 10th digit,
as a rule. (In the scientific notation system, the error is =1 at the lowest digii of
mantissa display.)

However, the accuracy will become low around singular points and inflection points of
functions.

Therefore, errors are accumulated in each stage of the continuous calculations,
causing the accuracy to deteriorate. (The same applies to other continuous caicula-
tions made by the computer such as y* and Vy.)

43

Using as a Calculator

Matrix Calculation Function

In the CAL mode, the COMPUTER has a function to calculate matrixes or their
determinant values.

A matrix is a rectangular array ay i = 1,2 ..., m, k=1, 2 ., n) of a given set of
numbers {mxn elements) as shown below.

With this computer, such an array is expressed as matrix X, Y, or M. One of the sets
of numbers which form a matrix is called a matrix element. Matrix element a4, is
expressed as X(1,1), ¥{(1,1), or M{1,1). The horizontal arrangement of matrix
elements is called a row while the vertical arrangement is called a column.

Matrix Configuration

With the COMPUTER, three matrixes X, ¥, and M can be defined. Each matrix can be
defined within a range of 1 to 99 both vertically (i.e., columns) and horizontally
{i.e., rows). However, the total matrix size is dependent upon the memory capacity
of the COMPUTER.

In addition, matrixes X, Y, and M are stored in the same memory area as BASIC
arrays X(k.%), Y(%:%), and M(*3%). In other words, the values of the matrix
elements entered in the BASIC mode can be calculated in the CAL mode.

When entering the values of matrix elements in the BASIC mode, pay attention to the

following points:

(1) Matrix elements X(i,k) correspond to BASIC array elements X{i—1, k—1). For
example, X(1,2) correspond to array X(0,1).

(2) All the matrix element values stored in memory will be cleared by BASIC
carnmand RUN, CLEAR, or NEW.

Input of Matrix Element

In the CAL mode, pressing (3] or (¥] causes the COMPUTER to
enter the MATRIX mode. In this mode, you can enter the elements of a matrix for
calculation of the matrix, as well as to have the computer perform matrix operations
and dispiay the matrix elemenis entered.

The keys and their functions used to enter and display matrix elements are as
described below.

44

Using as a Calculator

Key Function

(1] » Puts the computer in the MATRIX mode.

* Allows you to enter the elements of matrix X and then the
etements of matrix ¥, and the computer to calculate the
matrixes.

® Releases the computer from the MATRIX mode when these
keys are pressed a second time.

» Puts the computer in the MATRIX mode.

e Allows the computer to perform matrix calculations.

® Releases the computer from the MATRIX mode when these
keys are pressed a second time.

e Stores in memory the number of rows and number of columns
which form a matrix and other matrix element data, and then
the computer waits for the next data entry.

0] & Shifis the cursor to the right by one column, (When the cursor
is at the rightmost column, the cursor moves to the next
element.)

= & Shifts the cursor to the lefi by one column. (When the cursor
is at the leftmost column, the cursor moves to the preceding
element.)

& Shifts the cursor up by one row (i.e., to the element immedi-
ately above the current column).
Returns the computer to the previous step in operation.

® Shifts the cursor down by one row (i.e., to the element
immediately below the current column).
e Puts the computer in the wait state for next step in operation.

When you input the respective elements of a matrix, you may use any of the keys that
you use in the CAL mode for four basic operations and scientific calculations.

Example 1: To enter the following two matrixes:
103 -5 2
X =
Ls 2 28

_rs3 3 2
=17 o ed

45

Using as a Calculator
Operation:

() (1]

MATRIX:X(@ _, ©)

Because matrix X is undefined, (0, 0) is displayed when the computer is put in the

MATRIX mode.
2

“2” is entered as the number of rows.

3 [ENTER]

MATRIX:X{ 2 _, 0)

MATRIX:X(2, 6 _.)

X(1,1) a.

Then enter the number of columns as "3" and define matrix X as a matrix with a size of
(2, 3), and the computer is ready for your input of the value of element X(1, 1).

10]
3=

X(1,1) 10.
X(1,1) 3.333333333
X(1,2) 2.

After your input of element X(1, 1), the computer waits for your input of the next

element X(1, 2).
5

(EntEr] 2
(EnTeR] 8
(ENTER] 2
(EnTeR] 23

X{1,2) -5
X(1,3) 2,
X(2,1) 8.
X{2,2) 2.
X(2,3) 23,

MATRIX:¥(0 _, 9)

Using as a Calculator

After you have completed the input of all the element data of matrix X, you must define
the size of matrix ¥ and then enter the elements of matrix ¥ in the same manner as you
did for matrix X.

2 MATRIX:Y(2, 8_)

3 MATRIX:Y(2, 3_)

5313 =) Y(1,1) 1.666666667
3 Y(1,2) 3.
2 Y(1,3) 2.
[ENTER] 1 B Y(2,1) -1.
0 Y(2,2) 0.
8 EA) Y(2,3) —8.
MATRIX OPERATION

On input of all the elements of matrix ¥, the message "MATRIX OPERATION” will
appear on the display, indicating that the COMPUTER is ready to perform matrix
calcuiations. If only matrix X needs to be calcuiated, press [ecg) when you
input the number of rows and number of columns, respectively, for matrix Y.

47

Using as a Calculator

Matrix Calculations
While the message "MATRIX OPERATION” is on the display, pressing each of the
faliowing keys causes the COMPUTER to perform the matrix operation designated by

the key.

Key

Function

X + ¥ — X; Performs addition.

The result of adding matrix X to matrix ¥ becomes new matrix X.
To perform addition, matrixes X and ¥ must be equal to each
other in both the number of rows and the number of columns.

X — ¥ — X: Performs subtraction.

The result of subtracting some elements of matrix ¥ from the
corresponding elements of matrix X becomes the corresponding
elements of new matrix X.

To perform subtraction, matrixes X and ¥ must be equal in both
the number of rows and the number of columns.

{Example)

UL SHL

X - Y — X: Performs multiplication.
To perform multiplication, the number of columns in matrix X
must be equal to the number of rows in matrix ¥.

X - Y'> X: Performs the multiplication of matrix X and inverse
matrix ¥.

To perform this operation, the number of columns in matrix X

must be equal to the number of rows in matrix ¥-'.

X~ X: Performs the inverse matrix calculation of matrix X.
The result of this operation becomes new matrix X.

To perform this operation, matrix X must be a square matrix
(which has the same number of rows as the number of col-
umns).

n[+]

n + X — X: Performs the addition of scalar n to matrix X
elemenis.
In this operation, n is added to each element of matrix X.
NOTE: Mathematically, such an operation as this does not
exist. The addition of scalars is one of the features
unigue o the COMPUTER.

48

Using as a Calculator

Key

Function

n =J

n — X — X: Performs the subtraction of matrix X elements from
scalar n.

In this operation, each element of matrix X is subtracted from n

and the result becomes the corresponding elements of new

matrix X.

NOTE: Mathematically, such an operation as this does not
exist. The subtraction of scalars is another feature uni-
que to the COMPUTER.

(Example)

Ly S

n (X3

n - X — X: Performs the multiplication of matrix X elements by
scalar n.

n [£]

n- X' — X: Performs the multiplication of inverse matrix X~
elemenis by scalar n.
To perform this operation, matrix X must be a square matrix.

X «— Y: Exchange matrix X for matrix Y.

|-

X' — X: Pedorms the transposition of matrix X, giving the
transposed matrix as new matrix X.

d

|X| — X (Display}: Displays the value of the determinant of
matrix X.
To perform this operation, matrix X must be a square matrix.

—X — X: Reverses the positive cr negative sigh of each element
of matrix X.

X - X — X: Perform the squaring of matrix X,
To perform this operation, matrix X must be a square matrix.

X — M. Stores the value of matrix X in the memeory location of
matrix M (while clearing the previous contents of matrix
M).

This key is used when you wish to retain the value of matrix X

even after the matrix calculation.

49

Using as a Calculator

Key Function

M — X: Invokes the memory cantents of matrix M into matrix X
{(while clearing the previous contents of matrix X.)

X + M — M: Adds the value of matrix X cumulatively to the
memory contents of matrix M.

To perform this operation, matrixes X and M must be equal to

gach other in both the number of rows and the number of

columns.

Note: e Pressingthe key during the execution of a matrix calculation causes the
calculation to be suspended. At this point, the values of matrixes X, ¥, and
M will be retained as those before the execution of the calculation.

¢ Press the n [X] in this order to perform the division of matrix X
elements by scalar n.

e [|f most of the elements of a matrix have the same value, execute the n
operation with all the matrix elements set as 0 and then correct only the value
of each element having a value other than n. This will facilitate the input of the
matrix elements.

On completion of the matrix calculation, the message “MATRIX OPERATION”
appears again on the display, indicating that the COMPUTER is ready for the next
matrix calculation. After the determinant value of matrix X is displayed by pressing the
(D] key, the message “MATRIX OPERATION” will appear again if you press one of
the (3], (37, (=, [»=], Ecg , and [ENTER] keys.

Example 2; To calculate X + ¥, using the values of the respective elements of
matrixes X and ¥ entered (stored in memory) in Example 1

10/3 -5 2 5/3 3 2
8 2 23 -1 Q -8

MATRIX OPERATION

Operation:

X+Y¥—-X

(The message "BUSY" appears
indicating that the computer is
performing a calculation.)

MATRIX OPERATION

50

Using as a Calculator

Now, let’s see the result of addition.

MATRIX:X(2 _, 3)

X(1,1) 5.
= X(1,2) -2,
] 8.

The COMPUTER is now released from the MATRIX mode.

If you press any of the numeric keys or the (5] key while the message “MATRIX
OPERATION" is being displayed, the COMPUTER can perform scalar calculations.

Example 3: To calculaie 1/25% X — X, using the calculation result of matrix X in

Example 2
Operation:

) MATRIX OPERATION
2 SCALAR 2.
5 SCALAR - 25,
SCALAR 2.04
%) 2.04%X—-X

MATRIX OPERATION
MATRIX:X(2_, 3)
0Oj X(1,1) 2.2
] 2.

Exampie 4. To solve the following simultaneous linear equations with three unknowns
using matrix calculalions

2x + by —z = -1
X—y+4z=12

3+ 2y + 2z g

51

Using as a Calculator

HINTS: Enter matrixes X and ¥ as shown below and calculate X' - ¥ to obtain the
solutions x, y, and z of the equations.

2 5 -1 -1
3 2 1 9
Operation:

Press the and keys to put the computer in the MATRIX mode and then
enter the matrix element data of X and ¥ according to Example 1.

MATRIX OPERATION

invX—X

MATRIX OPERATION
XFY—-X

MATRIX OPERATION
s MATRIX:X(3_, 1)
X(1,1) 3.
0 X{2,1) -1.
X(3,1) 2,

Thus, the solutions %, y, and z of the equations are as follows:
x=3,y=-1z=2

Note: Matrix calculations are based on the methad of elimination being widely used.
However, due to the nature of numerical calculations by any computer, an error
may occur in the calculation of a determinant or an inverse mairix because of
truncation or some other reasons.

52

Using as a Calculator

, . 3 1
Example 5: To solve for the inverse matrix of ,:1 1/3:]

This matrix is noi a regular matrix and thus has no inverse matrix
theoretically. With any computer, however, the value 1/3 is input as
"0.33 ... 3" and thus an inverse matrix exists, resulting in the
following.

[3 1:|—1 |:—33---3. 1.E1D]

1 033..3 1.E10 -3.E10

So the results obtained by computers may have such an error. Please
note that verification by any other method may ke required depending on
how matrix calculations will be applied.

In the above example, when you obtain the determinant value by multiply-

ing the original matrix X by 3, you can confirm that matrix X" is not a regular
matrix because the result of the multiplicaiton becomes 0 (|2 3| =0).

Note: Because a matrix calculation will not be completed by a single
operation (e.g., one-time multiplication), it will take some time
to complete the calculation. It will take about 6 seconds to solve for
the inverse matrix of a unit matrix consisting of 7 rows and 7
columns. This calculation time varies depending on the values of
matrix elements.

Memory Capacity Required for Matrix Calculations

e Because matrix calculations share the same memory area as that used for BASIC
programs, unused memory capacity {i.e., capacity determinable by MEM
in BASIC mode) must he larger than the capacity determined by the following
formula:

(No. of rows of matrix X) x (No. of columns of matrix X} X 8 + 7] bytes

+ {{No. of rows of matrix ¥) x (No. of columns of mairix ¥) x 8 + 7] bytes

+ [No. of rows of matrix M) x (No. of columns of matrix M} X 8 + 7] bytes

+ [Mo. of rows of resultant matrix) x (No. of columns of resultant matrix) x 8 + 7]
bytes

53

Using as a Calculator

However, when neither matrix ¥ nor matrix M is used, the values (no. of rows and
no. of columns) in brackets of each unused matrix will be treated as 0 for the
capagcity calculation. The resultant matrix is only required during the calculation and
will be cleared on completion of the calculation. For information, no resultant matrix
is required for the execution of =M | [RM] , or (3] . Two resultant matrixes are
required for matrix operations using (3] and n [£], since these operations involve
two calculations (i.e., inversion and multiplication).

e |f the message “"MEMORY OVER” appears on the display while in the MATRIX
mode, erase the variables or programs used in BASIC in arder to increase the
unused memory capacity for mairix calculations.

Example 6: To calculate the multiplication of the following two matrixes (X - ¥ — X)

2 3 8 30
5 1 7 15
(matrix M undefined)

The required memory capacity will be calculated as follows:

Ex2x8+7]+[2x2Xx8+7]+[2x2X8+ 7]=117 bytes
Matrixx Martrix ¥ Aesultant matrix

Printing of Matrixes

To print the data (e.g., value of each element) of matrix X, prepare and execute the
following program. If you execute the program by typing “RUN” and pressing
(EnTER], however, all the matrix data will be cleared from memory. So be sure to
execute the program with the key.

100 “M":INPUT "ROW™;lI

110 INPUT “COLUMN";JJ

120 FOR |=0 TO li—1

130 FOR J=0 TO JJ—1

140 LPRINT "X{";1+1;%,":J+1;M=":X(l.J)

150 NEXT JINEXT I:END
If the data of matrix ¥ or M is 1o be printed, change “X" at the two places int line 140 of
the above program to read “Y" or “M”.

(Operation) Press the ™ keys in the RUN mode, and the designated matrix
data will be output on the printer,

54

Using as a Calculator

Error Messages

If an error occurs during the calculation of a matrix, one of the following messages
appears on the display, together with the "E” (Error) sign. Press the k<t key to
release the COMPUTER from the error condition and the “E” sign will go off and the
message “MATRIX OPERATION" will appear on the display. At this point, the matrix
data before the execution of the matrix calculation is retained in memory.

Error Message Cause of Error
IMPOSSIBLE » Matrixes do not match in size.
CALCULATION Matrixes do not match in size in addition, subtrac-

tion, or multiplication, or an attempt was made to
calculate the inverse matrix, or to perform the
squaring, of a matrix which is not a square
matrix.

MEMORY OVER & |nsufficient memory

In X — M operation, memory space is not enough
io store mairix M, or no work area is available for
arithmetic operation.

DIVISION BY ZERO & O {zero) is used as divisor,
In an inverse matrix calculation, an attempt was
made to divide a number by zero.

OVER FLOW ® Overflow has occurred during an arithmetic oper-
ation.

Manual Calculations in BASIC Mode

What is Manual Calculation?

The COMPUTER may be basically used in two ways. One way lets you store in
advance the whole calculation procedure or steps into the computer's memory as a
program, then lets the computer auiomatically execute it later. The other lets you
calculate step by step through manual key operations. The latter is called a manual
calculation.

Of course, in the CAL mode, all calculaticns are performed manually, but here only
those performed in the BASIC mode (RUN or PROgram mode) are called manual
calculations.

55

Using as a Calculator

How to Manually Calculate
Let's try manuat calculation in the RUN mode. Press the BASIC key to place your
computer in the RUN mode.

Press ®s€); an indicator will appear
with the RUN label.

In the RUN mode, the key functions shown in the following figure are operative. (The
same is true in the PROgram mode.)

PQWER
ON

OFF

SHARP rocker covruter ool

aEL e

MODE ON
B @6 600008 <
R =iflCe]]
EDEmEE oo /=B E
INPUT IF THEN GATO FOR 0 STE NEXT LIST RUM
-mm-@----m i = = 3=

PROJT USING GOSUE AETUAM DIM END CSAVE CLOAD N

|65 5 B B ch ¢ 8 B mEE

Before going into operatlon examples, let's touch on some important peints in
operation.

Whereas we usually use operators +, —, X, or =+ for our mathematical calculations on
paper, we don't use the operators % and =+ for our arithmetic operations in BASIC.,
Instead of X and =, we use an asterisk () and slash {/), respectively.

The operators * and / can be entered by pressing and keys, respectively.
To get the result of a manual calculation, operate the key instead of
(=] key.

Do not use doliar signs or commas when entering a calculation formula or
expression into the COMPUTER. These characters have special meaning in the
BASIC programming language. Now try these simple arithmetic examples.
Remernber to clear with the between calculations.

56

Using as a Calculator

Input Display

5) (8 [+ (51 () [Evren) 100. |
0 (8] (@) (- 5] (&) [enven) 50. |
(&) () (& O (@] (Enven) 600. |
(31 (8) (81 7. [5] [enven] 60. |
(1 re] (2] 100.
2) mE () (B 6.283185307
) (8] (&) (enren) 8. |

Recailing Eniries
Even after the COMPUTER has displayed the results of your calculation, you can
display your last entry again. To recall, use the left =] and right [=] arrows.

The left arrow, (=, recalls the expression that has the cursor positioned after its last
character.

The right arrow, [, recalls the expression that has the cursor positioned “on top
of" its first character.

Remember that the left and right arrows are also used to position the cursor within a
line. The right and left arrows are very helpful in editing (or modifying} entries without
having fo retype the entire expression.

You will become familiar with the use of the right and left arrows in the following
examples. Now, take the role of the manager and perform the calculations as we
discuss them.

As the head of personnelin a large marketing division, you are responsible for planning
the annual sales meeting. You expect 300 people o attend the three-day conference.
For part of this time, the sales force will meet in small groups. You believe that groups
of six would be a good size. How many groups would this be?

Input Display

(3] (8] (8] [7] [E] [EnTER] 59.

57

Using as a Calculator

On second thought, you decide that groups containing an odd number of participants
might be more effective. Recall your last entry, using the (= key

Input Disptlay

=1 300/6_

To calculate the new number of groups, you must replace the six with an odd number.
Five seems to make more sense than seven. Because yau recalled by using the (=]
arrow, the cursor is positioned at the end of the display. Use the [=] to move the
cursor one space to the left,

Input Display

= | 300/6

Notice that after you move the cursor it becomes a flashing block l Whenever you
position the cursor “on top of” an existing character, it will be displayed as a flashing
cursor.

Typein a 5 to replace the 6. One caution in replacing characters—once you type a new
character over an existing character, the original is gone forever! You cannot recall an
expression that has been typed over.

Input Display
51 300/5_.
60.

Sixty seems like a reasonable number of groups, so you decide that each small group
will consist of five participants.

Recall is also useful to verify your last entry, especiaily when your results do not seem
to make sense. For instance, suppose you had performed this calculation:

Input Display

(3) (8] 7] (5] (EnTER] 6.

58

Using as a Calculator

Even a tired, overworked manager like you realizes that six does not seem to be a
reasonable result when you are dealing with hundreds of people! Recall your entry
using the w1 .

Input Display

(> 30/5

Because you recalled by usingthe = |, the flashing cursor is now positioned over the
first character in the display. To correct this entry you wish 1o insert an added zero.
Using the ' , move the cursor until it is positioned over the zero. When making an
INSert, you position the flashing cursor over the character betore which you wish to
make the insertion.

Input Display

=) 39/5

Use the INSert key to make space for the needed character.

fnput Display
N5 3-0/5

Pressing INSert moves all the characters one space to the right, and inserts a
bracketed open slot. The flashing cursor is now positioned over this open space,
indicating the location of the next typed input. Type in your zero. Once the eniry is
corrected, display your new result.

Input Display
g} 300/5
ENTER 60.

On the other hand, suppose that you had entered this calculation:

Input Display

(87 (@) (@] (8377 (5] [ENTER] 600.

58

Using as a Calculator

The results seem much too large. If you only have 300 people attending the meeting,
how could you have 600 “small groups”? Recall your entry using the (»=] .

Input Display

= | 3000/5

The flashing cursor is now positioned over the first character in the display. To correct
this entry eliminate one of the zeros. Using the (=1 , move the cursar to the first zero
{or any zero). When deleting a character, you position the cursor “on top of” the
character to be deleted.

Input Display
= | 3000/5
Now use the DELete Key to get rid of one of the zeros.
Input Display
e | 300/5

Pressing DELete causes all the characters to shift one space to the left. It deletes the
character it is “on top of” and the space the character occupied. The flashing cursor
stays in the same position indicating the next location for input. Since you have no
other changes to make, complete the calculation.

input Display

60.

Note: Pressing the SPaCe key, when it is positioned aver a character, replaces the
character leaving a blank space. DELete eliminates the character and the
space it occupied.

Errors

Recalling your last entry is essential when you get the dreaded ERROR message.
Let us imagine that, unintenticnally, you typed this entry into the computer.

Input Display

(3] (@) (@ [Z2) 71 (5] [eNTeR] ERROR 1

60

Using as a Calculator

Naturally you are surprised when this message appears! ERROR 1 is simply the
computer's way of saying, “I dont know what you want me to do here”. To find out
what the problem is, recall your entry using either the (=] or [»] arrow,

Input Display

=) 308/ /5

When you use the (=) or [™] key, the flashing cursor indicates the point at which the
computer got confused. And no wonder, you have too many operators! To correct this
error use the DELete key.

Input Display
60.

If, upon recalling your entry after an ERROR 1, you find that you have omitted a
character, use the INSert sequence to correct it.

When using the computer as a calculator, the majority of the errors you encournter will
be ERROR 1 {an error in syntax). For a complete listing of error messages, see
Appendix A.

Serial Calculations
The computer allows you o use the results of one calculation as part of the following
calcuiation.

Part of your responsibility in planning this conference is to draw up a detailed budget for
approval. You know that your total budget is $150.00 for each attendant. Figure your
total budget:

Input Display
2 (35 (20 (%) (0 (5 (o) [6es) 45000,

Of this amount you plan to use 15% for the final night's awards presentation. When
performing serial calculations, it is not necessary to retype your previous results, but
DO NOT clear between entries (do not use the at this time). What is the awards
budget?

Input Display

ENEEREERE-N 45000.%.15_

61

Using as a Calculator

Notice that as you type in the second calculation (#%.15), the computer automati-
cally displays the result of your first calculation at the left of the screen and includes it
in the new calculation. In serial calculations, the entry must begin with an opera-
tor. As always, you end the entry with :

% o Yo
Note: The [and dt| keys cannot be used in the calculation. The [key should

4% o

be used as a character only and the (™ key is inoperative.
Example: 45000 (%115 — ERROR1

Input Display
6750. |
Continue allocating your budget. The hotel will cater you dinner for $4000:
Anput. Display
(= & (a1 (2] (@] 6750.-4000_
2759.

Decorations will be $1225:

input Display

=) (A0 (2] (21 (51 (ENTER] 1525.

Finally, you must allocate $2200 for the guest speaker and entertainment;

Input Display

=1 (21 20 (@) (@] [enTER] —675.

QObviously, you will have to change sither your plans or your allocation of rescurces!

62

Using as a Calculator

Negative Numbers

Since you want the awards dinner io be really special, you decide io stay with the
planned agenda and spend the additional money. However, you wonder what
percentage of the total budget will be used up by this item, First, change the sign of the
remaining sum:

Input Display
EIREANEN —B675.%x—1_
675.

Now you add this result to your original presentation budget:

Input Display

T+ (8] (7] (5] [@) [EnTER] ‘ 7425.

Dividing by 45000 gives you the percentage of the total budget this new figure
represents:

Input Display

S
i
{2]
(&)

(71 (3) (5] (80 (23 (%) [EnTen)

Fine, you decide to allocate 16.5% 1o the awards presentation.

Compound Calculations and Parentheses

In performing the above calculations, you could have combined several of these
operations into one step. For instance, you might have typed both these operations on
one line:

675+-6750/45000
Compound calculations, however, must be entered very carefully:

675+6750/45000 might be interpreted as

675+6750 or 675+ 8750

45000 45000

63

Using as a Calculator

When performing compound calculations, the computer has specific rules of expres-
sion evaluation and operator priority (see page 76). Be sure you get the calculation
you want by using parentheses to clarify your expressions.

{675+6750)/45000 or 675+(6750/45000)

To illustrate the difference that the placement of parentheses can make, try these two
examples:

Input Display
el s (#3106

EAlENr-A N vale . @.165
(3] (@) (@) (@] [enten)

e 5] F & [6]

M EIEI A @ E]eE] 675. 15
(@] (0] [ewTeR]

Note: In BASIC (PRO or RUN) mode, the close parenthesis befure the[ENTER}key
cannot be omitted. In CAL mode, however, you can omit it before the (=]
key.

Using Variables in Calculations

The computer can store up to 26 fixed variables under the alphabetic characters Ato Z.
If you are unfamiliar with the concept of variables, they are more fully explained in
Chapter 4. You designate variables with an Assignment Statement:

A=5
B=-2

You can also assign the value of one variable (right} {o ancther variable (left):

C=A+3
D=E

A variable may be used in place of a number in any calcuiation.

Now that you have planned your awards dinner, you need to complete arrangements
for your conference. You wish to allocate the rest of your budget by percentages also.
First you must find out how much money is still available. Assign a variable (R) to be
the amount remaining from the total:

64

Using as a Calculator

Input Display

(R [F]{3) 0] led (@) (2] _ _

e . |R=45009-7425_
37575.

As you press [ENTER], the computer performs the calculation and displays the new
value of R. You can display the current value of any variable by entering the alphabetic
character it is stored under:

Input Display

] 37575.

You can then perform calculations using your variable. The value of (R) will not
change until you assign it a new value.

You wish to allocate 60% of the remaining money to room rental:

input Display
Cr) CeJ] (82 (@) Rx.60_
22545,

Similarly, you want aliocate 25% of your remaining budget to conduct management
training seminars:

Input Display

(R 9393.75

Variables will retain their assigned values even if the machine is turned OFF or
undergoes an AUTO OFF. Variables are lost only when you:

* assign a new value to the same variable.

* type in CLEAR {not the clear key ()}
* clear the machine using the RESET button.

* change the batteries.

These are certain limitations on the assignment of variables, and certain programming

procedures which cause them to be changed. See Chapter 4 for a discussion of

assignment. See Chapter 5 for a discussion of the use of variables in programming.
65

Using as a Calculator

Chained Calculations

In addition to combining several operators in one calculation, the computer also allows
you to perform several calculations one after another—without having to press
before moving on. You must separate the equations with commas. Only the result of
the final calculation is displayed. (Remember too that the maximum line length
accepted by the computer is 80 characters including 3

You wonder how much money would have been available for rooms if you had kept to
your original aliocation of 15% for the awards dinner:

Input Display

Ca) (5 () (3] (5] ()3 (5

Ealvilrsjesjialea R=.85%45000 Rx.60_
= (&

Although the computer performs all the calculations in the chain, it displays only the
final result:

Input Display

22959.

To find the value of R used in this calculation, enter R:

Input Display

=) 38259,

Error Message
If an error occurred as a result of a manual calculation, an error message will appearin
the display such as:

ERROR 1 or ERROR 2

The error state can be cleared with either the or (=] or (] key. [fthe (=] or
=] key is used to clear the error state, the portion of the formula where the error
occurred is recalled in the display (see the description for the recall feature).

Scientific Notation

People who need to deal with very large and very small numbers often use & special
exponential format called scientific notation. In scientific notation, a number is broken
down into two parts.

66

Using as a Calculator

The first part (called mantissa part} consists of a regular decimal number between 1
and 10. The second part (called exponent part) represents how large or small the
number is in powers of 10.

As you know, the first number to the left of the decimal peint in a regular decimal
number shows the number of 1's, the second shows the number of 10's, the third
the number of 100's, and the fourth the number of 1000's. These are simply
increasing powers of 10;

10° = 1, 10" = 10, 102 = 100, 10* = 1000, etc.

Scientific notation breaks down a decimal number into two paris: one shows what the
numbers are, the other shows how far a number is to the left, or right, of the decimal
peint. For example:

1234 becomes 1.234 times 10° (3 places to the right)
654321 becomes 6.54321 times 10° (5 places 1o the right)
.000125 becomes 1.25 times 10™* (4 places to the left)

Scientific notation is useful for many short cuts. You can see that it would take a lot of
writing to show 1.0times 10" —a 1 and 87 zeros! But, in scientific notation, this number
locks like this:

O I . R o = b4
.U X 1l O 1.uE OF

The computer uses scientific notation whenever numbers become too large to display
using decimal notation. This computer uses the capital letter E to msan “times ten to
the™:

1234567890000 is displayed as 1.23456789E 12
.000000000001 Is displayed as 1. E —12

Those of you who are unfamiliar with this type of notation should take some time to put
in a few very large and very small numbers to note how they are displayed.

Limits

The largest number which the computer can handle is ten significant digits, with two
digit exponents. In other words, the largest number is:

9.999999999E 99 = 99899295999000000000000000000000000
0000000000000000000000000C0C000000
00000000000000000000000000000000

and the smallest number is:

9.999999999E —-99 = .000000000000C0C000000000000000000
000000000000000000000000000000000
0000000000000000000C000000000000099
99989999

67

Using as a Calculator

Under certain circumstances, when numbers will be used frequently, the computer
uses a special compact form. In these cases, there are special limits imposed on the
size of numbers, usually either O to 65535 or —32768 to +32767. Numbers within this
range can be represented in 16 binary bits. The circumstances in which this form is
used are noted in Chapter 8.

Last Answer Feature

In the case of the serial calculation, you could use the result of the calculation only as
the first member of the subsequent calculation formula.

Refer to the following example.

_Input. Display

3 4 7.
= 5 | 7.%5_

35,

Press , then the (3] or [T key. It you operated these keys just after
completing the calculation example above, you should see “35.” in your display.
The numeric data displayed is the result of the last calculation.

The computer can “remember” the last answer (result) obtained through a manual
calculation, and recall it on its display with the (3] or (3] key.

In the case of the serial calculation described above, you could use the result of the
previous calculation only as the first member of the subsequent caiculation formula.
With the last answer feature, however, you can place the result of the previous
calculation in any position of the subsequent calculation formula.

68

Using as a Calculator

Example: Use the result {6.25) of the operation, 50 + 8, fo compute 12 x 5 + 6.25
+ 24 x 3 + 6.25 =:

Input Display
50 (71 8 6.25 |
Last answer ——
12 (%] 5 Ly OO | 12%5/6.25_
Last answer recalled
%) 24 (%13 (2] 33 [12%5/6.25+24%3/6.25_
Last answer recalled
21.12 |
e (1] 121.12_

The last answer is re-
placed with the result
of the previous cal-
culation by perform-
ing a manual calcuia-
tion with the
key.

As shown in this example, the iast answer can be recalled as many limes as required,
but will be replaced with a new last answer resulting from the last calculation.

The last answer is not cleared by the or key operation.

Note: The |last answer cannot be recalled when the program execution is temporarily
halted in other than the RUN mode, or when the program is under execution in
the TRACE mode.

69

Using as a Calculator

Length of Formula
The length of a formula you can put into your computer has a certain limitation. With the
computer, up to 79 key strokes can be used 10 enter a single calculaticn formula

(excluding the key). If you attempt the 80th key stroke, the cursor (ﬁ Y will
start blinking on that character, indicating that the 80th key entry is not valid.

Scientific Calculations inthe BASIC mode
This computer has many scientific functions which can be used in BASIC mode.

To perform scientific functions you must press at the end ot the input, or your
calculations will not be acted upon by the computer.

These functions will be described as follows:

Functions Notation Operation Remark
Trigonometric functions
sin SIN sin
cos COs cos
tan TAN [tan)
Inverse trigonometric
functions
sin™" ASN
cos™’ ACS cos]
tan™" ATN T
Hyperbalic functions
sinh HSN (sin]
cosh HCS
tanh HTN tan

70

Using as a Calculator

Functions Notation Operation Remark
Inverse hyperbolic func-
tions
sinh™’ AHS [ormvel fain 7]
cosh ™’ AHS o] [eos”]
tanh™’ AHT [reivd [tan"T
Logarithmic functions
In LN Un] l0ge.x
log LOG (fog) logqpx
Exponential functions
e' EXP [ex] exs
2.718281828
10¢ TEN
Reciprocal 1
v RCP [z
Sguare 2 squ 3
Squareroot /™ vV orSQR
Cubicroot cuR Tl
Factorial ni FACT
Pi mosPl T
3.141582654
DMS — DEG DEG oed]
DEG— DMS DMS
Power W A (suFT] (A7 or px yAx v
Powerroot ¥ ROT yROTx V3
Rectangular coor-
dinates
— Polar coordinates POL (78]

71

Using as a Calculator

Functions Notation Operation Remark
Polar coordinates
— Rectangular coor- REC
dinates

Integer INT O v INT (x)

Absolute | x| ABS Y 5] ABS (x)

Sign SGN 3] (6] (W] SGN (x}
x>0:1
x=0:0
x<0:—-1

Modify (Rounding) MDF] o) CF]

Of these functions, the INT, ABS, SGN, and MDF can be entered by using letter
keys. Some other functions may also be entered with letter keys. For example, “sin
30" may be entered either by operating [sin] 30 or [$][TJ(W3 30. For trigonomet-
ric and inverse trigonometric functions and coordinates conversion, the desired
angular unit must be specified in advance. In manual calculations, angular units may
be specified either by operating BrG as in the CAL mode or with the following
commands:

. Display -
Angularunit Command Symbol Description
Degree DEGREE DEG Represents aright angle as 90{°).
Radian RADIAN RAD Represents aright angle as n/2 [rad].
Grad GRAD GRAD | Represents arightangle as 100 [g].

These commands are used to specify angular units in a program. For practice, use
them in the following calculation examples:

Example: sin 30°= .
Operation: DEGREE (Specifies “degrees” far angular unit.)
SIN 30 9.5

72

Example;

Operation:

Example:

Operation:

Example:

Operation:

Example:

Operation:

Example:

Operation:

Example:

Cperation:

Example:

Operation:

Example;

Operation:

Using as a Calculator

tan =

RADIAN (Specifies “radians” for angular unit.)

TAN (Pl/4) .

cos ' (—0.5) = .

DEGREE (Specifies “degrees” for angular unit.)

ACS—0.5 120 I
{120°)

log5+ In5 =

0G5 + LN 5 2.308407917 |

o2t =

EXP (2 + 3) [ENTER) 148.4131591 |

{Do not use the [ExFl key.)

Ve =

CUR 4 "3+5" 3) {Enen) 5.738793548 |

Convert 30 deg. 30 min. in sexagenary notation into its decimal equiva-

lent {in degrees).
DEG 30.30 3¢.5 |
{30.5 degrees)

Convert 30.755 deg. in decimal notation into its sexagenary equivalent
(in degrees, minutes, seconds).

DMS 30.755 30.4518

(30 deg. 45 min. 18 sec.)

Conversion from rectangular into polar coordinates: Determine polar
coordinate (r,8) for point P (3, 8} on a rectangular coordinate:
DEGREE (Specifies "degrees” for angular unit.)

POL (3, 8) (r) B.544003745 |

z (0) 69.44395478 |

* The value of § is stored in variable Z, and the value of r in variabie Y.

73

Using as a Calculator

Example: Conversion from polar into rectangular coordinates: Determine rectangu-
lar coordinates (x, y) for point P (12, 4/57) on polar coordinates.
Operation: RADIAN Specifies “radians” for angular unit.)
REC (12, {4/5%Pl}))

(x) ~9.7082p3933 |
(x =-9.7)

z (Y} 7.$53423028
{ys7.1

* The values of y and x are stored in variables Z and Y, respectively.

Note: For coordinates conversion, the conversion results are stored in variables 7
and Y. Therefore, the previous contents of Z and Y {or Z$ and Y3$) will be
cleared.

— Reference —

Equations composed of logical operators (=, >, <, >=, <=, <>) can take on the
values listed in the following table:
x and y represent numeric values.

_# i ifx=y e 1 ifxzy
0 ifx<£y 0 ifx<y

> 1 ifx>y < 1 ifx<y
0 ifx<y 0 ifx>y

< T ifx<y <> 1 ifx+y “<>"“#:”)
0 ifx>y 0 ifx=yp Means T

*If, for example, “A = numeric value” or “B = formulg” is used in a logical
equation, the computer will not freat it as a logical equation hut as an assignment
statement for variables. When using an equal (=) sign for a logical equation, use
it in the form of “numeric value = A" or “formula = B”, with the exception of
conditional expressions used in IF statements.

Direct Calculation Feature

In the manual calculations described up to now, we always used the key to
terminate a formula and obtain the calculation result of the formula. However, you can
directly operate the functions of the computer with the desired function key (without
operating the key) when the objective numeric data is in the display.

74

Using as a Caleculator

Example: Determine sin 30° and 81,

Operation: DEGREE
30

30_

= 0.5 |

Operation: 8 8

40320. |

5 5
first check the result of 1o then determine tan™! -—=

Exampie: For tan™1 5 i7"

12°
Operation: DEGREE
5/12

) 22.61986495

4.166666667E-01

r

it should be noted, howsever, thal this "direct” calculatich mode is not available for
functions requiring the entry of more than ene numeric vaiue {binominal functions)
such as power, power root, or coordinates conversion.

The direct calculation feature is not effective for formulas:

e.g., 5%4 — 5%4__
(ieg] — 5¥4LOG _

The direct calculation feature is effective only for numeric values. Therefore, if hex
numbers A to F are entered for hex to decimal conversion, the direct calculation feature
will remain inoperative. In such a case, use the ordinary manual calculation using the

key.

Note: After a direct calculation is done, the recall feature is not operative. Operation
of the (=) or [key will only display the cursor.

75

Using as a Calculator

Priarity in Manual Calculations

In the BASIC mode, you can type in formulas in the exact order in which they are
written, including parentheses or functions. The order of priority in catculation and
treatment of intermediate results will be taken care of by the computer itself,

The internal order of priority in manual calculations is as follows:
1) Recalling variables or m.

2) Functions (SIN, COS, efc.)

3} Power (™) and power roct {ROT)

4) Signs (+, —)

5) Multiplication and division (%, / }

6) Addition and subtraction {+, —)

7) Comparison of magnitude (>>,>=, <, <=, <>)

8) Logical operations {AND, OR, NOT, and XOR)

Notes: e If parentheses are used in a formula, the operation given within the

parentheses has the highest priority.

* Composite functions are operated from right to left (sin cos™ 0.6).

» Chained power (3 or 3™472) or power root are operated from right to left.

& For the above items 3) and 4), the last entry in the calculation formula has
a higher priority.
(eg) —274 — —{24

3°-2 - 372

76

Concepts and Terms of BASIC

In this chapter, we will examine some concepts and terms of the BASIC language.

String Constants -
In addition to numbers, there are many ways that the SHARP COMPUTER uses letters

and special symbols. These letters, numbers, and special symbols are called
characters. These characters are available on the computer.,

12345678980
ABCDEFGHI JKLMNOPQRSTUVWXYZ
D #$ B&I0Vk +, —. [<=>? @y 1~

.

In BASIC, a collection of characters is called a string. For the computer to tell the
difference between a string and other parts of a program, such as verbs or variabie
name, you must enclose the characters of the string in quotation marks (*).

The following are examples of siring constants:

"HELLO"
“GOODBYE"
“SHARP COMPUTER”

The following are not valid string constants:

“"COMPUTER No ending quote
“ISN"T” Quote can't be used within a string

Hexadecimal Numbers

The decimal system is only one of many different systems to represent numbers.
Another which has become quite imporiant when using computers is the hexadecimal
numbering system. The hexadecimal system is based on 16 instead of 10. To write
hexadecimal numbers, you use the familiar 0 to 9 and 6 more “digits”; A, B, C, D,
E, and F. These correspond to 10, 11, 12, 13, 14, and 15. When you want the
computer o treat a number as hexadecimal, put an ampersand ‘& character in
front of the numeral:

&A =10
&10 = 16
&100 = 256

&FFFF = 65535

77

Concepts and Terms of BASIC

Those with some computer background may notice that the last number (65535) is the
same as the largest number in the special group of limits discussed in the paragraph
“Limits” on page 67. Hexadecimal notation is naver absolutely necessary in using the
computer, but there are special applications where it is convenient.

Computers are made up of many tiny memory areas called bytes. Each byte can be
thought of as a single character. For instance, the word byte requires four bytes of
memory because there are four characters in it. To see how many bytes are available
for use, simply type in MEM . The number displayed is tha number of bytes
available for writing programs. This technique works fine for words, but is very
inefficient when you iry to store numbers. For this reason, numbers are stored in a
coded fashion. Thanks to this coding technique, your computer can store large
numbers in only eight bytes. The largest number that can be stored is +9.999999999
E + 99.

The smallest number is +1.E—99. This gives you quite a range to choose from.
However, if the result of a calculation exceeds this range, the computer will let you
know by turning on the error annunciator and by displaying the error message in the
screen. This annunciator is a small E in the upper right-hand corner of the screen. For
the error message, refer to Appendix A. To see it right now type in:

9 [EXP) 99 * 9 [ENTER)

To get the computer working properly again, just press the key. But how do you
go about staring all this information? It’s really very easy. The computer likes to use
names for different pieces of data. Let’s store the number 558 into the computer. You
may call this number by any name that you wish, but for this exercise, let's use the
letter R. The statement, LET, can be used to instruct the computer to assign a value to
a variable name but only in a program statement. However, the LET command is not
necessary, so we will not use it very often. Now, type in R = 556 and press the
(EnTeR]. The computer now has the value 556 associated with the letter R. These
letters that are used to store information are called variables. To see the content of the
variable R, press the [c<g key, the leiter R key, and the key. The computer
responds by showing you the value 556 on the right of your screen. This ability can
become very useful when you are writing programs and formulas.

Next, let's use the R variable in a simple formula. In this formula, the variable R
stands for the radius of a circle whose area we wantto find. The formula forthe area ofa
circle is: A = mx R* Typein R 2 . The result is
971179.3866. This technique of using variables in equations will become more
understandable as we get into writing programs.

78

Concepts and Terms of BASIC

So far, we've only discussed numeric variables. What about storing alphabetic
characters? Well, the idea is the same, but, so the computer will know the difference
between the two kinds of variables, add a $ to the variable name. For instance, let's
store the word BYTE in the variable B$. Notice the $ after the B?

This tells the computer that the contents of the letier B are alphabetic, or string data.

To illustrate this, key in B (] = rw) BYTE [smF) (W] _
The value BYTE is now stored inthe variable B$. To make sure of this, type in B
;j;j {EnTeR]. The screen shows BYTE. This time the dispiay is on the left side of the
screen, instead of the right.

Variables handled by the SHARP COMPUTER are divided into the foliowing;

Fixed numeric variables (A 1o Z)

\T::;::S Simplel numeric variables {AB, C1, etc.)
Variables Nlumeru:. array variables
String J Fixed character variables (A% to Z%$)
. Simple character variables (BBS, C28, etc.)
variables l

Character array variables

Fixed Variables

The first section, fixed variables, is always used by the computer for storing data. It can
be thought of as pre-allocated variable space. In other words, no matter how much
memory your program uses up, you will always have at least 26 variables to choose
from to store data in. This data can be one of two types: NUMERIC or STRING
(alphabetic character). Fixed memory locations are eight bytes long and can be used
for only one type of data at a time. To illustrate this, type in the following examples:

A = 123 [ENTER]
A$ [ENTER]

You get the message:
ERROR 9

This means that you have put numeric data into the area of memory called A and then
told the computer to show you that information again as STRING data. This confuses
the computer so it says that there is an error condition. Press the key to clear the
error condition. Now try the following example:

A$ = “ABC"
A

79

Concepts and Terms of BASIC

Again, the computer is confused and gives the ERROR 9 message. Look at the figure
shown below 10 see that the variable name A equals the same area in memory as the
variable name A$, and that B equals B$, and so on for all ihe lstters of the alphabet.
Figure:

= A$ = A(l) = A1)
= B8 = A@2)- = A32)
= C$ = AR) = AN3)
= D$ = A{4) = A$(4)

= E$ = A(B) = AS(5)
= F$§ = A(B) = A3(6)
= G$ = A7) = A§(7)
= H$ = A(B) = A$(8)
=15 = A9 = A9
= J$ = A(10) = A$(10)
= K$ = A(11) = AS{11)
= LS = A(12) = A$(12)
= M$ = A(13) = A$(13)
= N$ = A(14) = A$(14)

0$ = A(15) = A${15)
= P$ = A(16) = A$(16)
= Q$ = A(17) = A$(17)
= R$ = A(18) = A$(18)

= 8% = A(19) = A$(19)
=T$ = A(20) = A$(20)
= US = A(21) = AS(21)
= V$ = A(22) = A$(22)
= W$ = A(23) = A$(23)
= X$ = A(24) = A$(24)
= Y$ = A(25) = AS%(25)
= 75 = A{26) = AS$(26)

N-<><§<C-1CD:UD'UOZgl_?\"—-IO'I'IITIDOUJJ?
il

Simple Variables

Simple variable names are specified by two or more alphanumeric characters, such as
AA or B1. Unlike fixed variabies, simple variables have no dedicated storage area in
the memory. The area for simple variables is automatically set aside (within the
program and data area) when a simple variable is first used.

Since separate memaory areas are defined for simple numeric variables and simple
character variables even if they have the same name, variables such as AB and ABS,
for example, may be used at the same time,

Whereas alphanumeric characters are usable for simple variable names, the first
character of a variable name must always be alphabetic and uppercase. If more than
two characters are used to define a variable name, only the first two characters are
meaningful.

80

Concepts and Terms of BASIC

Notes: & The functions and BASIC commands inherent 1o the computer are not
usahle as variable names.
e.g., PI, IF, TO, ON, 3IN, efc.
e Each simple character variable can hold up to 16 characters and symbols.

Array Variables

For some purposes, it is useful to deal with numbers as an organized group, such as a
list of scores or a tax table. In BASIC these groups are cailed arrays. An array can be
either one-dimensional, like a list, or two-dimensional, like a table.

To define an array, the DIM (short for dimension) statement is used. Arrays must
always be “dectared” (defined) before they are used (not ike the single-valug
variables we have been using). The form for the numeric DIMension statement is;

DIM numeric-variable-name (size)
where:

numeric-variable-name is a variable name which conforms to the normat rules for
numeric variable names previously discussed.

size is the number of sforage locations and must be a number in the range 0 through
255. Note that when you specify a number for the size, you get one more location
than you specified.

Examples of legal numeric DIMension statements are:

DIM X({5)
DIM AA(24)
DIM Q5(0)

The first statement creates an array X with 6 storage locations. The second statement
creates an array AA with 25 locations. The third statement creates an array with one
location and is actually rather silly since (for numbers at least), it is the same as
declaring a single-value numeric variable.

It is important to know that array variable X and variable X are separate, and unique to
SHARP. The first X denotes a series of numeric storage loeations, and the second a
single and different location.

Now that you know how to creaie arrays, you might be wondering how to refer to each
storage location. Since the entire group has only one name, the way in which we refer
to a single location (called an "element”} is to follow the group name with a number in
parentheses. This number is called “subscript”. Thus, for example, to store the
number 8 into the fifth element of our array X (declared previously), we would write:

X(4) = 8

81

Concepts and Terms of BASIC

if the use of 4 is puzzling, remember that the numbering of elements begins at zero and
continues through the size number declared in the DIM statement.

The real power of arrays lies in the ability to use an expression or a variable name as a
subscript,

To declare a character array, a slightly different form of the DIM statement is used:
DIM character-variable-name (size) * length
where:

character-variable-name is a variable name which conforms to the rules for normal
character variables as discussed previously.

size is the number of storage locaticns and must be in the range 0 to 255. Note that
when you specify a number, you get one more location than you specified.

*length is optional. If used, it specifies the length of each of the strings that
compose the array. Length is a number in the range 1 to 80. If this clause is not
used, the strings will have the default length of 16 characters.

Examples of legal character array declarations are:

DIM X${4)

DIM NM$(10)%10
DIM INS(1)°*80
DIM R$(0)*k26

The first example creates an array of five strings, each able to store 16 characters. The
second DIM statement declares an array NM with eleven strings of 10 characters each.
Explicit definition of strings smaller than the default helps to conserve memory space.
The third example declares a two-element array of 80-character strings and the last
example declares a single string of twenty-six characters.

Besides the simple arrays we have just studied, the computer allows “two-dimen-
sional” arrays. By analogy, a one-dimensional array is a list of data arranged in a
single column. A two-dimensional array is a table of data with rows and coiumns. The
two-dimensional array is declared by the statement:

82

Concepts and Terms of BASIC

DIM numeric-variable-name {rows, columns}

or

DiM character-variable-name (rows, columns)*length

whetre:

rows specifies the number of rows in the array. This must be a numberin the range 0
through 255. Note that when you specify the number of rows you get one more row

than the specification.

columns specifies the number of columns in the array. This must be a number in the
range 0 through 255. Note that when you specify the number of columns you get
one more column than the specification.

The following diagrarn illustrates the storage locations that result from the declaration
DIM T (2, 3) and the subscripts (now composed of two numbers) that pertain to each

storage location:

Column 1 Column2 Column 3 Column 4
Row 0 T3, 0) o, 1 TI0,2) T {0, 3} ’
Row 1 T(1,0) T, 1) T01,2) T{1,3)
Row 2 T1(2,0) T(2,1} T12,2) T {2, 3)

Note: Two-dimensional arrays can rapidly eat up siorage space. For example, an
array with 25 rows and 35 columns uses 875 storage locations!

Arrays are very powerful programming tools,

The following table shows the number of bytes used to define each variable and the
number used by each program statement.

{two-character
variable)

|

Variable Variable name Data
Numeric variable 7 bytes 8 bytes
Array variable Specified number
String variable 7 bytes Simple variabte

16 bytes

* For example, ii DIM 2% (2,3)%10 is specified, 12 variables, each capable of
storing 10 characters, are reserved. This requires 7 bytes {variable names) + 10
bytes (number of characters} x 12 = 127 bytes.

83

Concepts and Terms of BASIC

Element Line number | Statement & function | Others,
Number of bytes used 3 bytes 1 byte or 2 bytes 1 byte

Variablesinthe FormofA{)

Whereas a data area on the computer's memory is set aside for fixed variabfes, it may
also be used to define subscripted variables which have the same form as array
variables.

There are 26 fixed variable names available, i.e., A through Z {A$ through Z§). Each
of these names can be subscripted with numbers 1 through 26, such as A(1) — A(26)
or A${(1) — A%(26). This means that variable A(1) may be used in place of variable
A, A(2) in place of B, A(3) in place of C, and so forth.

However, if an array named A or A$ has already been defined by the DIM statement,
subscripted variables named A cannot be defined. For example, if array Ais defined by
DIM A(5), the locations for A(Q) through A{5) are set aside in the program/data
area. So if you specify variable A{2), it does not refer to fixed variable B, but refers 1o
the array variable A(2) defined in the program/data area. if you specify A(8), it will
cause an error since A(9) is outside the range of the dimension specified by the DIM
A(5} statement.

In turn, if subscripted variables are already defined in the form of A{), it is not
possible to define array A or A$ by using the DIM statement, unless the definition for the
subscripted variables is cleared with the CLEAR statement.

* Using subscripts in excess of 26:

If subscripts greater than 26 are used for subscripted variables A{) when array A
is not defined by a DIM statement, the corresponding locations in the program/data
area are set aside for these A{) variables. For instance, if you execute A(35) =
5, locations for variables A{27) to A(35) will be reserved in the program/data
area.

While variables subscripted in excess of 26 are treated as array variables, they are
subject to the following special restrictions:

(1) Lecations for an array with the same name must be contiguous in the program/
data area. Otherwise, an error will occur.

19 DIM B(2)
20 A(28)=5
30 BC—=12
49 A(30)=9

84

Concepts and Terms of BASIC

If this program is executed, the array named “A” is not defined in two consecu-
tive segments in the program data area, and an error wili result at line 40.

[Program/data area]

‘ A(30)

(2) Numeric array variables and character array varizbles with the same subscript

cannot be defined at the same time. For example, A(30) and A%(30) cannot be

Sy L&l

defined at the same time as they use the same location in the program/data area.

{3) Two dimensional arrays cannot be defined, nor is it possible to specify the length
of character strings to be held in character array variables. For example, the
length of a character string which can be held in character array variable A$(}is
limited to seven characters or less.

{4) Variables subscripted with zerc (0) cannot be defined. If A{0} or A${Q) is
defined, an error will resuli.

{5) When subscripis greater than A(27) or A$(27) are first used, 7 byles are used
for the variable name, and 8 bytes are used for each variable.

Expressions

An expression is some combination of variables, constants, and operators which can
be evajuated to a single value. The calculations which you entered in Chapter 3 were
examples of expressions. Expressions are an intrinsic part of BASIC programs. For
example, an expression might be a formula that computes an answer to some
equation, a test to determine the relationship between two gquantities, or a means to
format a set of strings.

85

Concepts and Terms of BASIC

Numeric Operators
The computer has five numeric operators. These are the arithmetic operators which
you used when exploring the use of the computer as a calculator in Chapter 3:

+ Addition

— Subtraction

* Multiplication

/ Division

-~ Power
A numeric expression is constructed in the same way that you entered compound
calculator operations. Numeric expressions can contain any meaningful combination
of numeric constants, numeric variables, and these numeric operators:

(A * B) ™ 2
A2,3) + A (34) + 5.0-C
(A/B) * (C+D)

String Expressions

String expressions are similar to numeric expressions except that there is only one
string operator — concatenation (+). This is the same symbol as used for plus. When
used with a pair of strings, the + attaches the second string to the end of the first string
and makes one longer string. You should take care in making more complex string
concatenations and other string operations because the work space used by the
computer for string caleulations is fimited to only 79 characters.

Note: String quantities and numeric quantities cannot be combined in the same
expression unless one uses ane of the functions which convert a string value
into a numeric value or vice versa:

“15" + 10 is illega
“15" + “10” is “1510”, not “25"

Relational Expressions
A relational expression compares two expressions and determines whether the stated
relationship is True or False. The relational operators are:

> Greater Than

>= Greater Than or Equal To
= Equals

<> Not Equal To

<= Less Than or Equal To

< Less Than

86

Concepts and Terms of BASIC

The following are valid relational expressions:

A<B
C12>=5
D(3)«<>8

If A was equal to 10, B equal to 12, C{1,2) equal 1o 6, and D(3) equal to 9, all of
these relational expressions would be True.

Chapter strings can also be compared in relational expressions. The two strings are
compared character by character according to their ASCIl value starting at the first
character (see Appendix B for ASCIl values). If one string is shorter than the other, a
0 or NUL will be used for any missing positions. All of the following relational
expressions are True:

“ABCDEF" = "ABCDEF”
“ABCDEF" <> "ABCDE"
“ABCDEF" > "ABCDE"

Relational expressions evaluate to either True or False. The computer represents True
by a 1; False is represented by a 0. In any logical test, an expression which evaluates
to 1 or more will be regarded as Trus, whereas one which evaluates to C or iess will be
considered False. Good programming praciice, however, diciaies the use of an
explicit relational expression instead of relying on this coincidence.

Logical Expressions

Logical expressions are relational expressions which use operators AND, OR,
XOR, and NOT. AND, OR, and XOR are used to connect two relational expres-
sions; the values of the combined expressions are as shown in the following tables.

A AND B Value of A AORB Value of A
True False True False
Value True True False Value True True True
of B False False False of B False True False
AXORB Value of A
True False
Value True False True
of B False True False

Note: Value of A and B must be 0 (false) or 1 {irue).

87

Concepts and Terms of BASIC

The XOR instruction cannot be used in combination with the AND or OR instruction in
an expression. To execute expression D=(A XOR B) AND C, for example, divide the
expression into two parts for execution: D=A XOR B and D=D AND C.

Decimal numbers can be expressed in the binary notation of 16 bits as follows:
Decimal 16-bit binary
notation notation

32767 (GGRRRRRRRRRERRAR!

000000000000001 1

3

2 0000000000000010

1 000000000000000 1

0 0000000000000000
-1 1111111191111

-2 1119111111111110
-3 1111111111111701

—32768 1000000000000000

The negation (NOT) of a binary number 000000000¢000001 is taken as follows:

NOT 0000000000000001
(Negative)— 1111111111111110

Thus, 1 is inverted io 0, and 0 to 1 for ea_ch bit, which is called “negation {NOT
operation).” Then, the following wifl result when 1 and NOT 1 are added together:

0000000000000001 (1)

+) 1111111111110 NOT) o ones complement
T I (=1 twos complement

Thus, all bits become 1. According to the above number list, the bits become —1 in

decimal notation, that is, 1 + NOT 1 = -1,

The relationship between numerical value X and its negated (or inverted} valug NOT X
is:
X+ NOT X = —i

This results in an equation of NOT X = —X-1, i.e,,
NOT X = —(X + 1)

88

Concepis and Terms of BASIC

From the equation, the following results are obtained:

NOT 0 = —1
NOT =1 =10
NOT -2 = 1

More than two relational expressions can be combined with these operators. You
should take care to use parentheses to make the intended comparison clear.

(A<9) AND (B>5)
(A>=10) AND NOT (A>20}
(C=5) OR (C=6) OR (C=7)
(X>=50) XOR (X<70)

The COMFUTER implements logical operators as "bitwise” logical functions on 16-
bit quantities. (See note on relational expressions and True and False.) In normal
operations, this is not significant because the simple 1 and 0 {True and False) which
result from a relational expression uses only a single bit. If you apply a logical operator
1o a value other than 0 or 1, it works on each bit independently. For example, if Ais 17
and B is 22, {A OR B) is 23:

17 OR 22 is 10001 .. 17
10110 .. 22
10111 .. 23 in decimal number

} OR operation

17 and 22 are first converted into binary numbers, Then for each digit, logical 1 is left if
sither bit is 1. Otherwise, logical 0 is left.

For example, if Ais 41 and B is 27, (A XOR B) is 50:

41 XOR 27 is 101001 .. 41 i
011011 .. 27 1XOR operation

110010 .. 50 in decimal number

41 and 27 are first converted into binary numbers. Then, for each digit, logical 0 is left if
both bits are 1 or 0.

If you are a proficient programmer, there are certain applications where this type of
operation can be very useful. Beginner programmers should stick io clear, simple
True or False relational expressions.

Parentheses and Operator Precedence

When evaluating complex expressions, the computer follows a predefined set of
priorities which determine the sequence in which operators are evaluated. This can be
quite significant.

89

Concepts and Terms of BASIC

5 + 2 * 3 could be
5+2=7 or
7% 3=21

2%3=686
6+5=11
The exact rules of “operator precedence” are given in Appendix D,

To avoid having to remember all these rules and to make your program clearer, always
use parentheses to determine the sequence of evaluation. The above example is
clarified by writing either:

5+2)*%3 or 5+ (2 % 3}
‘RUN Mode
in general, any of the above expressions can be used in the RUN mode well as in

programming a BASIC statement. In the RUN mode an expression is computed and
displayed immediately. For example:

Input Display

(5>3) AND (2<6) L 1.]

The 1 means that the expression is True,

Functions are special components of the BASIC language which take one value and
transform it into another value. Functions act like variables whose value is determined
by the value of other variables or expressions. ABS is a function which produces the
absolute value of its argument:

ABS (—5)is 5
ABS (6) is 6
LOG is a function which computes the log to the base 10 of its argument.

LOG (100) is 2
LOG (1000} is 3

A function can be used any place that a variable can be used. Many functions do not
require the use of parentheses:

LOG 100 is the same as LOG (100)

You must use parentheses for functions which have more than one argument.
Using parentheses always makes programs clearer.

See Chapter 8 for a complete list of functions available on the computer,

90

Programming the Computer

* PROGRAMMING THE COMPUTER

In the previous chapter, we examined some of the concepts and terms of the BASIC
programming language. In this chapter, you will use these elements to create
programs on the computer. Let us reiterate, however, that this is not a manual on how
to program in BASIC. What this chapter will do is to familiarize you with the use of
BASIC on your computer,

Programs

A program consists of a set of instructions to the computer. Remember the computer
is only a machine. It will perform the exact operations that you specify. You, the
programmer, are responsible for issuing the correct instructions.

The computer interprets instructions according to a predetermined format. This format
is called a statement. You always enter BASIC statements in the same pattern.
Statements must start with a fine number:

10: PRINT “HELLO”
2@: END
3a:

Each line of a program must have a unique line number—any integer between 1 and
65279. Line numbers are the reference for the computer. They tell the computer the
order in which to execute the program. You need not enter lines in sequential order
(although if you are a beginning programmer, it is probably less confusing for you to do
s0). The computer always begins execution with the lowest line number and moves
sequentially through the lines of a program in ascending order,

When programming, it is wise to allow increments in your line numbering (10, 20, 30,
.. 10, 30, 50, etc.). This enables you to insert additional lines if necessary.
CAUTION: Do not use the same line numbers in different programs. If you use the
same line number, the oldest line with that number is deleted when you enter the new
line.

91

Programming the Computer-
“BASIC Verbs

All BASIC statements must contain verbs. Verbs tell the computer what action to
perform. A verb is always contained within a program, and as such is not acted upon
immediately.

1@: PRINT “HELLO”
2¢: END
30:

Some statements require or alfow an operand:

10: PRINT “HELLO”
20: END
36:

Operands provide information to the computer telling it what data the verb will act upon.
Some verbs require operands; with other verhs they are optional. Certain verhs do
not allow operands. (See Chapter 8 for a complete listing of BASIC verbs and their use
on the computer.)

' BASIC Commands:

Commands are instructions to the computer which are entered outside of a program.
Commands instruct the computer to perform some action with your program or to set
modes which affect how your programs are executed.

Unlike verbs, commands have immediate effects—as soon as you complete entering

the command (by pressing the key), the command will be executed.
Commands are not preceded by a line number:

RUN
NEW
RADIAN

Some verbs may also be used as commands. (See Chapter 8 for a complete listing of
BASIC commands and their use on the computer.)

The RUN mode is used to execute the programs you create.

The PROgram moede is used to enter and edit your programs.

82

Programming the Computer

After all your practice in using the computer as a calculater, you are probably guite at
home with the keyboard. From now on, when we show an entry, we will not show
every keystroke. Remember to use to access characters above the keys and
END EVERY LINE BY PRESSING THE KEY.

Now you are ready to program.
Slide the POWER SWITCH to the ON position and then press the [Bsit) key twice. You
will see the following initial information in the display.

The above display shows that the computer is in PROgram mode.
{If a dash indicator is at the CAL or RUN label, press the key once or twice.)
Enter the NEW command.

Input Display

NEW >

The NEW command clears the computer's memory of all existing programs and data.

The prompt appears after you press [ENTER], indicating that the computer is awaiting
input.

“Example 1 = Entering and Running a Program

Make sure the computer is in the PRO mode and enter the following program:

input Display

10 PRINT “HELLO” 19 PRINT “"HELLO" —

Notice that when you press [ENTER], the computer displays your input, automatically
inserting a colon { ;) between the line number and the verb. Verify that the statement
is in the correct formai.

Now press the key to set the RUN mode.

e

Tht RUN PG ELEIS

Input Display

RUN [(ENTER] HELLO

93

Programming the Computer

Since this is the only line of the program, the computer will stop executing at this point.
Press to get out of the program and reenter RUN if you wish ta execute the
program again.

~Example 2- Editing a Program

Suppose you wanted to change the message that your program was displaying, that
is, you wanted to edit your program. With a single line program, you could just retype
the entry, but as you develop more complex programs, editing becomes a very
important component of your programming. Let's edit the program you have just
written.

Are you still in the RUN mode? If so change fo the PROgram mode.

You need to recall your program in order to edit it. Use the Up Arrow (T) to recall your
program. If your program was completely executed, the (1] key will recall the last
line of the program. If there was an error in the program, or if you used the BREAK
((BrRl) key to stop execution, the (1] key will recall the line in which the error or
BREAK occurred. To make changes in your program, use the key to move up in
your program {recall the previous line) and the (37 key to move down in your
program {display the next line). If held down, the and (3] keys will scroll
vertically, that is, they will display each fine moving up or down in your program.

You will remember that to move the cursor within a line, you use the P {right arrow)
and « (left arrow). Using the [=] key, position the cursor over the first character you
wish to change:

Input - Display
) [10: PRINT “HELLO"
=) (= =) == 10 PRINT “HELLO"

Notice that the cursor is now in the flashing block form indicating that itis “on top of” an
existing character. Type in:

Input Display
GOOD"! |19 PRINT*GOOD"!_

Don't forget to press at the end of the line. If you now change to the RUN
mode by pressing and enter the RUN command, the following appears:

input Display

RUN [ENTER] ERROR 1 IN 10

94

Programming the Computer

This is a new kind of error message. Not only is the error type identified (our old friend
the syntax error) but the line number in which the error occurs is also indicated.

Pressthe [ccel and then return into the PROgram mode. You must be in the PROgram
mode to make changes in a program. Using the (£ , recall the last ling of your
program.

Input Digplay

| 10: PRINT “GOOD" !
The flashing cursor is positioned over the problem area. In Chapter 4, you learned that

when entering string constants in BASIC, all characters must be contained within
guotation marks. Use the key to eliminate the “I":

Input Display
{shiFT] [GEL) 1¢ PRINT “GOOD " _

MNow let's put the “1” in the correct location. When editing programs, DELete and
INSert are used in exactly the same way as they are in editing calculations (see
Chapter 3). Using the [« ', position the cursor on top of the character which will be
the first character following the insertion.

AInput Display
=] 19 PRINT “GOOD"
Press the B! key. A _ will indicate the spot where the new data will be entered:
Input Display
(SHIFT) [1NE) 1.ﬁ PRINT “GOODRT"

Type in the |. The dispiay looks like this:

Input Display

! 18 PRINT “GOOD!"”

Remember to press[ENTER], so the correction will be entered into the program.

NOTE: If you wish to DELete an entire line from your program, just type in the line
number and the original line will be eliminated.

95

Programming the Computer

_Example 3 Using Variables in Programming

If you are unfamiliar with the use of numeric and string variables in BASIC, reread
these sections in Chapter 4,

Using variables in programming allows much more sophisticated use of the compu-
ter's computing abilities.

Remember, you assign numeric fixed variables using any letters from A to Z:
A=5

To assign a string variable, you also use a letter, followed by a dollar sign. Do not use
the same letter in designating a numeric and a string fixed variable. You cannot
designate A and A$ in the same program.

Remember that each string fixed variable must not exceed 7 characters in length:
A% = “TOTAL®

The value assigned to a variable can change during the execution of & program, taking
on the value typed in or computed during the program. One way to assign a variable is
to use the INPUT verb. In the following program, the value of A% will change in
response to the data typed in answer to the inquiry “WORD?".

Enter this program:

1@ INPUT “WORD?"; A$

20 B= LEN (A$)

30 PRINT “WORD IS ”; B; * LTRS"
40 END

means space

Before you RUN the program, note several new features. Line 30 of this program
exceeds the 24-character maximum of the computer’s display. When a line is longer
than 24 characters (up to the 79-character maximum), the computer moves the
characters to the left as the 24-character maximum is exceeded. This does not destroy
the previous input. This move to the left is referred to as horizontal scrolling.

The second new slement in this program is the use of the END statement to signal the
completion of a program. END tells the computer that the program is completed. It is
always good programming practice to use an END statement.

As your programs become more complex, you may wish to review them before
beginning execution. To look at your program, use the LIST command. LIST, which
can only be used in the PROgram mode, displays programs beginning with the lowest
line number.

96

Programming the Computer

Try listing this program:

Input Display

LIST [ENTER] [19: INPUT “WORD?"

Usethe ([t] and (] keys to move through your program until you have reviewed the
entire program. To review a line which contains more than 24 characters, move the
cursor to the extreme right of the display and the additional characters will appear on
the screen. After checking your program, run it:

Input M

RUN [ENTER] WORD?_

HELP [ENTER] WORD IS 4. LTRS
>

This is the end of your program. Of course, you may begin it again by entering RUN.
However, this program would be a bit more enteriaining if it presenied more than one
opportunity for input. We will now modify the program, so it will keep running without
entering RUN after each answer.

Return to the PRO mode and use the up or down arrow {or LIST) to reach line 40.

You may type 40 to delete the entire fine or use the (%] key to position the cursor over
the E in END. Change line 40 so that it reads:

49: GOTO 10
Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same opera-
tion). Since you put no limit on the loop, it will keep going forever {an “infinite”
loop). To stop this program, hit the BREAK ([erk]) key.

When you have stopped a program using the key, you can restart it using the
CONT command. CONT stands for CONTinue. With the CONT command, the
program will restart on the line that was being execuled when the [Brq) key was
pressed.

97

Programming the Computer

- Example 4 —More Complex Programming

Although the computer has a factorial function, we will use an example of the factorial
computation in this section to explain more complex programming. The following
program computes N Factorial (N!). The program begins with 1 and computes N! up
to the limit which you enter. Enter this program.

100 F = 1: WAIT 118
119 INPUT “LIMIT?”; L
126 FORN=1TOL
130 F =F %N

140 PRINT N, F

150 NEXT N

160 END

Several new features are contained in this program. The WAIT verb in line 100 controls
the length of time that displays are held before the program continues. The numbers
and their factorials are displayed as they are computed. The time they appear on the
display is set by the WAIT statement to approximately 2 seconds, instead of waiting for

you to press [ENTER].

Also in line 100, notice that there are two statements on the same line separated by a
colon { ;). You may put as many statements as you wish an one line, separating
each by a colon, up to the 80-character maximum including . Multiple
staternent lines can make a program hard to read and modify, however, so it is a good
programming practice to use them only where the statements are very sirnple or there is
some special reason to want the statements on one line.

Also in this program, we have used the FOR verb in line 120 and the NEXT verb in line
150 to create a loop. \n Exampie 3, you created an “infinite” loop which kept
repeating the statements inside the loop until you pressed the [erk| key. With the FOR/
NEXT loop, the computer adds 1 to N each time execution reaches the NEXT verb. It
then tests to see if N is larger than the limit L. If N is less than or equal to L, execution
returns {o the top of the loop and the statements are executed again. If N is greater than
L, execution continues with line 160 and the program stops.

You may use any numeric variable in a FOR/NEXT loop. You also do not have to start
counting at 1 and you can add any amount at each step. See Chapter 8 for details.

We have labeled this program with line numbers starting with 100. Labeling programs
with different line numbers allows you to have several programs in memory at one time.
To RUN this program instead of the one at line 10 enter:

RUN 100

In addition to executing different programs by giving their starting line number, you can
give programs an alphabetical name and start them with the key (see Chapter
6).

o8

Programming the Computer

You will notice that while the program is running, the BUSY indicator is lit at those times
that there is nothing on the display. RUN the program a few more times and try setting
N at several different values.

Programs remain in memory when you turn off the computer, or it undergoes an AUTO
OFF. Even if you use the , lecg |, or key, the programs will remain in
memory.

Programs are lost from memory only when you:

* enter NEW before beginning programming.

* initialize the computer using the RESET button.

* create a new program using the SAME LINE NUMBERS as a program already in
memory.

* change the batteries.

This brief introduction to programming on the computer should serve to illusirate the
exciting programming possibilities of your new computer.

99

wo9oyyoswoud

Short Cuts

The computer includes several features which make programming more convenient by
reducing the number of keysirokes required to enter repetitive material.

One such feature is in the availability of abbreviations for verbs and commands (see
Chapter 8).

This chapter discusses the additional feature which can eliminate unnecessary typing—
the [BEE| key. (DEF is short for “DEFINE".)

The DEF Key and Labeled Programs

Often you will want to store several different programs in the computer memory at one
time. (Remember that each must have unique iine numbers.) Normally, to start a
program with a BUN or GOTO command, you need to remember the beginning line
numher of each program (see Chapter 8}. But, there is an easier way! You can label
gach program with a letier and execuie the program using only two keystrokes. This is
how to label a program and execute it using DEF:

Note: Put a label on the first line of each program that you want to reference.
The label consists of a single character in quotes, followed by a colon (:).

1@: “A": PRINT “FIRST"
20: END

3@: “B": PRINT “SECOND”
40. END

Any one of the following characiers can be used: A, 5, D, F, G, H, J, K, L, ', Z, X,
C, V, B, N, M, and SPC. Notice that these are the keys in the bottom two rows of the
alphabetic portion of the keyboard.

Note: To execute the program, instead of typing RUN 8@ or GOTC 16, you need only
press the key and then the letter used as a label. in the above example,
pressing and then ‘B’ would cause ‘SECOND’ to appear on the
display.

When DEF is used to execute a program, variables and mode settings are affected in
the same way as when GOTO is used. See Chapter 8 for details.

101

Short Cuts

- Template |

One template is provided with the computer. You can use this template to heip you
remember frequently used key assignments.

For example, if you have one group of programs which you ofien use at the same time,
label the programs with |etters and mark the template and set it over the two bottom
rows of the keyboard so that you can easily begin execution of any of the programs with
two keystrokes.

Example:

AVER-

S OOCoUOOoOOoOOodO
minlninininlalnla

102

Using the Options

The optional CE~-126P Printer/Cassetie Interface allows you to add a printer and to
connect a cassette recorder to your SHARP COMPUTER.
The CE-126P features:

*

*

*

*

*

24-column thermal printer.

Convenient paper fesd and tear bar.

Simultaneocus printing of calculation results as desired (except in the CAL mode)
Easy conirol of display or printer outputs in BASIC.

Buiit-in cassette interface with remote function.

Manual and programmed control of recorder for storing programs and data

Dry hattery operation for portability,

For connecting the computer to the CE-126P, refer to the instruction manual supplied
with the GE-126P.

if vou are using the computer for manual calculations in BASIC mode, you may use the
CE-126P 1o simultaneously print the resulis of your calculations.

103

Using the Options

CAUTION:
The results obtained by the direct calculation feature in manual calculations cannot be
printed. Calculation resuits in the CAL mode also cannot be printed.

Printing is easily accomplished by pressing the key and then the key
{P<>NP) while in the RUN mode.
The printer indicator (a dash symbol) will appear just above the “PRINT” Iabel in the
lower right area of the display. After this, when you press the (ENTER] at the end of a
calculation, the contents of the display will be printed on one line and the results will be
printed on the next. For exampie:

[nput Paper
300/50 3p8/59

.

You may print output on the printer from within BASIC programs by using the LPRINT
statement (see Chapter 8 for details). LPRINT can be used in the same form as the
PRINT statement. The difference is that if you PRINT something longer than 24
characters to the display, there is no way for you to see the extra characters. With the
LPRINT verb, the extra characters will be printed on a second, and possibly a third,
line as is required.

Programs which have been wriiten with PRINT can be converted to work with the
printer by including a PRINT=LPRINT statement in the program (see Chapter 8 for
details). All PRINT statements following this statement will act as if they were LPRINT
statements, PRINT=PRINT wili reset this condition to its normal state. This structure
may also be included in a program in an IF statement allowing a choice of output at the
time the program is used.

You may alsoe list your programs on the printer with the LLIST command (see Chapter 8
for details). If used without line numbers, LLIST will list all program lines currently in
memory in their numerical order by line number. A line number range may also be
given with LLIST to limit the lines which will be printed. When program lines are longer
than 24 characters, two or more lines may be used to print one program line. The
second and succeeding lines will be indented four or six characters so that the line
number will clearly identify each separate program line. (Line number, 1 to 999: four-
character indentation, over 999: six-character indentation)

Caution:

In case an error (ERROR code 8) occurs due to a paper jam, remove the jam by
pulling the paper toward the paper cutter and tearing off the paper. Then press the
key to clear the error condition.

104

Using the Options

& When the printer is exposed to strong external electrical noise, it may print numbers
at random. If this happens, depress the key to stop the printing. Turn the CE-
126P power off and on, and then press the key.

Pressing the key will return the printer to its normal condition.

® When the printer causes a paper jam or is exposed to strong external electrical noise
while printing, it may not operate normally and only the symbol “BUSY” is
displayed. If this happens, depress the key to stop printing. (Remove the
paper jam.} Turn the CE-126P power off and on, and then press the key.

e ‘When the CE-126P is not in use, turn off the printer switch to conserve the baitery
life.

_Using Cassette Interface |

Using this cassette interface will allow you to store programs and data from the
computer anto cassette tape. Once on tape, you can load these programs and
data back into the computer with a simple procedure.

Connecting the CE-126P to a tape recorder
Only these three connections are necessary:
1. Red plug into the MiCrophone jack on the cassette recorder.
2. Gray plug into the EARphone jack on the cassette recorder.

3. Black plug into the REMote jack on the cassette recorder.

if you intend to use a cassetie tape recorder, the following are the minimum tape
recorder requirements for interfacing wiih the CE-126P:

105

Using the Options

ltem

Requirements

. Recorder Type

Any tape recorder, standard cassette or mi-
crocassette recorder, may be used in accordance
with the requirements outlined below.

2. Input Jack The recorder should have a minijack input labeled
"MIC”. Never use the “AUX” jack.

3. Input Impedance The input jack should be a low impedance input
(200~1,000 chms).

4, Minimum Input level Below 3 mV or —50 dB

5. Output Jack Should be a minijack labeled “EXT.{EXTernal

: speaker)”, “MONITOR” "“EAR (EARphone)”

or equivalent.

6. Qutput impedance Should be below 10 ohms.

7. Output Level Should be above 1 V (practical maximum output
above 100 mV).

8. Distortion Should be within 15% within a range of 2 kHz
through 4 kHz.

9. Wow and Flutter 0.3% maximum (WRMS)

10. Others Recorder motor speed should not fluctuate.

* In case the miniplug provided with the CE-126P is not compatible with the input/
output jacks of your tape recorder, special line conversion plugs commercially
available may be used.

Note: Some iape recorders may reject connection due to different specifications.
Those tape recorders having distortion, increased noise, and power detericra-
tion after long years of use may not show satisfactory results owing to change in
their electricat characteristics.

106

Using the Options

1. Recording (saving) onto magnetic tape

See Tape Notes.

(1)
(2)
(3}

{4)

(%)
(6)

@)

(8)

Turn off the REMOTE switch on the CE-126P.
Enter a program or data into the computer.

Load a tape into the tape recorder.

Determine the position on the tape where you want to record the program.

® When using a tape, be sure the tape moves past the clear leader (nonmagnet-
ic mylar material).

® When using a tape already partially recorded, search for a location where no
recording exists.

Connect the interface’s red plug to the tape recorder’s MIC jack and the black
plua to the REM jack.

Turn on the REMOTE switch.

Simultaneously press the RECORD and PLAY huttons on the tape recorder (to
put it in RECORD mode).

Input recording instructions {CSAVE statement, PRINT# statement), and
press the key for execution,

First set the computer in the “RUN" or “PRO” mode. Next operate the
following keys: (51 a0 V) file name 7
(EnTEn).

(To write the contents of data memory onto tape, operate keys as follows: e.g.,
p) (3] O[] (%] [EnTER] .

eg., [t [§]) [A] [v) CE] (smen)] [A] [&] [Emer] T [ENTER])

When you press the key, tape motion will begin, leaving about an 8-
second no-signal blank. (A long pip sounds for a while at the beginning.) After
that, the file name and its contents are recorded (with continucus short beep
sounds).

When the recording is complete, the PROMPT symbol (>) will be displayed and
the tape recorder will automatically stop. Now you have your program on tape (it
still is in the computer also).

When data is to be automatically recorded by program execution (PRINT#
statement, not manual operation), set up steps (1) thru (6) before executing
the program.

To aid you in locating programs on tapes, use the tape counter on the recorder,

107

Using the Options

2. Verifying the computer and tape contents
See Tape Notes.

After loading or transferring a program to or from tape, you can verify that the program
on tape and program in the computer are identical (and thus be sure that everything is
OK befare continuing your programming or execution of programs).

(1) Turn off the REMOTE switch.

(2) With cassette in the recorder, operate the tape motion controls to position tape at
the peint just before the appropriate file name to be checked.

(3) Connect the gray plug to the EARphone and the black plug to the REMote jacks.
(4) Turn on the REMOTE switch.
(5) Press the PLAY button of the recorder.

(6) Input a CLOAD? statement and start execution with key. Do this as
follows: Set the computer in the “RUN" or “PRO” made. The file name

Enter the following keys:— “Q,’,'!L’.'S,KZK,“ sed
€1 (L) (@] [A] (0] (smen) 7] (swey) ("] (&) (&) (swey] (] (ENTER]

The computer will automatically search for the specified file name and will compare
the contents on tape with the contents in memory.

During the verification, the mark “*” is shown at the rightmost digit of the
display. The “*¢” will disappear when the verification is completed. While a file
name is being retrieved, no "% will be displayed as the verification has not
started yet.

(The same occurs when the first program is read without a file name.)

If the programs are verified as being identical, a PROMPT symbol (>} will be
displayed on the computer.

If the programs differ, execution will be interrupted and Error code 8 will be
displayed. If this oceurs, try again.

3. Loading fromamagnetictape

See Tape Notes.

To load, transfer, or read out programs and data from magnetic tape into the
computer, use the following procedure.

(1) Turn off the REMOTE switch.

{2) Load the tape in the tape recorder. Move the tape to a point just before the portion
to be read out.

108

(3)

{4)
(5)

(6)

Using the Options

Connect the gray plug to the EAR jack on the tape recorder, and the black plug to
the REM jack.

In using a tape recorder having no REM terminal, press the PAUSE button to
make a temporary stop.

Turn on the REMOTE switch.
Push the PLAY button on the tape recorder (1o put unit in playback mode).

Set the VOLUME contro] to middle or maximum.

If the tape recorder does not function properly when the volume is set to
maximum, turn the volume down and try again.

Set Tone 1o maximum treble.

Input transfer instructions (CLOAD statement, INPUT# statement), and press
key for execution.

Put the computer in the "RUN" mode. Then operate the following keys:
(6, [[0} A} D] (saF7)] file name [sfev) (7] [ENTER) .
(To load the contents of the data memory, operate keys as follows:

eq. ~“ri [N p smiET {ENTER]
€8, 1€ [L) 07 A, D [swmFrry [7 a5 A, [s#FT] (] [ENTER].)

The specified file name wilt be automatically searched for and its contents will be
transferred into the computer.

The “*¥" appears while loading the designated CSAVEd program from the tape
to the computer’'s memory.

(The same occurs when the first program is read without a file name.)

The “*" disappears when the load is performed completely.

When the program has been transferred, the computer will auiomatically siop ihe
tape motion and display the PROMPT (=) symbol.

To transfer data (INPUT# statement) in the course of a program, set up steps
(1) thru (5) pricr to executing the program.

Notes:

® |f an error occurs (error code "8” is displayed), start over from the begin-
ning.

If the error continues, adjust volume slightly up or down.

|f the error code is not displayed but the tape motion continues (while the
computer is displaying the symbol “BUSY"), transfer is not being properly
executed.

Press key (“break”) to stop the tape. Repeat steps from the begin-
ning.

® |f the error remains or the iape continues to run after several attempts to correct
the problem, try cleaning and demagnetizing the recorder’s tape head.

109

Using the Options

Tape Notes

M

(@)

(3)

()

()

(7)
(8)

For any transfer or verification, use the tape recorder that was used for recording.
If another tape recorder is used, transfer or verification may not be possible.

Always use only the highest guality tape for programs and data storage
(economy grade audio type tape may not provide the proper characteristics for
digital recordings).

Keep the tape heads and other parts that contact tape clean, Use a cassetie
cleaner tape for this purpose.

Volume setting — Set to middle or maximum level

Volume level can be very important when reading in data from the recorder;
make slight adjustments as required to obtain error-free data transfer. A slight
adjustment either up or down may help produce perfect results every time.

Be sure all connections between the computer and cassette interface are secure.
And be sure the connections between interface and recorder are secure and free
of foreign matter.

If problems occur when using AC power for the CE-126P and/or the recorder, use
battery power instead {sometimes the AC power connection adds some “hum”
to the signal which may upset proper digital recording).

e To connect the AC adaptor to the CE-126P, turn the CE-126P power off and
then connect the adaptor to the CE-126P.

Tane control — Set to maximum treble,

When recording programs or data on used tape, erase some beginning portion of
the used type befare writing and then execute the BASIC command for recording.
(Make sure that the previous program is completely erased without any portion
remaining.)

110

BASIC Reference

This chapter is divided into three sections:

Commands: Instructions which are used outside a program to change the working
environment, perform utilities, or control programs

Verbs: Action words used in programs to construct BASIC statements
Functions: Special operators used in BASIC programs to change one variable to
angther

Commands and verbs are arranged alphabetically within each category in the respec-
tive sections. Each entry is on a separate page for easy reference. Functions are
grouped into three categories and arranged alphabetically within each category. The
contents of each section are listed on the following three pages so that you can quickly
identify the category to which an operator belongs.

111

BASIC Reference

Commands

Program Control Variables Contral
CONT CLEAR*
DELETE Dim*
GOTO* MEM*
NEW
RENUM Angle Mode Control
RUN DEGREE*

GRAD"

Cassette Control RADIAN*
CLOAD
CLOAD? Others
CSAVE BEEP*
INPUT#~ MDF*
MERGE PASS
PRINT#* RANDOM*

USING*

Debugging WAIT*
LIST
LLIST
TROFF~
TRON*

* These commands are also BASIC verhs. Their effect as commands is identical to
their effect as verbs so they are not described in the Commands section. See the
Verbs section for more information.

112

Control and Branching

CHAIN

END
FOR...TO..STEP
GOSUB
GOTO

IF... THEN
NEXT
ON...GOSUB
ON...GOTO
RETURN
STOP

Assignment and Declaration

CLEAR
Divi
LET

Input and Qutput
AREAD
CSAVE
DATA
INPUT
INPUT#
LPRINT
PAUSE
PRINT
PRINT#
READ
RESTORE
USING
WAIT

Others
BEEP
DEGREE
GRAD
MDF
RADIAN
RANDOM
REM
TROFF
TRON

113

BASIC Reference

BASIC Reference

Pseudovariables Numeric Functions
INKEY$ ABS
MEM ACS
Pi AHC

AHS

String Functions AHT
ASC ASN
CHR$ ATN
LEFTS$ CQos
LEN CUR
MID$ DEG
RIGHT$ DMS
STR$ EXP
VAL FACT

HCS
HSN
HTN
INT
LN
LOG
POL
RCP
REC
RND
ROT
SGN
SIN
SQR
SQuU
TAN
TEN

114

Commands
CLOAD

1 CLOAD
2 CLOAD “filename”

Abbreviations: CLO., CLOA.
See also; CLOAD?, CSAVE, MERGE, PASS

The CLOAD command is used to load a program saved on cassette tape.

The first format of the CLOAD command clears existing programs in memory and loads
the first program stored on the tape, starting at the current position.

The second format of the CLOAD command clears the memory, searches the tape for
the program whose name is given by “filename”, and loads the program.

If the computer is in PROgram or RUN mode, program memory is loaded from the
tape.

Examples

CLOAD Loads the first program from the tape.
CLOAD “PRO3” Searches the tape for the program named ‘PRO3I and loads
it

Netes: 1. If the designated file name cannot be retrieved before the tape reaches the
end, the computer will continue to search the file name. In this case, stop
the retrieval function by pressing the key. This applies to MERGE,
CHAIN, CLOAD? and INPUT# commands to be described later.

2. If an error occurs during execution of CLOAD or CHAIN command
(described later), the pregram stered in the computer will be invalid,

e During the loading, an asterisk "*" is shown at the far right digit position of
display. The "*" will disappear when the loading is completed. While a file name
is being retrieved, no “*" will be displayed as the loading has not started yet.
(The same occurs when the first program is read without a file name.)

115

Commands
CLOAD?

i CLOAD?
2 CLOAD? “filename”

Abbreviations: CLO.?, CLOA.?

See also: CLOAD, CSAVE, MERGE, PASS

The CLOAD? command is used tc compare a program saved on cassette tape withone
stored in memory.

To verify that a program was saved correctly, rewind the cassette tape to the beginning
of the program and use the CLOAD? command.

Thefirst format of the CLOAD? command compares the pragram stored in memory with
the first program stored on the tape, starting at the current position.

The second format of the CLOAD? command searches the tape for the program whose
name is given by “filename” and then compares it to the program stored in memory.

CLOAD? Compares the first program from the tape with the one in
memory.
CLOAD? “PRO3” Searches the tape for a program named ‘PRO3 and

compares it to the one stored in memary.

* An asterisk “*" will appear at the far right digit position of the display while the
program is being verified. The astetisk will disappear and the prompt will reappear
when verification is completed.

116

Commands
CONT

1 CONT
Abbreviations: C., CO., CON.
See also: RUN, STOP verb

The CONT command is used to continue a program which has been temporarily
halted.

When the STOP verb is used to halt a program during execution, the program can be
continued by entering CONT in response to the prompt.

When a program is halted using the key, the program can be continued by
entering CONT in response to the prompt.

CONT also functions when the program is temporarily interrupted due ic 2 command
such as PRINT.

CONT Continues an interrupied program execution.

117

Commands
CSAVE

1 CSAVE

2 CSAVE "“filename”

3 CSAVE, "password”

4 CSAVE “fitename”, “password”

Abbreviations: CS., CSA., CSAV.

See also: CLOAD, CLOAD?, MERGE, PASS.

The CSAVE command is used {o save a program to cassette tape.

Use

The first format of the CSAVE command writes all of the programs in memory onto the
cassette tape without a specified file name.

The second format of the CSAVE command writes all of the programs in memory onto
the cassette tape and assigns the indicated file name.

The third format of the CSAVE command writes all of the programs in memory onto the
cassette tape without a specified file name and assigns the indicated password.
Programs saved with a password may be loaded by anyone, but only someone who
knows the password can list or modify the programs. (See discussion under PASS
command.)

The fourth format of the CSAVE command writes all of the programs in memary cnto
the cassette tape and assigns them the indicated file name and password.

CSAVE “PRO3", “SECRET" Saves the programs now in memory onto the
iape under the name °‘PROS, protected
with the password ‘SECRET".

118

Commands
DELETE

1 DELETE [starting line number]f,[ending line number]]
Abbreviations: DEL., DELE., DELET,
See also: NEW, PASS

The DELETE command is used to delete a program line or program lines. This
command is effective for manual operation in the PROgram maode.

If both the starting and ending line numbers are specified, all the program lines between
the two numbers inclusive are deleted. If either of the two specified line numbers is not
found, an error occurs.

If only the starting line number is specified, that line number aione is deleted.

If the starting line number and comma {,} are specified, the starting line number and
all the subsequent line numbers are deleted.

If the cornma () and ending line number are specified, ali the lines from the beginning
of the program to the ending line number are deleted.

If both the starting and ending line numbers are omitted, an error oceurs,

DELETE 108, Deletes line 100 and ali the subsequent llne nume s 1 :

118

Commands
GOTO

1 GOTO expression
Abbreviations: G., GO., GOT.

See also: RUN

The GOTO command is used to start the execution of a program.

The GOTO command can be used in place of the RUN command to start program
execution at the line number specified by the expression.

GOTO differs from RUN in five respecis:

1) The value of the interval for WAIT is not reset.

2) The display farmat established by USING statements is not cleared.
3) Variables and arrays are preserved.

4) PRINT=LPRINT status is not reset.

5) The pointer for READ is not reset.

Execution of a program with GOTO is identical to execution with the DEF) key.

GOTO 196 Begins program execution at line 100,

120

Commands
LIST

1 LIST
2 LIST line number
3 LIST “label”

Abbreviations: L., LI, LIS.
See also: LLIST

The LIST command is used io display a program.

The LIST command may only be used in the PROgram mode.

*

*

*

_E;__(ampl_es

With format 1, the program is displayed from its first line uniii the display is full.
With format 2, the program is displayed from the line of the specified line number
until the display is full.

If the line for the specified number dees not exist, the program will be displayed from
the line with the next largest number which does exisi.

With format 3, the program is displayed from the line written with the specified label
untit the display is full.

When programs are merged with the MERGE command, the LIST command
functions for the last program. .
However, if the label specified in format 3 does not exist in thp!last program, |t is
searched for in sequence from the first program lf the speoi,fi j
line containing it is displayed. FE R U
If a password has been set, the LIST command is 1gr10rf.adi

LIST 100 Displays line number 100.

121

B o e

Commands
LELIST

1 LLIST

2 LLIST expression

3 LLIST expression 1, expression 2
4 LLIST expression,

5 LLIST, expression

Abbreviations: LL., LLI., LLIS.
See also: LIST

The LLIST command is used for printing a program on the optional printer.

The LLIST command may be used in the PROgram or RUN mode.
The first format prints all of the programs in memory.

The second format prints only the program line whose line number is given by the
expression.

The third format prints the statements from the line number with the nearest line equal
to or greater than the value of expression 1 to the nearest line equal to or greater than
the value of expression 2. There must be at least two lines between the two numbers.

The fourth format prints all program lines beginning with the line whose number is given
by the expression.

The fifth format prints all program lines up to, and including, the line whose number is
given by the expression.

* When programs are merged with the MERGE command, the LLIST command
functions for the last program. To list a program stored earlier, execute:

LLIST “label”,

If a password has been set, the LLIST command is ignored.

LLIST 10@,200 Lists the statements between line numbers 180 and 203.

122

Commands
MERGE

1 MERGE
2 MERGE “filename™
(effective for the manual operation in the PROgram or RUN mode)

Abbreviations: MER., MERG.
See also;: CLOAD

The MERGE command is used to load a program saved on cassette tape and merge it
with the program existing in memory.

The MERGE command retains the program already stored in the COMPUTER and
then loads a program recorded on the tape. Therefore, severai different programs can
be stored in the COMPUTER at the same time.

When programs with file names PRO-1, PRO-2, and PRO-3 are to be stored, PRO-1
is stored using the CLOAD command, whereas PRO-2 and PRO-3 are transferred to
the computer using the MERGE command. The state of the storage is as follows.

(Tape) e
—'—Filan:ame " Program Filename ‘;EPrplgiram R P 7 !
+- fi’z&i |
CLOAD “PRO-1" MERGE “PRO-2* MERGE PRGOSV i - ’

Program “PRO-1"

Program “PRO-1"

Program “PRO-1"

Program “PRO-2"

Program “PRQ-2"

Program “PRO-3"

C Program area of the compuiar

Transfer the first program to the computer using the CLOAD command.

123

Commands
MERGE

Programs loaded using the MERGE command are stored as in the example. The
programs are handled by their line numbers as follows.

if the first line number of the program loaded using the MERGE command is larger
than the last line number of the previously loaded program, the two programs are
considered to be a single program.

if the first line number of the program loaded using the MERGE command is smalier
than the last line number of the previously loaded program, the two programs are
considered separate.

In the example above, where the line numbers for programs PRO-1, PRO-2, and
PRO-3 are 10 to 200, 50 to 150, and 160 to 300, respeciively, PRO-1 and PRO-2
are considered separate. PRO-2 and PRO-3 are considered to be a single program
with line numbers 50 {0 300.

Loading programs with the MERGE command may result intwo or more programs in
the computer with the same line numbers. In this case, the executed RUN or GOTO
(RUN expression, GOTO expression} is valid only for the last merged program.
There will be no way to execute the preceding programis).

Therefore, put a label to the beginning of a program to be executed and execute the
program using a DEF (defined) key.

Note, however, that only the last merged program can be edited after the MERGE
command has been executed and that the program(s) loaded earlier cannot be
edited. Therefore, add the label to the program before merging the next program.

Merging password-protected programs

When loading programs with passwords {password-protected programs) using the
MERGE command, the handling of the programs differs as outlined below, depending
on whether the programs within the computer are protected.

When protected
Password-protected programs cannot be loaded.

When not protected
If password-protected programs are loaded using the MERGE command, all
programs within the computer become protected.

When the programs within the computer are protected, even programs without
passwords become password-protected when loaded using the MERGE command.

124

Commands
MERGE

Executing merged programs
The figure shows the memory when PRC-1 is loaded after
"A" PROA1 which PRO-2 and PRO-3 are lpaded using the MERGE
--------------- command. if a program is started using RUN or GOTO
“B" PRQ-2 (RUN expression or GOTO expression), PRC-3 will be
————————————— executed. On the other hand, if started using RUN
c" PRO-3 “label", GOTO “label”, or a DEF (defined) key, the
specified label is searched for from the beginning of PRO-3
within the computer.

il not found in PRO-3, the search proceeds in PRO-1. if alsc not found in PRO-1,
PRO-2 is searched. If the label is found, the program is executed from the labeled
line.

Note that since the label is searched for in this manner, if a label used in PRO-1 and
PRO-2 is also used in PRO-3, PRO-1 and PRO-2 cannot be executed,

L L

125

v

et b s et 2

Commands
NEW

1 NEW
Abbreviations: none

See also: CLEAR, PASS

The NEW command is used fo clear existing programs and data in memory.

When used in the PROgram mode, the NEW command clears all programs and data
(array variables, simple variables, and fixed variables) which are currently in mem-
ory. (The programs with passwords cannot be cleared.)

The NEW command is not defined in the RUN mode and will result in an ERROR 9.

NEW Clears programs and data in memory.

126

Commands
PASS

1 PASS “character string"
Abbreviations: PA., PAS.
See also: CLOAD, CSAVE, DELETE, NEW, RENUM

The PASS command is used to set and cancel passwords.

Passwords are used to protect programs from inspection or modification by other

users. A password consists of a character string no more than seven characters long.

The seven characters may be alphabetic or one of the following special symbols:
FT#$% & ()2 + -/, < =>72@V 1~

Note: Do not use any BASIC command or verb as a password.

Once a PASS command has been given, the programs in memory are protected. A
password-protected program cannot be examined or modified in memory. It cannot be
sent to tape or listed with LIST or LLIST, nor is it possibie o add or delete program
lines. H several programs are in memory and PASS is entered, all programs in
memory are protected. The only way to remove this protection is to execute another
PASS command with the same password.

Note: When a password with more than seven characters is declared, only the first

seven characters are valid and @re set or removed from pr»o‘tectlon Z 4
Press [ENTER] right after the pas‘sword Core h?’ U

Writing characters or symbols aﬁer a password resultsq .ain Firror amd eg
password cannot be canceled. i

(example) PASS“ABCDEFG" A=123 (ENTER] (ENTER] — Error 1 % %

Examples
| Examples

PASS “SECRET” Establishes the password ‘SECRET' for all programs in
memory.

aE g

127

Commands
RENUM

1 RENUM [new line number][[old line number][,increment]]

Abbreviations: REN., RENU.

The RENUM command is used to renumber program lines. This command is effective
for manual operation in the PRO (Program) mode.

This command renumbers old line numbers in the specified step increments, starting
from the specified new line number.

If the values of new line number and increment are omitted, 10 is assumed for both. If
old line number is omitted, renumbering starts from the first line of the program. If the
specified old line number is not found, an error oceurs.

Example 1: RENUM

Renumbers all the program lines in increments of 10 steps from line 10.

Example 2;: RENUM 194, 59, 10

Changes old line number 50 to new line number 100 and renumbers subsequent line
numbers in increments of 10 steps.

The RENUM cormmand automatically changes all line number references following
GOTO, GOSUB, IF~THEN, ON~GOTO, ON~GOSUB, RESTORE, etc., to
reflect the new line numbers. In this case, however, an error will result if expression
{e.g., GOTO 2%50), If an error cccurs due to such incorrect line number reference,
renumbering of the incorrect line number cannct be effected by RENUM. In such a
case, temporarily rewrite the command containing an incorrect line number to a REM
staternent, and correct it {perhaps, change to ON~GQTQ) after the execution of the
RENUM command.

The RENUM command cannot be executed if the number of lines to be renumbered
exceeds 65279, or if the specification requires a change in the execution order of
program lines (for example, an attempt is made to execute RENUM 15, 30 when
three program lines 10, 20, and 30 exist).

It will take a little while to complete the execution of RENUM on a large program. If you
press the key to interrupt the program while one asterisk (%) is appearing at the
rightmost end of the display, the program will return to the original condition before the
execution of RENUM. However, this interrupticn by the key will be ignored when
two asterisks (%) are on the display.

128

Commands
RENUM

The work area of “number of program lines x 4 bytes” is used only when the RENUM
command is executed. By renumbering program lines, line number references by
GOTO, GOSUB, etc., also change. As a result, the original program may have an
increase in the number of bytes used. In other words, new line GOTO 200 uses one
byte more than old line GOTO 20. The RENUM command cannot be executed if the
remaining capacity of the work area becomes short due to the increase in the number of
bytes used. In such a case, clear variables from memory by the CLEAR command and
you may be able to execute RENUM.

{(See APPENDIX A for error messages related to RENUM.)

EERT S T ERE
&
-
R

[T S

U S s
L o
T e e e

120

Commands
RUN

7 RUN
2 RUN line number

Abbreviations: R., RU.
See also: GOTO, MERGE

The RUN command is used to execute a program in memary.

The first format of the RUN command executes a program beginning with the lowest
numbered statement in memory.

The second farmat of the RUN command executes a program beginning with the
specified line number.

* When programs are merged with the MERGE command, the last merged program
will be executed with format 1 or "RUN expression” in format 2.
RUN differs from GOTQG in five respects:
1) The value of the interval for WAIT is reset.
2) The display format established by USING statements is cleared.
3) Variables and arrays other than the fixed variables are cleared.
4) PRINT=PRINT status is set.
5) The pointer for READ is reset to the beginning DATA statement.

Execution of a program with GOTO is identical to execution with the DEF key. In all
three forms of program execution, FOR/NEXT and GOSUB nesting is cleared.

RUN 184 Executes the program which begins at line number 100.

130

Verbs
AREAD

1 AREAD variable name
Abbreviations: A., AR., ARE., AREA.

See also: INPUT verb and discussion of the use of the DEF key in Chapter 6

The AREAD verb is used to read in a single value to a program which is started using
the key.

When a program is labeled with a tetier so that it can be siaried using the [peF) key, the
AREAD verb can be used {o enter a single starting value without the use of the INPUT
verb. The AREAD verb must appear on the first line of the program following the label.
If it appears elsewhere in the program, it wilt be ignored. Either a numeric or string
variable may be used, but only one can be used per program.

To use the AREAD verb, type the desired value in the RUN mode, press the key,
followed by the letter which identifies the program. If a string variable is being used., it is
not necessary to enclose the entered string in quotes.

10 "X": AREAD N
20 PRINT N2
38 END

Entering "7 X" will produce a display of “49™.

Notes: 1. When the display indicates PROMPT (“>") at the start of program
execution, the designated variable is cleared.

131

Verbs
AREAD

2. When the contents are displayed by PRINT verb at'the start of program
execution, the following is stored:

Example: When the program below is executed;
1@ “A": PRINT “ABC”, "DEFG"
20 “S": AREAD AS: PRINT A$
RUN mode
(aA]1— ABC DEFG
- DEFG

& When the display indicates PRINT Numeric expression, Numeric expression, or
PRINT “String”, “String”, the contents displayed last are stored.

e When the display indicates PRINT Numeric expression; Numeric expression;
Numeric expression..., the contents displayed first (on the extreme left) are
stored.

e When the display indicates PRINT “String”; “String”; “String"..., the
contents of the “String” designated last (on the extrems right) are stored.

132

Verbs
BEEP

1 BEEP expression

Abbreviations: B., BE., BEE.

The BEEP verb is used to produce an audible tone.

The BEEP verb causes the COMPUTER to emit ane or more audible tones at 4 kHz.
The number of beeps is determined by the expression, which must be numeric
{positive number less than 9.999999998E +99). The expressicn is evaluated, but
only the integer part is used to determine the number of beeps.

BEEP may also be used as & command using numeric literals and predefined
variables. In this case, beeps occur immediately after the key is pressed.

Examples -
16 A=5 B§="9"
26 BEEF 3 Produces 3 beeps.
3¢ BEEP A Produces 5 beeps.
40 BEEP(A+4)/2 Produces 4 beeps.
50 BEEP B$ This is illegal and will produce an ERROR 9 message.
60 BEEP —4 Produces no beeps, but does not produce an error message.

r

IR T

-y -
-

i {

133

e o M)t e -

Verhs
CHAIN

1 CHAIN

2 CHAIN expression

3 CHAIN “filename”

4 CHAIN “filename”, expression

Abbreviations: CHA., CHAI.
See also: CLOAD, CSAVE, and RUN

Purpose
The CHAIN verb is used to start the execution of a program which has been stored on

cassette tape. |t can only be used in connection with the optional CE-126F and CE-
152.

To use the CHAIN verb, one or more programs must be stored on a cassette. Then,
when the CHAIN verb is encountered in a running program, a program is loaded from
the cassette and executed.

The first format of CHAIN loads the first program stored on the tape and begins
execution with the lowest fine number in the program. The effect is the same as having
entered CLOAD and RUN when in the RUN mode.

The second format of CHAIN loads the first program stored on the tape and hegins
execution with the line number specified by the expression.

The third format of CHAIN searches the tape for the program whose name is indicated
by the filename, loads the program, and begins execution with the line number
indicated by the expression.

The fourth format of CHAIN will search the tape for the program whose name is
indicated by the filename, lgad the program, and begin execution with the line number
indicated by the expression.

1% CHAIN Loads the first program from the tape and begins
execution with the lowest line number.
20 CHAIN "PRO-2", 480 Searches the tape for a program named PRO-2,

loads it, and begins execution with line number 480,

134

Verbs
CHAIN

For example, let's assume you have three program sections named PRO-1, PRO-2,
PRQ-3. Each of these sections ends with a CHAIN statement.

“PRO-1"
Magnetic tape
10:
20 {“ 1" indicates the position of the tape
_ recorder head.)
Execution
¥
400: CHAIN File name| | File name
"PRO-2" "PRO-3"
40@: CHAIN “PRO-2", 410 —_
IlPRO_a"
L—> 410: (§‘ /
: .
g Execution
. é Y
700: CHAIN File name File name
“PRO-2" “PRO-3"
700: CHAIN “PRO-3", 710 —
“PRO-3"
710: +
_ Y
Execution Fite name| [File name
"PRO-2" “PRO-3"
996: END

During execution, when the computer encounters the CHAIN statement, the next
section is called into memory and executed. In this manner, all of the sections are

eventually run.

Note: When a program containing'a CHAIN command is loaded from a tape by the
MERGE command, check to be sure that the CHAIN command is correct.

135

Verbs
CLEAR

1 CLEAR
Abbreviations: CL., CLE., CLEA.

See also: DIM

The CLEAR verb is used to erase all variables which have been used in the program
and to reset all preallocated variables to zero or null.

The CLEAR verb recovers space which is being used to store variables. This might be
done when the variables used inthe first part of a program are notrequired inthe second
part and availables space is limited. CLEAR may also be used at the beginning of a
program when several programs are resident in memory and you want to clear out the
space used by execution of prior programs.

CLEAR does not free the space used by the variable A-Z, A3-Z3$, or A(1)-A(26)
(without DIM declaration) since they are permanently assigned (see Chapter 4).
CLEAR does reset numeric variables to zero and string variables to null.

10 A=5: DIM C(5}
28 CLEAR Frees the space assigned to C() and resets A to zero.

136

Verbhs
DATA

1 DATA expression list
Where: expression list is: expression
or. expression, expression list

Abbreviations: DA., DAT.
See also: READ, RESTORE

The DATA verb is used to provide values for use by the READ verb.

When assigning initial values to an array, it is convenient to list the values in a DATA
statement and use a READ statement in a FOR...NEXT loop to load the values into
the array. When the first READ is executed, the first value in the first DATA statementis
returned. Succeeding READSs use succeeding values in the sequential order in which
they appear in the program, regardless of how many vaiues are listed in each DATA
statement or how many DATA statements are used.

DATA statements have no effect if encountered in the course of regular execution of the
program, so they can be inserted wherever it seems appropriate. Many programmers
like to include them immediately following the READ which uses them. If desired, the
values in a DATA statement can be read a second time by using the RESTORE
statement.

18 DIM B(18) Sets up an array.

20 WAIT 128

38 FOR I=1 TO 16

49 READ B(l) Loads the values from the DATA statement into
5@ PRINT B(l) B{). B(1) will be 10, B(2) will be 20, B(3)
60 NEXT I will be 30, etc.

78 DATA 10,20,30,48,50,60
8@ DATA 703,80,90,100
96 END

137

Verbs
DEGREE

1 DEGREE
Abbreviations: DE., DEG., DEGR., DEGRE.
See also: GRAD and RADIAN

The DEGREE verb is used to specify the unit of angle to decimal degrees.

The COMPUTER has three forms for representing vatlues in angular units—decimal
degrees, radians, and grads. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and
ATN functions.

The DEGREE function changes the unit of angle for all values {o decimal degrees until a
GRAD or RADIAN verb is used. The DMS and DEG functions can be used to convert
values in decimal degrees into sexagesimal equivalent {degrees, minutes, seconds)
and vice versa.

10 DEGREE
20 X=ASN 1 X now has a value of 90, i.e., 90 degrees, the arc sine of 1.
30 PRINT X

138

Verbs

DIM
1 DIM dim list
Where: dim list is: dimension spec.
or: dimension spec., dim list
and: dimension spec. is: numeric dim spec.
or: string dim spec.
and: numeric dim spec is: numeric name (size)
and: string dim spec is: string name (dims)
or: string name (dims}*len
and; numeric name is: valid numeric variable name
and: string name is: valid string variable name
and: dims is: size
or: size, size
and: size is: number of elements
and: len is: length of each string in a string array
Abbreviations: D., DI

Purpose "
The DIl is used to reserve space for numeric and string array variables.

Use -

Except for arrays in the form: A{ }, A${ }. and simple variable like A1 or B2§, a DIM
verb must be used to reserve space for any array variable.

The maximum number of dimensions in any array is two; the maximum size of any
one dimension is 255. In addition to the number of elements specified in the dimension
statement, one additional "zeroth” element is reserved. For example, DIM B(3)
reserves B(0), B(1), B(2), and B{(3). In two dimensional arrays there is an exira
"zeroth” row and column.

In string arrays, one specifies the size of each string element in addition to the number
of elements. For example, DIM B$(3)%12 reserves space for 4 strings which are each
a maximum of 12 characters long. if the length is not specified, each string can contain
a maximum of 16 characters.

When a numeric array is dimensioned, all values are initially set to zero; in a siring
array, the values are set to null.

For the array A and A$ DIM declaration, refer to the paragraph discussing variables.

139

Verbs
DIM

Array variables can be cleared (or set undefined) with the CLEAR command. When
the program is started using the RUN command, array variables are automatically
cleared.

The variable name once declared cannot be declared again. When a program once
executed is executed again with the GOTO command on using the key, the same
variable name as formerly declared will be declared again if the line with the DIM
command is executed. In this case, clear the array variable with the CLEAR command
and then declare it again.

1@ DIM B(10@) Reserves space for a numeric array with 11 elements.

2@ DIM C$(4, 4)100 Reserves space for a two dimensional string array with
5 rows and 5 columns; each string will be a max-
imurn of 10 characters.

140

Verbs
END

1 END

Abbreviations; E., EN.

Purpose

The END verb is used to signal the end of a program.

When multiple programs are loaded into memory at the same time, a mark must be
included to indicate where each program ends so that execution does not continue from
one program to another. This is done by including an END verb as the last statement in
the program.

Examples |
1@ PRINT “HELLO" With these programs in memory & ‘RUN 10’ prints
20 END ‘*HELLO, but not'GOODBYE'. ‘RUN 30’
3¢ PRINT “GOODBYE" prints ‘GOODBYE'.

4@ END

141

[CEEES

Verhs
FOR...TO

1 FOR numeric variable=expression 1 TO expression 2
2 FOR numeric variable=expression 1 TO expression 2
STEP expression 3

Abbreviations: F. and FO.; STE.
See also: NEXT

The FOR verb is used in combination with the NEXT verb to repeat a series of
operations a specified number of times.

The FOR and NEXT verbs are used in pairs to enclose a group of statements which are
to be repeated. The first time this group of statements is executed, the loop variable
(the variable named immediately following the FOR} has the value of expression 1.

When execution reaches the NEXT verb, the loop variable is increased by the step size
and then this value is tested against expression 2. If the value of the loop variable is
less than or equal to expression 2, the enclosed group of statements is executed
again, starting with the statement following the FOR. In the first form, the step size is
1; in the second form, the step size is given by expression 3. If the value of the loop
variable is greater than expression 2, execution continues with the statement which
immediately follows the NEXT. Because the comparison is made at the end, the
statements within a FOR/NEXT pair are always executed at least once.

Expression 1, expression 2, and expression 3 must be in the range of
—90.999999999E99 to 9.999939999E99. |i the value of expression 3 is zerp, FOR/
NEXT loop will be infinite.

The loop variable may be used within the group of statements, for example, as an
index to an array, but care should be taken in changing the value of the loop variable.

Programs should be written so that they never jump from outside a FOR/NEXT pairto a
statement within a FOR/NEXT pair. Similarly, programs must never leave a FOR/
NEXT pair by jumping out. Always exit a FOR/NEXT loop via the NEXT statemant. To
do this, set the loop variable to a value higher than expression 2.

The group of statements enclosed by a FOR/NEXT pair can include another pair of
FOR/NEXT statements which use a different loop variable as long as the enclosed pair
is completely enclosed; i.e., if a FOR statement is included in the group, the
matching NEXT must also be included. FOR/NEXT pairs may be “nested” up to five
levels deep.

142

“Examples -

18 FOR I=1 TO 5
20 PRINT |

36 NEXT |

49 FOR N=1¢ TO @ STEP -1]
5@ PRINT N
68 NEXT N

70 FOR N=1TO 10]
80 X=1

99 FOR F=1TON

100 X=X*F

11 NEXT F

120 PRINT X

130 NEXT N S

Verbs
FOR...TO

This group of statements prints the numbers
1,2, 3,4,5.

This group of staternents counts down 10, 9,
8,7,6,5,4,3 21,0

This group of statements compuies and prinis
N factorial for the numbers from 1 to 10.

Note: The execution of the FOR-NEXT loop does to the end even if it jumps out of the
loop. Therefore, note that a nesting error of the FOR-NEXT loop (ERROR 5)
may result depending on the program (programs which execute the FOR

command a number of times).

143

Verbs
GOSUB

1 GOSUB expression
Abbreviations; GOS., GOSU.
See also: GOTO, ON..GOSUB, ON...GOTO, RETURN

The GOSUB verb is used to execute a BASIC subroutine.

When you wish to execute the same group of statements several times in the course of
a program or use a previously written set of statements in several programs, it is
convenient to use the BASIC capability for subroutines using the GOSUB and
RETURN verbs.

The group of statements is included in the program at some location where they are not
reached in the normal sequence of execution. A freguent location is after the END
staternent which marks the end of the main program. At those lfocations in the main
body of the prograrn—where subroutines are 10 be executed—include a GOSUB state-
ment with an expression which indicates the starting line number of the subroutine.
The last line of the subroutine must be a RETURN. When GOSUB is executed, the
COMPUTER transfers control to the indicated line number and processes the state-
ments until a RETURN is reached. Control is then transferred back to the statement
following the GOSUB.

A subroutine may include a GOSUB. Subroutines may be “nested” in this fashion up
to 10 levels deep. '

The expression in a GOSUB statement may not include a comma, e.g., ‘A(t, 2
cannot be used. Since there is an ON..GOSUB structure for choosing different
subroutines at given locations in the program, the expression usually consists of just
the desired line number. When a numeric expression is used, it must evaluate to a
valid line number, i.e., 1 to 65279, or an ERROR 4 will occur.

19 GOSUB 160 When this program is run it prints the word ‘HELLO' one
20 END time.

100 PRINT “HELLQ"

11@ RETURN

144

Verbs
GOTO

1 GOTO expression
Abbreviations: G., GO., GOT.
See also: GOSUB, ON...GCSUB, ON...GOTO

The GOTO verb is used to transfer control to a specified line number.

The GOTO verb transfers control from one location in a BASIC program to ancther
location. Unlike the GOSUB verb, GOTO does not “remember” the location from
which the transfer occurred.

The expression in a GOTO statement may not include a comma, e.g., ‘A{1,2Y
cannot be used. Since there is an ON,.GOTO structure for choosing different
destinations at given locations in the program, the expression usually consists of just
the desired line number, i.e., 1 to 65279, or an ERBOR 4 will occur.

Well designed programs usually flow simply from beginning to end, except for
subroutines executed during the program. Therefore, the principal use of the GOTO
verb is as a part of an IF.. ' THEN statement.

Examples
1@ INPUT AS. This program prints ‘YES' if a 'Y is
20 IF A$="Y" THEN GOTO 5@ entered and prints 'NO' if anything else
30 PRINT “NO" is entered.

40 GOTO 64

50 PRINT "YES”

60 END

145

Verhs
GRAD

1 GRAD
Abbreviations: GR., GRA.
See also: DEGREE and RADIAN

The GRAD verb is used to specify the unit of angle to grads.

The COMPUTER has three forms for representing values in angular units—decimal
degrees, radians, and grads. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and
ATN functions.

The GRAD function changes the unit of angle for all values to grads until a DEGREE or
RADIAN verb is used. Grad represents an angular measurement in terms of percent
gradient, i.e., a 45° angle is a 507 gradient.

To solve for the values of a sine, in the respective angular units, first specify D" for
degrees, “R” for radians, or “G” for grads and then enter the angle of the sine.

1@ INPUT “DEG=D, RAD=R, GRAD=G?" ;A%
20 IF A$="D" THEN 100

30 IF A$="R" THEN 2p@

4@ GRAD :GOSUB 39@:GOTO 49

108 DEGREE :GOSUB 300.GOTO 160

20@ RADIAN :GOSUB 3@80:GOTO 289

308 INPUT “SIN ?*.B

310 PRINT “SIN” ;B;"=";SIN B

320 RETURN

146

Verhs
IF...THEN

1 IF condition THEN statement
2 IF condition statement

Abbreviations: none for IF; T, TH., THE.

The IF..THEN verb pair is used to execute or nol 1o execute a statement depending
on conditions at the time the program is run.

Yse

In the normal running of BASIC programs, statements are executed in the sequence in
which they occur. The IF..THEN verb pair allows decisions to be made during
execution so that a given statement is executed only when desired. When the condition
part of the IF statement is true, the statement is executed; when it is false, the
statement is skipped.

The condition part of the IF statement can be any relational expression as described in
Chapter 4. Itis also possible to use a numeric expression as a condition, although the
intent of the statement will be less clear. Any expression which evaluates to zero or a
negative number is considered false; any which evaluates to a positive number is
considered true.

The statement which follows the THEN may be any BASIC statement, including
another IF..THEN. If it is a LET statement, the LET verb itself must appear.

The two formats of the IF statement are identical in action, but the first format is clear.

10 INPUT “CONTINUE?"; A% This program continues to ask ‘CONTINUE?
20 IF AS="YES" THEN GOTO 18 as long as ‘YES is entered; it stops if
38 IF A$="NO” THEN GOTO 60 ‘NO' is entered, and complains otherwise.
40 PRINT “YES OR NO, PLEASE”

5@ END

147

i — i

Verbs
INPUT

1 INPUT input list

Where: input list is: input group
or: input group, input list
and: input group is: var list

or: prompt, var list
or; prompt, var list

and; var list is: variable
or: variable, var list
and: prompt is: any string constant

Abbreviations: |, [N., INP., INPU.
See also: INPUT#, READ, PRINT

The INPUT verb is used to enter one or more values from the keyboard.

When you want to enter different values each time a program is run, use the INPUT
verb to enter these values from the keyboard.

In its simplest form the INPUT statement does not include a prompt string; instead a
question mark is displayed at the left edge of the display. A value is then entered,
followed by the key. This value is assigned to the first variable in the list. f other
variables are included in the same INPUT statement, this process is repeated untif the
list is exhausted.

If a prompt is included in the INPUT statement, the process is exactly the same except
that, instead of the question mark, the prompt string is displayed at the left edge of the
display. If the prompt string is foliowed by a semicolon, the cursor is positioned
immediately after the prompt. If the prompt is followed by a comma, the prompt is
displayed. Then when a key is pressed, the display is cleared and the first character of
the input is displayed at the left edge.

When a prampt is specified and there is more than one variable in the list following it,
the second and succeeding variabies are prompted with the question mark. If a second
prompt is included in the list, it is displayed for the variable which immediately follows
it.

I the key is pressed and no input is provided, the variable retains the value it
had before the INPUT statement.

148

-eiieol LE: ikl Ca

Verbs

INPUT
. Examples |
10 INPUT A Clearsihe display and puts a question mark at the
left edge.
20 INPUT "A="A Displays ‘A=" and waits for input data.
30 INPUT "A="A Displays 'A=",

When data is input, ‘A=" disappears and

the data is displayed starting at the left edge.
49 INPUT "X=72":X,"Y=7"¥ Displays ‘X="7' and waits for first input.

After [ENTER] is pressed, display is cleared

and 'Y="7"is displayed at the left edge.

Note: Clear the error during input for the INPUT command by pressing the [E<g key
and then input the correct data.

148

Verbs
INPUT #

1 INPUT # var list
2 INPUT # “filename”; var list

Where: var list is: variable
or: variable, var list

Abbreviations: I. #, IN. #, INP. #, INPU. #
See also: INPUT, PRINT #, READ

The INPUT # verb is used to enter values from the cassetie tape.

Use and Examples .
The following variable types can be specified in the INPUT # statement:
(1) Fixed variables—A, B, C, A(7), D¥, A(20)%, etc.

(2) Simple variables—AA, B3, CP$, eic. '

(3) Array variables—S{%), HP(*), K$(*¥), eic.

1) Transferring datato fixed variables
To transfer data from tape to fixed variables, specify the variahle names in the
INPUT # statement.

INPUT # "DATA1" ;A B, X, Y

This statement transfers data from the cassetie file named “DATA1" to the
variables A, B, X, and Y in that order.

To fill all the available fixed variables and, if defined, the extended variables
(A{27) and beyond) with data transferred from tape, specify the first variable with
an asterisk (°¢) subscripted to it.

INPUT # “D-2"; D#

This statement transfers the contents of the tape file “D-2" to variables D through Z
and to A{27) and beyond.

INPUT # A(10)% (without DIM declaration)

This statement transfers the data of the first file found after the tape was started, to
the variables A(10) and beyond (to J through Z and A{27} and beyond).

Notes: 1. If an array named A is already defined by the DIM statement, it is not
possible to define subscripted fixed variables in the form of A{).

150

Verbs
INPUT #

2. Data transfer to fixed variables and extended variables (A(27} and
beyond) will continue until the end of the source data file on the tape is
reached, but if the computer's memory becomes full, an error (ERROR
6) results.

2) Datatransferto simple variables
Data in a tape file can be transferred to simple variables by specifying the desired
sirmple variable names in the INPUT # statement.

INPUT # “DM-1"; AB, Y1, XY$

This statement transfers data from the tape file named “DM-1" to simple variables
AB, Y1, and XY$.

Notes: 1. Numeric data must be transferred to numeric simple variables, and
character data must be simple character variables. Cross-transfer is not
allowed.

2. Locations for simple variabies must be set aside in the program data area
before the INPUT slatement is executed. If not, an error will resuit, Use
assignment statements fo reserve the locations for simple variables.

AA=[([ENTER] Use appropriate numeric values or characiers in
Big="A" assignment statements to reserve locations for

INPUT AA, B1$ variables.

3) Datatransfertoarray variables
To transfer data from a tape file {o array variables, specify the array name in the
INPUT # statement in the form of array name(®).

50 DIM B(5)
60 INPUT # “DS-4"; B(X)

This statement transfers data from the tape filte named “DS-4" to the variables (B{0}
through B(5)) in array B.

Noie: 1. Numeric data must be transferred to numeric array variables with the same
length as that of the data, character data must be transferred to character
array variables with the same length as that of the data. If this ruie is not
observed, an error will result.

2. Locations for array variables must be set aside in the program data area
before the INPUT # statement is executed. If not, an error will result. Use
the DIM staternent to define the array in advance.

151

Verhs
INPUT #

—CAUTION-
If the number of variables specified in the INPUT statement does not agree with the
amount of data recorded on the tape, the following will happen:

A

If the number of pieces of data recorded on the tape file {to be transferred) is
greater than the number of specified variables, data transfer will be performed to
the last variable, and the remaining data will be ignored.

If the number of pieces of data recorded in the tape file (to be transferred) is smaller
than the number of specified variables, all the file data will be transferred to the
variables to the end of the file, and the remaining variables will maintain their
previous contents. In this case, however, the computer will continue to wait for
data transfer from the tape. To halt this state, you should operate the key.

If the INPUT statement is executed with no variable name specified in it, an error
{(ERROR 1) will result.

152

Verbs
LET

1 LET variable=expression
2 variable=expressicn

Abbreviations: LE.

The LET verb is used to assign a value to a variable.

The LET verb assigns the value of the expression to the designated variable. The type
of the expression must match that of the variable, i.e., only numeric expressions can
be assigned to numeric variables and only string expressions can be assigned 1o string
variables. To convert from one type to the other, one of the explicit type conversion
functions, STR$ or VAL, must be used.

The LET verb may be omitted in all LET siatements except those which appear in the
THEN clause of an IF..THEN statement. In this one case the LET verb must be
used.

Assigns the value ‘10" to |

20 A=5%! Assigns the value ‘50 to A.
36 X3=STR$(A) Assigns the value ‘50" to X$
48 IF 1=>=1p THEN LET Y$=X$+".08" Assigns the value ‘50.00" to Y$.

183

Verbs
LPRINT

For printer CE-126P

1 LPRINT, €XPression '
character string
o LPRINT/ €XPression , | expression .
character string character string
3 LPRINT/ €XPression ' - [expression ‘ ... | expression .
character string character string character string
Abbreviations: LP., LPR., LPRI., LPRIN.
See also: PRINT, USING

The LPRINT verb is used to print information on the printer CE-126P.

in format 1, numerics are right justified and alphabetics are printed from the left side of
the paper. A line feed command is automatically executed when one line contains
more than 24 characters.

In format 2, the 24 columns of one line are divided into two groups of 12 columns, and
data is printed symmetrically around the comma.

A numeric value within the 12-column (digit) range is printed at the far right of the
display, while a character value (string value) is printed starting at the far left. If the
vaiue to be printed exceeds 12 columns, the numeric value is printed with the least
significant digit(s) of its decimal fraction part truncated so the value is within 12 digits,
and the characters value is printed from the first 12 characters {from the left).

In format 3, the values are printed from the left edge of the paper. If the value to be
printed exceeds 24 columns, a new line is automatically periormed. Up to a maximum
of 96 characters can be printed.

Note: Do not use any BASIC command or verb as a string expression.

10 A=10:B=20:X$="ABCDE™:Y§="XYZ"
20 LPRINT A

30 LPRINT X$

4@ LPRINT AB

50 LPRINT X$;A;B

60 LPRINT

154

Verbs
MDF

1 MDF expression

Abbreviation: MD.

See also: USING

The MDF verb is used to round up the value of an expression.

The MDF is a function used to round the value of an expression to the number of
decimal places specified by the USING command.

This verb is effective only when the number of decimal places is specified for a value by
the USING command.

Disptay
USING “#t#.##4"
MDF (2.5/5)

msﬂ

10 USING “# di# ##4"
20 A=MDF (5/9)

30 PRINT A

4p USING

50 PRINT A, 5/9

66 END

RUN ?.556

0.556 5.55555E-01

155

Verbs
NEXT

1 NEXT numeric variable

Abbreviations: N., NE., NEX.

See also: FOR

" Purpose
The NEXT verb is used to mark the end of a group of statemenis which are being
repeated in a FOR/NEXT loop.

‘Use -

The use of the NEXT verb is described under FOR. The numetic variable in a NEXT
statement must match the numeric variabie in the corresponding FOR.

Examples
18 FOR 1=1TO 18 Print the numbers from 1 to 10 each time the[ENTER] is
20 PRINT | pressed.
33 NEXT |

156

Verbs
ON...GOSUB

1 ON expression GOSUB expression list
Where: expression list is: expression
or: expression, expression dist

Abbreviations: O.; GOS., GOSU.
See also: GOSUB, GOTO, ON...GOTO

The ON...GOSUB verb is used to execute one of a set of subroutines depending on
the value of a control expression.

When the ON...GOSUB verb is executed, the expression between ON and GOSUB
is evaluated and reduced to an integer. If the value of the integer is 1, the first
subrouting in the list is executed as in a normal GOSUR. If the expression is 2, the
second subroutine in the iist is executed, and so forth. After the RETURN from the
subrouting, execution proceeds with the statement which foilows the ON...GOSUB,

if the expression is zero, negative, or larger than the number of subroutines provided
in the list, no subroutine is executed and execution proceeds with the next line of the
program.

NOTE: Commas cannot be used in the expressions following the GOSUB. The
COMPUTER cannot distinguish beiween commas in expressions and com-
mas between expressions.

18 INPUT A Aninputof 1 prints “FIRST"; 2 prints

20 ON A GOSUB 100, 26¢, 300 “SECOND"; 3 prints “THIRD",

3@ END Any other input does not produce any
100 PRINT “FIRST" print.

11@ RETURN

266 PRINT “SECOND”

216 RETURN

300 PRINT “THIRD”
318 RETURN

157

Verbs
ON..GOTO

1 ON expression GOTO expression list
Where: expression list is: expression
or: expression, expression list

Abbreviations: O.: G., GO., GOT.
See also: GOSUB, GOTO, ON...GOSUB

The ON...GOTO verb is used to transfer control to one of a set of locations depending
on the value of a control expression.

When the ON...GOTO verb is executed, the expression between ON and GOTO is
evaluated and reduced to an integer. If the value of the integer is 1, control is
transferred to the first location in the list. If the expression is 2, control is transferred to
the second location in the list, and so forth.

If the expression is zero, negative, or larger than the number of locations provided in
the list, execution proceeds with the next line of the program.

NOTE: Commas cannot be used in the expressions following the GOTO. The
COMPUTER cannot distinguish between commas in expressions and com-
mas between expressions.

10 INPUT A Aninputof 1 prints ‘FIRST; 2 prints
26 ON A GOTQ 108, 200, 300 ‘SECOND’; 3 prints ‘THIRD'. Any
30 GOTO 96@ other input does not produce any print.

100 PRINT “FIRST"
116 GOTO 980

200 PRINT “SECOND"
214 GOTO 9d0

30@ PRINT “THIRD”
316 GOTO 988

96 END

168

Verbs
PAUSE

1 PAUSE print expr
2 PAUSE print expr, print expr
3 PAUSE print expr; print list; ...; print list

Where: print list is: print expr
or: print expr; print list
and: print expr is: expression
or: USING clause; expression

The USING clause is described separately under USING.
Abbreviations: PAU., PAUS.
See also: LPRINT, PRINT, USING, WAIT

Purpose

The PAUSE verb is used to print information on the display for a short period.
Use

The PAUSE verb is used 1o display prompling information, results of calcuiations, etc.
The operation of PAUSE is identical 1o PRINT except that after PAUSE the CORM-
PUTER waits for a short preset inferval of about 0.85 second and then continues
execution of the program without waiting for the key or the WAIT interval.

The first form of the PAUSE statement displays a single value, If the expression is
numeric, the value is printed at the far right of the display. If it is a string expression,
the display is made starting at the far left.

In format 2, the display unit is divided into groups of 12 columns. The values are
displayed, in sequence, from the first specified value.

In this case too, within a range of 12 columns, the numeric value of an expression is
displayed from the right end of the display and characters are displayed from the left
side.

® The number of the values (items) specified in format 2 must be within 2.

s If the specified value exceeds 12 columns, the following is performed.

1} When the numeric value exceeds 12 digits, the least significant digii(s) is
truncated.

2) When the characters exceed 12 columns, only the first 12 characters (from the
left} are displayed.

155

Verbs
PAUSE

in format 3, the specified value is displayed continuously from the left side of the
display.

19 A=10: B=20: X$="ABCDEF":

Y$="XYZ"
Display
23 PAUSE A T E]
30 PAUSE X$ LABCDEF
49 PAUSE X§,B | ABCDEF 20.
50 PAUSE Y$:X$ [XYZABCDEF
60 PAUSE A+B B 200.

Note: Do not use any BASIC command or verb as a character string in a PAUSE
statement.

160

Verbs
PRINT

1 PRINT print expr

2 PRINT print expr, print expr
3 PRINT print list

4 PRINT=LPRINT

5 PRINT=PRINT

Where: print list is: print exp
or: print expr; print list
and: print expr is: expression
or: USING clause; expression

The USING clause is described separately under USING,.
Abbreviations: P., PR., PRI., PRIN.
See also: LPRINT, USING, WAIT

The PRINT verb is used to print information on the display or on the printer.

The PRINT verb is used to display prompting information, results of calculations, efc.
The first form of the PRINT statement displays a single value. If the expression is
numeric, the value is printed at the far right of the display. If it is a string expression,
the display is made starting at the far Isft.

In format 2, the display unit is divided into groups of 12 columns. The values are
displayed, in sequence, from the first specified value. In this case too, within a range
of 12 columns, the vaiue of an expression is displayed from the right end of the display
and characters are displayed from the left side.

® The number of the values (items) specified in format 2 must be within 2.

¢ If the specified value exceeds 12 columns, the following is performed.

1) When the numeric value exceeds 12 digits, the least significant digit(s) is
truncated.

2) When the characters exceed 12 columns, only the first 12 characters {from the
left) are displayed.

161

Verbs
PRINT

In format 3, the specified value is displayed continuously from the left side of the
display.

Note: Do not use any BASIC command or verb as a character string in a PRINT
statement.

Display
10 A=123:B=456:X$="ABCDEF":
YE="VWXYZ"

ABCD .
29 PRINT X$,B CDEF 456
30 PRINT A;B 123.456.
4@ PRINT X$;A ABCDEF123.
5@ PRINT Y§;B VWXYZ456.

162

Verbs
PRINT #

1 PRINT # “var list”
2 PRINT # “filename” ; var list

Where: var list is: variable
or: variable, var list

Abbreviations: P. #, PR. #, PRL # PRIN. #
See also: INPUT #, PRINT, READ

The PRINT # verb is used to store values on the cassette tape.

‘Use and Examples

The following variable types can be used for variable names:
(1) Fixed variables—A, B, X, A(26), C%, A(10)%, etc.

(2) Simple variables—AA, B2, XY3, etc.

(3) Array variables—B(¥), CD(%), NS(*), eic.

1) Saving fixed variable contents onto tape
The contents of fixed variables can he saved onio tape by specifying the desired
variable names (separated by commas) in the PRINT # statement.

PRINT # “DATA 1" ;A B, X, Y

This statement saves contents of variables A, B, X, and Y into tape file named
“DATA 1".

If you wish to save the contents of the specified fixed variable and all the subsequent
fixed variables, subscript that variable name with an asterisk#.

PRINT # “D-2"; D This statement saves the contents of fixed variables D
through Z {(and of extended variables A(27) and
beyond, if defined) into the tape file named *D-2",

PRINT E, X% A(30)* This statement saves the contents of the fixed variables
E and X$ and of the extended variables A(38) and all the
remaining variables, onto the tape without file name.

Note: Subscripted fixed variable names A(1) through A(26) can be specified in the
PRINT # statement in much the same way as A through Z (or A% through Z8$).
However, if array A is already defined by the DIM statement, A() cannot be
used to define subscripted fixed variabies.

163

Verhs
PRINT #

2) Saving simple variable (two-character variable) contents

The contents of simple variables can be saved onto tape by specifying the desired
variable names.

PRINT # “DM-1"; AB, Y1, XY$
This statement saves the contents of the simple variables AB,
Y1, and XY$ into the tape file named ‘DM-1",

3) Saving array variable contents
The contents of all variables of a specific array can be saved onto tape by specifying
the array name subscripted by an asterisk enclosed in parentheses ().

PRINT # “DS-2";X{#),YS(¥)
This statement saves the contents of all the elements
(X{0),X(1), ..) of the array X, and of all the elements

{X%(0), Y$(1), ...) of the array Y$, into the tape file name
‘Ds-2".

Note: It is not possible to save the contents of only one specific element of an array.
While fixed variables or subscripted fixed variables in the form of A() allow you
to save cnly one specific element of such a variable, an array (such as A),

defined by the DIM statement, allows you to save in the same manner as other
arrays.

“ If the PRINT # statement is executed with no variable names specified, an error
(ERROR 1) will resuit.

—CAUTION- .
The locations for extended variables such as A(27} and beyond, simple variables,
and/cr array variables must be set aside in the program/data area before the PRINT #

statement is executed. Otherwise, the execution of the PRINT # statement for
undefined variables will result in an error.

164

Verbs
RADIAN

1 RADIAN
Abbreviations: RAD., RADI., RADIA,
See also: DEGREE, GRAD

The RADIAN verb is used to change the unit of angle to radians.

The COMPUTER has three forms for representing values in angular values—decimal
degrees, radians, and grads. These forms are used in specifying the arguments to the
SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and
ATN functions.

The RADIAN function changes the unit of angle for all values to radians untila DEGREE
or GRAD verb is used. Radian represents an angular measurement in terms of the
length of the arc with respect to a radius, i.e., 360° is 2 Pl radians since the
circumference of a circle is 2 Pl times the radius.

1@ RADIAN
20 X=ASN 1 X now has a value of 1.570796327 or Pi/2, the arc sine of 1.
30 PRINT X

165

Verbs
RANDOM

1 RANDOM

Abbreviations: RA., RAN., RAND., RANDO.,

The RANDOM verb is used to reset the seed for random number generation.

When random numbers are generated using the RND function, the COMPUTER
begins with a predetermined “seed” or starting number. The RANDOM verb resets
this seed to a new randomly determined value.

The starting seed will be the same each time the COMPUTER is turned on, so the
sequence of random numbers generated with RND is the same each time, unless the
seed is changed. This is very convenient during the development of a program
because it means that the behavior of the program should be the same each time it is
run, even though it includes an RND function. When you want ta have the numbers be
truly random, the RANDOM statement can be used to make the seed itself random.

18 RANDOM When run from line 20, the value of X is based on the standard
20 X=RND 18 seed. When run from line 10, a new seed is used.

166

Verbs
READ

1 READ variable list
Where: variable list is: variable
or: variable , variable list

Abbreviations: REA.

See also: DATA, RESTORE

The READ verb is used to read values from a DATA statement and assign them to
variables.

Use

When assigning initial values to an array, it is convenient 1o list the values in a DATA
statement and use a READ statement in a FOR...NEXT loop to load the values into
the array. When the first READ is executed, the first value in the first DATA statement is
returned. Succeeding READs use succeeding values in the sequential order in which
they appear in the program, regardless of how many values are listed in each DATA
statement or how many DATA statements are used.

If desired, the values in & DATA statement can be read a second time by using the
RESTORE statement.

Examples -

19 DIM B (18) Set up an array.

20 WAIT 32

3D FORI=1TO 18

48 READ B([} Loads the values from the DATA statementinto B{ }—
5@ PRINT B(l}*2 B(1) is 10, B{2) is 20, B(3) is 30, etc.

6@ NEXT |

70 DATA 19 20 30 40 50 6@

8@ DATA 70 80 90 100

9p END

167

Verbs
REM

1 REM remark

Abbreviations: none

The REM verb is used to include comments in a program.

Often it is useful to include explanatory comments in a program. These can provide
tities, names of authors, dates of last modification, usage notes, reminders about
algorithms used, etc. These comments are included by means of the REM statement.

The REM statement has no effect on the program execution and can be included
anywhere in the program. Everything following the REM verb in that line is treated as a
comment.

1@ REM THIS LINE HAS NO EFFECT

168

Verbs
RESTORE

1 RESTORE
2 RESTORE expression

Abbreviations: RES., REST., RESTO., RESTOR.
See also: DATA, READ

The RESTORE verb is used to reread values in a DATA staternent or lo change the
order in which these values are read.

Use

inthe regular use of the READ verb, the COMPUTER begins reading with the first value
in a DATA statement and proceeds sequentially through the remaining values, The first
form of the RESTORE statement resets the pointer o the first value of the first DATA
statement, so that it can be read again. The second form of the RESTORE staiement
resets the pointer to the first value of the first DATA statement whose line number is
greater than the value of the expressicn.

14 DIM B(12) Sets up an array.

20 WAIT 32

30 FOR i=1TO 1@

40 RESTORE

58 READ B(}) Assign the value 20 to each of the elements of B{).
6@ PRINT B(l)*l

70 NEXT |

80 DATA 20

96 END

169

Verbs
RETURN

1 RETURN
Abbreviations: RE., RET., RETU., RETUR.
See also: GOSURB, ON...GOSUB

The RETURN verb is used at the end of a subroutine to return control to the statement
following the originating GOSUB.

A subroutine may have more than one RETURN statement, but the first ane executed
terminates the execution of the subroutine. The next statement executed will be the
one following the GOSUB or ON...GOSUB which calls the subroutine. If a RETURN
is executed without a GOSUB, an ERROCR 5 will oceur.

13 GOSUB 180 When run, this program prints the word “HELLO" one
2@ END time.

168 PRINT “HELLO”

110 RETURN

170

Verbs
STOP

1 STOP
Abbreviations: 8., ST., STO.

See also: END, CONT

The STOP verb is used to halt execution of a program for diagnostic purposes.

When the STOP verb is encountered in program execution, the COMPUTER execu-
tion halis and a message is displayed such as '‘BREAK IN 280" where 200 is the
number of the line containing the STOP. STOP is used during the development of a
program to check the flow of the program or examine the state of variables. Execution
may be restarted using the CONT command.

i@ STOP Causes “BREAK IN 18" to appear in the display.

171

Verhs
TROFF

1 TROFF
Abbreviations: TROF.
See also: TRON

The TROFF verb is used to cancel the trace mode.

Execution of the TROFF verb restores normal execution of the program.

18 TRON When run, this program displays the line numbers 10,
26 FOR I=1TO 3 20, 30, 30, 30, and 40 as the [is pressed.

30 NEXT | :

40 TROFF

172

Verbs
TRON

1 TRON
Abbreviations: TR., TRO.

See also: TROFF

The TRON verb is used to initiate the trace mode.

The trace mode provides assistance in debugging programs. When the trace mode is
on, iine number of each statemnent is displayed after each statement is executed. The
COMPUTER then halts and waits for the Down Arrow key to be pressed before moving
on to the next statement. The Up Arrow key may be pressed to see the statement which
has just been executed. The trace mode continues until a TROFF verb is executed or
the key operation of the saFT] and Ei:,ej is performed.

Examples
1B TRON When run, this program displays the line numbers 10,
26 FORI=1TO 3 20, 30, 30, 30, and 40 as the {31 is pressed.
38 NEXT |
43 TROFF

173

Verbs
USING

1 USING
2 USING “editing specification”

Abbreviations: U., US., USL, USIN.
See also: LPRINT, PAUSE, PRINT

The USING verb is used to control the format of displayed or printed output.

The USING verb can be used by itself or as a clause within an LPRINT, PAUSE, or
PRINT statement. The USING verb establishes a specified format for output which is
used for all output which follows until changed by another USING verh.

The editing specification of the USING verb consists of a quoted string composed of
some combination of the following editing characters:

Right justified numeric field character

Decimal point
~ Used to indicate that numbers should be displayed in scientific notation
& Left justified alphanumeric field

For example, “####" is an editing specification for a right justified numeric field with
room for 3 digits and the sign. In numeric fields, a location must be included for the
sign, even if it will always be positive.

Editing specifications may include more than one field. For example "# ###8&&8&&"
could be used to print a numeric and a character field next to each other.

If the editing specification is missing, as in format 1, special formatting is turned off and
the built-in display rules pertain.

18 A=125:X35="ABCDEF”

Display

¢ PRINT USING “##. 44 ~"A r 1.25E 02

30 PRINT USING "&38&&88&"X$ FABCDEF

49 PRINT USING “## ##888"AX$ | 125ABC —‘

{See APPENDIX C for further guide to the use of USING.)

174

Verbs
WAIT

1 WAIT expression
2 WAIT

Abbreviations: W., WA, WA
See also: PRINT

The WAIT verb is used to control the length of time that displayed information is shown
before program execution continues.

In normal execution, the COMPUTER halts execution after a PRINT command until
the key is pressed. The WAIT command causes the COMPUTER to display for
a specified interval and then proceed automatically (similar to the PAUSE verb). The
expression which follows the WAIT verb determines the length of the interval. The
intervai may be setto any value from 0 to 65535. Each increment is about one fifty-ninth
of a secand. WAIT 0 is too fast {o be read reasonably; WAIT 65535 is about 19
minutes. WAIT with no following expression resets the COMPUTER to the original
condition of waiting until the key is pressed.

18 WAIT 59 Causes PRINT to wait about 1 second.

175

Functions
Pseudovariables

FUNCTIONS |

' Pseudovariables

Pseudovariabies are a group of functions which take no argument and are used like
simple variables wherever required.

1 INKEY$

INKEYS is a string pseudovariable which has the value of the last key pressed on the
keyboard. [ENTER] , Ecg , (smer) , [EF - BMD , (1) , (3 , (=] , (=] , GAQ ,

(%) , and scientific function keys all have a value of null. INKEY$ is used to respond
to the pressing of individual keys without waiting for the ENTER key to end the input.

5 WAIT 50

10 AS=INKEY$

20 B=ASC A$

3@ IF B=g THEN GOTO 19
40 IF B ...

Lines 40 and beyond contain tests for the key and the actions to be taken (for example:
4@ PRINT A$). On first executing the program, the value of INKEY$ is null, since the
last key pressed was [ENTER].

& If an INKEY$ command is written at the beginning of the program, the start key may
be read {(by the INKEY$ command) when the program is started. For example, in
the following program

10°2" : Z$=INKEY$

The [(Z1 key may be read when the program is started by pressing the (Z]
keys.

178

Functions
Pseudovariables

1 MEM
Abbreviations: M., ME.

Purpose.

To obtain the number of free bytes in the program/data area.

Obtains the number of free bytes (area not used by a program, array variables, or
simple variables) in the program/data area.

ff/]fff?’/? 77};{
/
Program /)
L L r o r g L
‘:
Program/ The size cof this area in bytes is
data area oblained with the MEM command.

%fﬂ7"ﬂ7‘771'111,
Array variables, simple .
v variahies 3 /
PPV IIITFIIIIY

Reference
The program size {in bytes) can be obtained by the following operation.

Example:
RUN mode

CLEAR (ENTER] (Clears the simpie variables, array variables, etc.)
6878-MEM « dispiays the number of bytes in the program

177

Functions
Pseudovariables

1 Pl

Pl is a numeric pseudovariable which has the value of PI. It is identical to the use of the
special Pl character {mr) on the keyboard. Like other numbers, the vaiue of Pl is kept
to 10-digit accuracy (3.141592654).

178

Functions
Numeric Functions

~Numeric Functions :

Numeric functions are a group of mathematical operations which take a single numeric
value and return a numeric value. They include trigonometric functions, logarithmic
functions, and functions which operate on the inieger and sign parts of a number.
Many dialects of BASIC require that the argument to a function be enclosed in
parentheses. The COMPUTER does not require these parentheses, except when itis
necessary to indicate what part of a more complex expression is to be included in the
argument.

ILOG 196+ 10@ will be interpreted as:
{LOG 10@)+168 not LOG (100+108)

1 ABS numeric expression

ABS is a numeric function which returns the absolute value of the numeric argument.
The absolute value is the value of a number without regard to its sign. ABS — 10 is 10.

1 ACS numeric exprassion T

ACS is a numeric function which returns the arc cosine of the numeric argument. The
arc cosine is the angle whose cosine is egual to the expression. The value returned
depends on whether the COMPUTER is in decimal degree, radian, or grad mode for
angles. ACS.5 is 60 in the decimal degree mode.

1 AHC numeric expression

AHC is a numeric function which returns arc-hyperbolic cosine of the numeric argu-
ment. AHC 5 is 2.28243167.

1 AHS numeric expression

AHS is a numeric function which returns arc-hyperboiic sine of the numeric argument.
AHS B is 2.491779853.

1 AHT numeric expression

AHT is a numeric function which returns arc-hyperbolic tangent of the numeric
argument.

179

Functions
Numeric Functions

1 ASN numeric expression

ASN is a numeric function which returns the arc sine of the numeric argument. The arc
sine is the angle whose sine is equai to the expression. The value returned depends on
whether the COMPUTER is in decimal degree, radian, or grad moede for anglfes.
ASN.5 is 30 in the decimal degree mode.

1 ATN nurneric expression

ATN is a numeric function which returns the arc tangent of the numeric argument. The
arc tangent is the angle whose tangent is equal to the expression. The value returned
depends on whether the COMPUTER is in decimal degree, radian, or grad mode for
angles. ATN 1. is 45 in the decimal degree mode.

1 €OS numeric expression

COS is a numeric function which returns cosine of the angle argumeni. The value
returned depends on whether the COMPUTER is in decimal degree, radian, cor grad
mode for angles. COS 60 is 0.5 in the decimal degree mode.

L1 CUR numeric expression

CUR is a numeric function which returns cubic root of its argument. CUR 8 is 2.

1 DEG numeric expression

The DEG function converts an angle argument in DMS (Degrees, Minutes, Seconds)
format to DEG (Decimal Degrees) form. In DMS format the integer portion of the
number represents degrees, the first and second digits of the decimal represent
minutes, the third and fourth digits of the decimal represent seconds, and any further
digits represent decimal seconds. For example, 55° 10’ 44.5" is represented as
55.10445. In DEG format the integer portion is degrees and the decimal portion is
decimal degrees. DEG 55.10445 is 55.17802778.

1 DMS numeric expression

DMS is a numeric function which converts an angle argument in DEG format to DMS
format (see DEG). DMS 55.17902778 is 55.10445.

180

Functions
Numeric Functions

1 EXP numeric expression

EXP is a numeric function which returns the value of e (2.718281828—the base of the
natural icgarithms) raised to the value of the numeric argument. EXP 1 is
2.718281828.

1 FACT numeric expression

FACT is a numeric function which returns the facterial of its argument. FACT 5is 120,

1 HCS numeric expression

HCS is a numeric function which returns the hyperbolic cosine of the numeric
argument. HCS 5 is 74.20994852.

1 HSN numeric expression

HSN is a numeric function which refurns the hypetbolic sine of the numeric argument.
HSN 4 is 27.2899172.

1 HTN numeric expression

HSN is a numeric function which returns the hyperbolic tangent of the numeric
argument. HTN 1 is 0.761594156.

1 INT numeric expression

INT is a numeric function which returns the integer part of its numeric argument. INT PI
is 3.

1 LN numeric expression

LN is a numeric function which retumns the legarithm to the base e (2.718281828) of
its numeric argument. LN 100 is 4.605170186).

1 LOG numeric expression

LOG is a numeric function which returns the logarithm to the base 10 of its numeric
argument. LOG 100 is 2.

181

Functions
Numeric Functions

1 POL {numeric expression, numetic expression)

POL is a numeric function which converts numeric arguments in rectangular coor-
dinates format to polar coordinate format.

The first numeric argument indicates the distance from the y-axis and the second
numeric argument indicates the distance from the x-axis. The values converted, the
distance and the angle in the polar coordinates, are assigned to the fixed variables Y
and Z, respectively. The angle converied depends on whether the COMPUTER is in
decimal degree, radian, or grad mode for angles. POL (3, 4) is (5, 53.13010235)
in decimal degrees.

1 RCP numeric expression

RCP is a numeric function which returns the reciprocal of its numeric argument. RCP 5
is 0.2

1 REC (numeric expression, numeric expression)

REC is a numeric function which converts numeric arguments in polar coordinates
format to rectangular coordinates format.

The first numeric argument indicates the distance and second numeric argument
indicates the angle which depends on whether the COMPUTER is in decimal degree,
radian, or grad mode for angles. The values converted, the distances from the y-axis
and the x-axis, are assigned into the fixed variables Y and Z, respectively. REC (7,
50) is (4.499513268, 5.362311102) in decimal degrees.

1 RND numeric expression

RND is a& numeric function which generates random numbers. If the value of the
argument is less than one but greater than or equal to zero, the random number is less
than one and greater than or equal to zero. If the argument is an integer greater than or
equal to 1, the result is a random number greater than or equal to 1 and less than or
equal to the argument. If the argument is greater than or equal to 1 and not an integer,
the result is a random number greater than or equal to 1 and less than or equal to the
smallest integer which is larger than the argument. (In this case, the generation of the
random number changes depending on the value cof the decimal portion of the
argument.}

182

Functions
Numeric Functions

------------ Result ---------
Argument Lower Bound Upper Bound
.b < <1
2 1
25 1 3

The same sequence of random numbers is normally generated because the same
“seed” is used each time the COMPUTER is turned on. To randomize the seed, see
the RANDOM verb.

1 numeric expression ROT numeric expression

ROT is a numeric function which returns the power root of its argument.
125 ROT 3 is 5.
{i.e.: ¥125 should be entered as 125 ROT 3.)

' 1 SGHN numeric expression

SGN s a numeric function which returns a value based on the sign of the argument.
the argument is positive, the result is 1; if the argument is zero, the result is 0; if the
argument is negative, the result is —1, SGN -5 is —1.

I 1 SIN numeric expression

SIN is a numeric function which returns the sine of the angle argument. The value
returned depends on whether the COMPUTER is in decimal degree, radian, or grad
mode for angles. SIN 30 is 0.5 in decimal degrees.

1 SQR numetic expression

SQR is a numeric function which returns the square root of its argument. It is identical
to the use of the special square root symbal (') on the keyboard. SQR 4 is 2.

1 SGU numeric expression

SQU is a numeric function which returns the square of its numeric argument.
SQU 3is 9.

183

Functions
Numeric Functions

1 TAN numeric expression

TAN is a numeric function which returns the tangent of its angle argument. The valug
returned depends on whether the COMPUTER is in decimal degree, radian, or grad
mode for angles. TAN 45 is 1 in decimal degrees.

1 TEN numeric expression

TEN is a numeric function which returns the value of 10 (the base of the common
logarithms) raised to the value of its numeric argument.
TEN 3 is 1000.

184

Functions
String Functions

' String Functions |
String functions are a group of operations used for manipulating strings. Some take a
string argument and return a numeric value. Some take a string argument and return a
string. Some take a numeric value and return a string. Some take a string argument
and one or fwo numeric arguments and return a string. Many dialects of BASIC require
the argument of a function to be enclosed in parentheses. The COMPUTER does not
require these parentheses, except when it is necessary to indicate what part of a more
complex expression is to be included in the argument. String functions with two or three
arguments all require the parentheses.

1 ASC string expression

ASC is a string function which returns the numeric character code value of the first
character in its argument. The chart of character codes and their relationship to
characters is given in Appendix B. ASC “A” is 65.

The COMPUTER uses ASCIl codes and their characters.

1 CHR$ numeric expression

CHRS is a string function that returns the character which correspends to the numeric
character code of its argument. The chart of character codes and their reiationship 1o
characters is given in Appendix B. CHR$ 65 is “A".

i LEFTS (siring expression, numéric expression)

LEFTS is a string function which returns the leftmost part of the string in the first
argument. The number of characters returned is determined by the numeric expres-
gion. LEFT$ ("ABCDEF”, 2} is "AB".

1 LEN string expression

LEN is a string function which returns the length of the strihg argument. LEN
“ABCDEF" is 6.

1 MIDS$ (string expression, num. exp. 1, num. exp. 2}

MIDg is a string function which returns a middte portion of the string in the first araument.
The first numeric argument indicates the first character position to be included in the
result, The second numeric argument indicates the number of characters that are to be
included. MID$ (“ABCDEF”, 2,3) is “BCD".

185

Functions
String Functions

1 RIGHTS (string expression, numeric expression)

RIGHT is a string function which returns the rightmost part of the string in the first
argument. The number of characters returned is determined by the numeric expres-
sion. RIGHTS (*“ABCDEF”, 3) is 'DEF'.

1 STR$ numeric expression

STR$ is a string function which returns a string which is the character representation of
its numeric argument. It is the reverse of VAL. STR$ 1.59 is 1.59".

1 VAL string expression

VAL is a string function which returns the numeric value of its string argument. It is the
reverse of STR$. The VAL of a nonnumber is zero. VAL “1.59" is 1.59.

Note: The character string convertible by VAL function to a numerical value consists of
numerals (0 to 9), symbols {+ and —) and a symbol (E) indicating an
exponential portion. No other characters and symbols are included. If a
character string includes other characters and symbols, any character string on
the right of that character string will be ignored. If included in a character string,
a space is usually regarded as nonexistent.

186

Troubleshooting

 CHAPTER9

TROUBLESHOOTING

This chapter provides you with some hints on what to do when your SHARP
COMPUTER does not do what you expect from it. It is divided into two parts—the first
part deals with general machine operation and the second with BASIC programming.
For each problem, there are a series of remedies suggested. You shouid try each of
these, one at a time, until you have solved the problem.

Machine Operation

Then You Should:

If:

There is nothing on the display after
you have turned on the machine

There is a dispiay, but no response
to keystrokes

You get no response after you have
typed in a calculation or answer

The machine displays something
and stops while you are running a
BASIC program

Your calculation entered is displayed
in BASIC statement format (colon
after the first number)

pury

+n

-y

—y

. Check to see that the power swiich is

in the ON position,

. Press the éz.-:\, key fo see if AUTO

POWER OFF has been activated.

. Replace the batteries.

. Adjust the contrast control,

. Press w©-<ej kKey to clear.

. Press ({(swFy) [ccE]) key to

clear.

. Turn the power OFF and ON again.
. Hold down any key and push RESET

button.

. Push RESET button without pressing

any key.

. Press key.
. Press key.

. Change the mode from PROgram to

RUN for calculations.

187

Troubleshooting

If:

Then You Should:

You get no response from any keys

1. Hold down any key and push RESET
button.

2. If you get no response from any key
even after the above operation, push
RESET button. Then, press ,
=3 , or[ENTER]in response to
“MEMORY CLEAR O.K.?”
message. This will clear the programs
and data in memory.

188

Troubleshooting

‘BASIC Debugging -

When entering a new BASIC program, it is usual for it not to work the first time. Even if
you are simply keying in a program that you know is correct, such as those provided in
this manual, it is usual to make at least one typing error. If it is a new program of any
length, it will probably contain at least one logic error as well. Following are some
general hints on how {o find and correct your errors.

You run your program and get an error message:

1.

Go back to the PROgram mode and use the of the [T Key to recall the line
with the error. The cursor will be positioned at the place in the line where the
COMPUTER got confused.

. If you can't find an obvious error in the way in which the line is written, the problem

may lie with the values which are being used. For example, CHR$(A) will produce
a space if A has a value of 1. Check the value of each variable in either the RUN or
the PROgram mode by typing in the name of the variable followed by .

You RUN the program and don't get an error message, but it doesn't do what you
expect.

3.

Check through the program line by line using LIST and the {1] and [1] keys {0
see if vou have enlered the program correctly. if is surprising how many errors can
be fixed by just taking another look at the program.

. Think about each line as you go through the program as if you were the computer.

Take sample values and iry io apply the operation in each line to see if you get the
result that you expected.

. Inseri one or more extra PRINT statements in your program to display key values

and key locations. Use these to isolaie the parts of the program that are working
correctly and the location of the error. This approach is aiso useful for determining
which parts of a program have been executed. You can also use STOP to
temporarily halt execution at critical points so that several variables can be
examined.

. Use TRON and TROFF, either as commands or directly within the program to trace

the flow of the program through individual lines. Stop to examine the contents of
critical variables at crucial points. This is a very slow way to find a problem, but
sometimes it is also the only way.

189

wio9qyyoswoud

Maintenance of the Computer

" COMPUTER |

To insure trouble-free operation of your SHARP COMPUTER, we recommend the
following:

*

Always handie the COMPUTER carefully as the liguid crystai display is made of
glass.

Keep the computer in an area free from extreme temperature changes, moisture,
or dust. During warm weather, vehicles left in direct sunlight are subject to high
temperature buildup. Prolonged exposure to high temperature may cause damage
to your computer.

Use only a soft, dry cloth to clean the computer. Do not use solvents, water, or a
wet cloth.

To avoid batiery leakage, remove the batteries whern the computer will not be used
for an extended period of time.

If service should be required on this eguipmeni, use only a SHARP servicing
dealer, SHARF approved service facility, or SHARP repair service where avail-
able.

If the computer is subjected to strong static electricity or external noise, it may
“hang up” (all keys become inoperative). If this occurs, press the RESET button
while holding down any key. (See Troubleshooting.)

Keep this manuat for further reference.

9

wooyyoswoud

APPENDIX A
Error Messages

"~ APPENDIX A

Error Messages

There are nine different error codes builtinio the COMPUTER. The following table will
explain these codes.

Error Meaning
Number
1 Syntax error

e This means that the COMPUTER can’t understand what you have
entered. Check for things such as semicolons on the ends of PRINT
statements, misspelled words, and incorrect usages.

34/2
2 Calculation error
Here you have probably done one of three things:

1. Tried to use toc large & number.
Calcutation results are greater than 9.999999939E 28,

2. Tried to divide by zero.
5/0
3. An illogical calculation has been attempted.
LN —30 or ASN 1.5
3 DIMension errorfArgument error
& Array variable already exists.
Array specified without first dimensioning it.
Array subscript exceeds size of array specified in DIM statement.
DIM B(256)

» tllegal function argument. This means that you have tried fo make the
COMPUTER do something that it just can’t handle.

The time interval specified for the WAIT verb is greater than 65535.
WAIT 66000

183

APPENDIX A
Error Messages

4

Line number error
Here you have probably done one of two things:

1. Tried to reference an nonexistent line number with a GOTQ,
GOSUB, RUN, LIST, THEN, or the like.

2. Tried to use too large a line number. The maximum line number is
65279.

Nesting error
Subroutine nesting exceeds 10 levels.
FOR loop nesting exceeds 5 levels.

RETURN verb without a GOSUB, NEXT verb without a FOR, or READ
verb without a DATA.

Buffer space exceeded.
Memory overflow

Generally this error happens when you've tried to DIMension an array
thatis too big for memory. This can also happen when a program becomes
too large. :

PRINT USING error

This means that you have put an illegal format specifier into a USING
statement.

/O device error

This error can happen only when you have the optional printer and/or
cassette recorder connected to the COMPUTER. It means that there is a
problem with communication between the /O device and the COM-
PUTER.

Other errors

This code will be displayed whenever the computer has a problem that
isn't covered by one of the cther eight error codes. One of the most
commaon causes for this error is trying to access data in a variable in one
fashion (e.g., A$) while the data was originally stored in the variable in
another fashion {e.g., A).

g4

APPENDIX A
Error Messages

ERRORS RELATED TO RENUM

Error message

Description

ERROR 1

A syntax error exists in the RENUM command.

ERROR 1
IN lfine number

A line number reference is missing from the command
specifying the jump destination (e.g., GOTO, GOSUB,
etc.).

ERRCR 3
IN line number

A line number greater than 65279 is encountered during
the execution of the RENUM command.
The length of one program line exceeds 79 bytes.

IN line number

ERROCR 4 The specified cold line number does not exist in the
program.
ERROR 4 The line number specified as the jump destination does

nol exist in the program file.

ERROR 6

Memory capacity is insufficient to execute the RENUM
command, or becomes short during the renumbering
process.

ERROR 9

An attempt was made to execute the RENUM in other
than PRO (FProgram) mode. An attempt was made to
change the execution order of program fines by
specifying the new line number lower than the line
nurmber immediately before the old fine number.

ERROR 9
IN line number

The line number specified as the jump destination is
inappropriate, because it uses a variable, expression, or
funclion {i.e., incorrect line number reference).

185

wooyyoswoud

APPENDIX B
Character Code Chart

 CHARACTER CODE CHART

The following chart shows the conversion values for use with CHR$ and ASC. The
column shows the first hex character or the first four binary digits (i.e., bits); the row
shows the second hex character or the second four bits. The upper left corner of each
box contains the decimal number for the character. The lower right shows the
character. If no character is shown, then it is an illegal character on the COMPUTER.

For example, the character “A” is decimal 65 or hex 41 or binary 01000001. The
character ‘v ' is decimal 252 or hex FC or binary 11111100,

Notes:

& The characters for character codes 92(&5C), 248(&F9), and 250(&FA)
appearing on the computer display differ from the characters for these codes printed
by optional printers CE-126P.

& The character printed for character code 92(&5C) shown in the following table is
k. with the CE-126P printer.

& When using the CE-126F printer, do not use code 0(&00).

¢ Any codes other than 0 (&00) through 31 (& 1F) not used for characters are
printed as spaces.

e Codes 249 (&F9) and 250 (&FA)} are spaces.

197

APPENDIX B

Character Code Chart
First 4 Bits
Hex ® 1 2 3 4 5 8 ! 8 E £
Binary o000 | oge1 | ovie | o@it | 0100 | 0101 | 0110 | @111 | 1eee 1110 | 1111
2 |o 16 32 (48 |64 Jum 96 |12 |128 224 | 240
2009 | NUL SPACE| 8 @ P . b
E 17 13 |48 fes |81 97 |13 129 225 | 241
0001 | 1 A a a q
2 |2 18 34 |[s6 |ee |82 .8 [11a |13¢ 226 | 242
1]} ” 2 B R b r
3 {3 19 e 67 |83 8 |15 |131 227 |243
@011 # 3 [S S 5
4 a4 20 36 52 68 84 19¢ 116 132) 228 .244
0100 $ 4 D T d t
5 |5 21 37 =3 69 |85 101 |t17 333 229 | 245
g 2101 % 5 £ U e u 2
G 6 6 22 38 54 ¢ |86 192 | 118 138 230 | 248
ﬁ @110 & 6 F v f v v
d|[7 [+ 23 39 |55 71 87 103 |19 |135 231|247
4 [g1 , 7 G w g w .
Bl s |8 24 |40 |56 |72 |88 | 104 |120 |136 232 | 248
lt 1000 { 8 H X h x &
S 9 =} 25 41 57 13 BG 125 13| 137 233 249
1091] 9 I ¥ i " |
a |10 (28 42 |58 74 | o0 186|122 |38 234 | 250
1019 * J P4 i z _
B 11 27 431 |59 I ER 197|123 | 139 235 | 281
1911 + K k | . T
c |12 |28 a4 |&0 7 |92 8 124 | 140 236 | 252
1100 . < L N | : N
0 13 29 a5 61 77 a3 192 125 141 | 237 283
1191 - = M 1 m 4
E 14 30 46 62 78 =23 110 126 142) 238 254
150 > N A n -
F 18 31 47 63 79 95 111 127 143 | 239 2585
1111 / ’ o) - o

198

APPENDIXC
Formatting Output

It is sometimes important or useful to control the format as well as the content of the
output. The COMPUTER controls display formats with the USING verb. This verb
allows you to specify:

the number of digits

the location of the decimal point
the scientific notation format
the number of string characters

These different formats are specified with an “output mask”. This mask may be a
string constant or a string variable:

10: USING "####"
20: MF="84&8&&84&"
30: USING M$

When the USING verb is used with no mask, all special formatting is canceled.
4G: USING

A USING verb may also be used within a PRINT statement:
50: PRINT USING MS; N

Wherever a USING verb is used, it will control the format of all output until a new
USING verb is encountered.

Numeric Masks

A numeric USING mask may only be used to display numeric values, i.e., numetic
constants or numeric variables. if a string constant or variable is displayed while a
numeric USING mask is in effect, the mask will be ignored. A vaiue that is to be
displayed must always fit within the space provided by the mask. The mask must
reserve space for the sign character, even when the number wili always be positive.
Thus a mask that shows four display positions may only be used to display numbers
with three digits.

199

APPENDIXC
Formatting Qutput

' Specifying Number of Digits

The desired number of digits is specified using the ‘#' character. Each '#’ in the
mask reserves space for one digit. The display or print always contains as many
characters as are designated in the mask. The number appears to the far right of this
field; the remaining positions to the left are filled with spaces. Positive numbers
therefore always have at least one space at the left of the field. Since the COMPUTER
maintains a maximum of 10 significant digits, no mare than 11 '# characters should
be used in & numeric mask.

When the total number of columns of the integer part specified exceeds 11, this integer
part is regarded as 11 digits in the COMPUTER.

NOTE: In all examples in this appendix, the beginning and end of the displayed field
will be marked with an ‘I' character to show the size of the field.

Statement' Display

10: USING " ####" (Set the COMPUTER to the RUN
maode, type RUN, and press)

20: PRINT 25 | 25|

3@: PRINT —350 |-350|

49: PRINT 1000 ERROR 7 IN 4¢

Notice that the last statement produced an error because 5 positions (4 digits and a
sign space) were required, but only 4 were provided in the mask.

Specifying a Decimal Point

£

A decimal point character, ', may be included in a numeric mask to indicate the
desired location of the decimal point. If the mask provides more significant decimal
digits than are required for the value to be displayed, the remaining positions to the
right will be filled with zeros. If there are more significant decimal digits in the value than
in the mask, the extra digits will be fruncated (not rounded):

Statement Display

10: USING " ###H, ##”

20: PRINT 25 | 25. 99|
30: PRINT —350.5 |-350. 59|
40: PRINT 2.547 | 2. 54|

200

APPENDIXC
Formatting Output

‘Specifying Scientific Notation

A ~*character may be included in the mask to indicate that the number is to be
displayed in scientific notation. The '#’ and *.’ characters are used in the mask to
specify the format of the "characteristic” portion of the number, i.e., the part which is
displayed to the left of the E. Two '#' characters should always be used to the left of
the decimal point to provide for the sign character and one integer digit. The decimal
point may be included, but is not required. Up to 9 ‘#' characters may appear to the
right of the decimal point. Following the characteristic portion, the exponentiation
character, E, will be displayed followed by one position for the sign and two positions
for the exponent. Thus, the smallest scientific notation field would be provided by a
mask of “##~" which would print numbers of the form '2E 99'. The largest
scientific notation field would be “##.### ###### ™" which would print numbers
such as ‘—1.234567890 E ~12":

Statement Display

16: USING ~ ###. 5#~"
20 PRINT 2 | 2. 66 E GO

30: PRINT —365.278 |-3. 65E §2|

—Specitying Al

String constants and variables are displayed using the '& character. Each ‘&
indicates one character in the field o be displayed. The string will be positioned at the
left end of this field. If the string is shorter than the field, the remaining spaces to the
right will be filled with spaces. If the string is fonger than the field, the string will be
truncated to the length of the field:

phanumericasks

Statement Display

10: USING "8 &&& & &"
20: PRINT “ABC" (ABC |

30: PRINT “ABCDEFGHI” |ABCDEF|

201

APPENDIXC
Formatting Qutput

Wixed Masks

In most applications, a USING mask will contain either all numeric or all string
formatting characters. However, both types of characters may be included in one
USING mask for certain purposes. In such cases, each switch from numeric to string
formatting characters or vice versa marks the boundary for a different value. Thus, a
mask of “#####8&8&8&" is a specification for displaying two separate values—a
numeric value which is allocated 5 positions and a string value which is allocated 4
positions:

Statement Display

10: PRINT USING “###. ##8&&";25;"CR" | 25. POCR]|

20: PRINT —-5.789; “DB" | —5. 78DB|

Remember that a USING format once specified is used for all outputs which follow until
canceled or changed hy another USING verb.

202

) APPENDIXD
Expression Evaluation and Qperator Priority

" OPERATOR PRIORITY

When the SHARP COMPUTER is given a complex expression, it evaluates the paris
of the expression in a sequence determined by the priority of the individual parts of the
expression, If you enter the expression:

10% /5+45
as either a calculation or as a part of a program, the COMPUTER does not know
whether you meant:

e _ 100
5+ 45

+45 = 65

Since the COMPUTER must have some way io decide between these options, it uses
its rules of operator priority, Because division has a higher “priority” than addition
(see below), it wili choose {o do the division first and then the addition, i.e., it will
choose the second option and return a value of 65 for the expressian,

“Opetator Priority”

Operators on BASIC mode of the SHARP COMPUTER are evaluated with the foliowing
priorities from highest to lowest:

Level Operation
1 Parentheses
Variables and Pseudovariables
Functions
Exponentiation (~), (ROT)
Unary minus, negative sign (—)
Multiplication and division (¥, /)
Addition and subtraction (+, —)
Relational operators (<, <=, =, <>, >=, =)
Logical operators (AND, OR, NOT, XOR)

@~ OO AWN

<

When there are two or more operators ai the same priority level, the expression will be
evaluated from left to right. (The expenentiation will be evaluated from right to left.}
Note that with A+B—C, for example, the answer is the same whether the addition or
the subtraction is done first.

When an expression contains multiple nested parentheses, the innermost set is
evaluated first and evaluation then proceeds outward.

203

APPENDIXD
Expression Evaluation and Operator Priority

For levels 3 and 4, the last entry has a higher priority.

For example: —2 ~ 4 — —(2%
3~ -2 332

Sample Evaluation

Starting with the expression.
((3+5—2)%64+2)/10 ~ LOG 100

The COMPUTER wouid first evaluate the innermast set of parentheses. Since ‘+’
and ‘=’ are at the same level, it would move from left to right and would do the
addition first:

((8-2)+x6+2)/10 ~ LOG 100
Then it would do subtraction:
((8)*6+2)/10 ~ LOG 100
or:
(664210 ~ LOG 100
In the next set of parentheses, it would do the muitiplication first:
(36+2)/10 ~ LOG 100
And then the addition:
(38)/10 ~ LOG 100
or:
38/10 ~ LOG 100

Now that the parentheses are cleared, the LOG function has the highest priority so it is
done next:

38/10 ~ 2

The exponentiation is done next:
38/100

And last of all, the division is performed;
0.38

This is the value of the expression.

204

APPENDIX E
Key Functions in BASIC Mode

ON

[BRK)

(ON)

Used to turn the COMPUTER power on when the auto power off function is
in effect.

{BREAK)

Depression of this key during program execution functions as a BREAK
([,%‘q) key and causes to interrupt the program execution.

When pushed during manual execution of an input/output command such
as BEEP, CLOAD, etc., executicn of the command is interrupted.

This yellow key is used to designate a second function (that inscribed in

brown above each key).
?

Ex. [swft] "y — ? isinput.

Used to clear the contenis of the eniry and the display. (Eror release)

Used to not oniy clear the dispiay contents, but to reset the computer to its
initial state.

Initial state —

Resets the WAIT timer.

Resets the display format. {USING format)

Resets the TRON state (TROFF).

Resets the PRINT = LPRINT.

Resets error.

Numeric keys

Decimal point
Used to enter an abbreviation for a command, verb, or function.
Used to designate the decimal portion in USING format designation.

Used to designate an exponent in scientific notation. (This is the letter E
kay.)

Used to designate an exponent in scientific notation.

Division key

* Multiplication key
* Used to designate an array vanable in the INPUT#, the PRINT#, etc.

205

APPENDIX E

Key Functions in BASIC Mode

.
= .
GaE) [(Z]e
(srreT] (le
CJ .

GEmer) e

(A] ~{Z]e

g,).

e <],
(=) 3]

.
(AT (<] »

(i) () ®
.

Addition key

Subtraction key

Used to enter CLOAD?

Used to divide two or more statements in o‘ne line.

Used to provide pause between two equations, and between variables or
comments.

Used to provide multi-display {fwo or more values/contents/displayed at a
time}.

Used to provide pause between the instruction and the variable.

Used in assignment statements to assign the contents {(number or charac-

ter) on the right for the variable specified on the left.
Used when inputfing logical operators in IF statement.

When any one of eighteen keys (A, S, D, F, G, H J K, L 2, X, C, V,
B, N, M, ’, SPaCe) is pushed after the depression of the key, the
computer starts to execute the program from the program line that has the
same label as the key code depressed.

Letter keys. You are probably familiar with these keys from the standard
typewriter keyboard. On the COMPUTER display, the characters appear
in the uppercase.

Used to input parentheses.
Used when inputting logical operators in IF statement,

Used to provide space when inputting programs or characters.

Used for power calculation instructions.
Used to specify the fioating decimal point system {exponent display) for
numerical data in USING statement instructions.

Used to designate Pi ().

Used to designate square root.

206

(saFT) [1]®
L]
(#]
'8
(%l
La]

fe]

BHIFT

APPENDIX E
Key Functions in BASIC Mode

Used to designate these symbols.

" . e Used to designate and cancei characters,
e Used to specify labels.

: Used with USING statement, to provide the instruction to define the
display format of numerical data.

% : & Used when assigning character variables.

& : & Used with USING statement, to provide the instruction to define

the display format of character string.

e Used to designate hexadecimal number.

Used to shift the cursor to the right (press once to advance one position,
hold down for automatic advance),
Used to execute playback instructions.

¢ Used to clear an error condition in manual operation.

Used to shift the cursor to the left (press once to advance one position,
hold down for automatic advance).
Used 1o execute playback instrictions.

s Used to clear an error condition in manual operation.

gHirr |

1 SHIFY

¢

LLDAD
-

[BEC »

INPUT

[CAL 'Y
&

(smiFT) (7= g

(SaFT)
(e .
e
FES

)

DRG) @

Used {o insert a space { ~ appears) of 1-slep capacity between the
address (N) indicated by the cursor and the preceding address (N—1).

Used to delete the contents of the address indicated by the cursor.

[) *® Used to preset command and verb keys. Pressing and then the

lefter {including comma and space) key below the command or verb
desired followed by key causes the designated command orverb to
be entered into the COMPUTER.

Used to set the CAL mode.

Used to set the RUN mode when the CAL mode is set,

Used to set the PRO mode when the RUN mode is set.

The RUN and PRO modes are selected alternately each time you press the
key.

Used to set the print or nonprint mode when an optional printer is con-
nected with the COMPUTER.

Used to designate an angular unit (DEG, RAD, or GRAD).
Used to enter a hyperbolic function.

Used to enter an inverse hyperbolic function.

Used to enter a function defined in each key.

207

APPENDIXE
Key Functions in BASIC Mode

¢ Used to enter a program line into the computer.
e Used for writing a program.
e Used to request manual calculation or direct execution of a command
statement by the computer.
* Usedtoenter arestartinstruction after inputting data required by an INPUT
statement or after executing a PRINT statement.

Hefer o page 45 for the keys used for MATRIX operations.

208

APPENDIX E

Key Functions in BASIC Mode

The (1 and (] keys have the following functions, depending on the designated
mode, as well as the state of the computer.

Mode

State

(1]

RUN

Program being executed

Program is temporarily
interrupted

To execute the next
line

INFPUT staiement being
executed

PRINT statement just
now execlted

Under break

To display the
program ling being
executed or already
executed, hold this
key down.

Error condition during
executing program

To display the error-
producing line, hold
this key down.

TRON condition

To execute debugging
cperation

To display the
program line being
execuied or aiready
execlted, hold this
key down.

Other conditions

To display an answer
just previously
calculated. (Last
answer function}

Same as left

PRC

{When the mode is chang

being displayed)

Program is temporarily
interrupted

To display the line
interrupted

ed from RUN to PRO and program kne is not

Same as left

Error condition

To display the line
with error

Same as left

Other conditions

To display the first line

To display the last
line

(When the program line is

being displayed)

To display the next
program line

To display the
preceding program
line

Note:

)

(stie1) {TaB] , "%,

208

The following keys cannot be used in the BASIC mode (RUN or PRO mode).
(%] |
&+, and keys used to obtain the stafistics (i.e., n, x, efc.)

s, [EM], (M4,

wooyyoswoud

Model:

Processor:
Programming
Language:
System ROM:
Memory Capacity:

Stack:

Operators:

Numeric Precision:
Editing Features:

Memory Protection:
Display:
Keys:

Power Supply:

Power Consumption:

Operating
Temperature:
Dimensions:

APPENDIX F
Specifications

~ APPENDIXF
~ SPECIFICA ,_ONS

PC-1403 Pocket Computer
8-hit CMOS CPU

BASIC
72K Bytes
RAM:
System Approx. 1.1K Bytes
User
Fixed Memory Area 208 Bytes
(A~ Z, A5 ~ Z3)
Program/Data Area 6878 Bytes
Subroutine: 10 stacks Function: 16 stacks
FOR-NEXT: 5stacks Data: 8 stacks

Addition, subtraction, muHiplication, division, trigonometric
and inverse trigonometric functions, logarithmic and
exponential functions, angle conversion, square and sguare
root, sign, absolute, integer, reiational operators, logical
operators, matrix operations.

10 digits (mantissa) + 2 digits (exponent).

Cursor left and right, line up and down, character inser,
character delete.

CMOS Battery backup.

24-character Liquid Crystal Display with 5 x 7 dot pattern.
77 keys: Alphabetics, numerics, special symbols, functions,
and user defined keys.

6.0V DC: Lithium cells.

Type: CR-2032x2

6.0v DC @ 0.03W

Approximately 120 hours of continuous cperation under nor-
mal conditions (based on 10 minutes of operation or prograrn
execution and 50 minutes of display per hour at a temperature
of 20°C). The time may vary slightly depending on usage and
the type of battery used.

0°C to 40°C

170(W) x 72(D) X 9.5(H) mm
6-11/16"(W) x2-27/32"(D) x3/8"(H)

211

APPENDIXF
Specifications

Weight:

Accessories:

Option:

Approximately 150 g (0.33 b} {with two cells)

Hard cover, two lithium cells (built-in), keyboard template,
operation manual.

Printer/Cassette Interface (CE-126P)

212

. APPENDIXG
Using Programs Written on Other PC Models

Programs written on the following computers can be used on the PC-1403 with slignt
maodifications.

PC-1210 Series:
PC-1245 Series:
PC-1250 Series:
PC-1260 Series:
PC-1350 Series:
PC-1401 Series:
PC-1450 Series:
PC-1460 Series.
PC-2500 Series:

PC-1210/11
PC-1245/46/47
PC-1250/51
PC-1260/61
PC-1350
PC-1401/02
PC-1450
PC-1480
PC-2500

Although the functions of these models a!l differ slightly, programs composed on any of
these models can be used on the PC-1403 by making the modifications below.

Notes: 1. PC-1403 canread programs from tapes recorded with programs written on
PC-1210 Series, PC-1245 Serigs, and FPC-1250 Series computers, but
programs written and recorded with PC-1403 cannot be read or used by
computers in these three series.

2. Program tapes for the PG-1245 Series and PC-1210 Series recorded with
a number of programs loaded with the MERGE command cannot be used
on the PC-1403. To use them, MERGE the programs individually into the
PC-1403.

3. Programs containing POKE or CALL commands written on the PC-1250
Series cannot be executed on the PC-1403. Execution of such programs
may render alt PC-1403 keys inoperable.

213

APPENDIXG
Using Programs Written on Other PC Models

“ Modlifications Required for PC-1245 Series (including PC-1250
Series) Programs

When using on the PC-1403 a program developed for the PC-1245 Series, the
following maodificiations are necessary:

M

()

3)

(4)

Multiplication without using the operator "#". On the PC-1245 Series, the
operator (*) for multiplication may be omitted, such as AB for A*B or CD for
C+#D. On the PC-1403, however, the multiplication operator (%) cannot be
omitted since the computer reats two consecutive characters, such as AB or GD,
as simple variables. Use the specification on the right side of the following
example:

e.g., A=SIN BCA=SIN (B*C)

Definition of subscripted variables (such as A(}) by using the DIM statement:
On the PC-1245 Series, if, for example, DIM A{30) is executed, memory
locations for A{27) through A{3@) are set aside as an extension of a fixed variable
definition area. On the PC-1403, however, the execution of DIM A{3@) reserves
a separate memory area for array variables A{(@) through A{3@) for the array
named A. When defining subscripted variables (such as A{)}) as an exiension
of fixed variables, use the specification on the right side of the following example:

DIM A(30)}-A(30)=0

Data I/O statement for tape files:

On the PC-1245 Series, the execution of, for instance, the PRINT# C statement
saves the contents of the variable C and ali the subsequent variables to atape file.
On the PC-1403, however, the execution of the same statement saves the
contents of the variable C only. To save the contents of a specific variable and all
the subsequent variables, use the specifications on the right side of the following
examples:

e.9., PRINT#A—PRINT#A*
INPUT#C—INPUT#C:k

Vaiue of a loop variable after completion of a FOR-NEXT loop:

The value of a loop variable obtained after the execution of a FOR-NEXT loap
completed on the PC-1403 is different from that obtained on the PC-1245 Series.
If the value of a loop variable is used in a conditional expression in a PC-1245
Series program, increment it by one when it is used on the PC-1403.

214

APPENDIXG
Using Programs Written on Other PC Models

e.g., 18 FOR 1=8 TO 10

5@ NEXT |

60 IF 1=10 THEN 148

Modify the value of | in line 6@ as follows:

60 IF I=11 THEN 188

{On the PC-1403, the value of a loop variable must be incremented

by one step value. The number of loop execution cycles remains the
same, however.)

(5) Redefining (=3

(6)

{7)

The equal (=3 key does not function as a definable key on the PC-1403.
Accordingly, a different key should be used in programs in which the equal key is
defined.

e.g., 100 “="... 100 “N”...

Exponent symbol “IE":
The PC-1403 uses the uppercase letler "E” for iis exponent symboi. The
following changes are required:

A=1.234 |E 5-A=1.234E5
B=I1E 6-B=1E6

If a PC-1245 program is read from a tape file into the PC-1403, the change for the
exponent symbol described just above will automatically be done by the PC-1403.

The characler codes of the PC-1245 Series are partially different from those of the
PC-1403. '

When the following codes are designated by the CHR$ function, change the
codes.

Character Code PC-1245 PC-1403

39 (&27) _ ,

91 (&5B) v [

92 {&5C) ¥ \

93 (&5D) n]

96 {&60) E)
25¢ (&FA) —({Error) —
251 (&FB) —(Error} T
252 (&FC) —(Error) v

Note: As shown above, the PC-1403 does net have the character IE.

215

APPENDIXG
Using Pragrams Written on Other PC Models

(1)

(2)

_ Additional modifications

The PC-1245 Series uses a line number ranging from 1 to 999, whereas the PC-
1403 has an extended line number ranging from 1 to 65279. Therafore, the line
number uses 3 bytes in RAM {PC-1245 Series uses 2 bytes). The modification is
carried out automatically when the program is loaded through the cassette tape.
However, there is a possibility of memory overflow (ERROR 6) when loading or
executing a iong program. Furiher, when a single iine is ciose to 80 bytes long,
this madification may result in the erasing of the end of the line.

if the tape stops or the read alarm stops when reading a program from a tape with
PC-1245 Series programs, the computer will remain busy for 1 or 2 seconds and
two asterisks will appear in the display.

This is because the computer is modifying the line numbers as described in (1}
above.

| Modifications Requiredfor PC-121

To use PC-1210 Series programs on the PC-1403, they must be modified in the same
way as PC-1245 Series programs except items (2) and (7). In addition, the following
maodifications are necessary.

(1) IF statement

If, for example,
5@ IF A=L PRINT “A" (display "A" if A>L)

is found in the program for the PC-1210 Series Pocket Computers, it is interpreted
as

5@ IF A=LPRINT "A” {Print out “A” if A>)

and results in an error when it is entered through the keyboard.

The errar occurs because a command which does not exist in the PC-1210 Series
does in fact exist in the PC-1403. To solve this problem, insert a THEN command
into the IF statement as follows.

50 IF A>L THEN PRINT "A”

2186

APPENDIXG
Using Programs Written on Other PC Models

(2) Specified format in USING

(

(

o~

3)

4}

The function of the USING command differs between the PC-1403 and the PC-
1210 Series as follows.
Example:

10 A = —123.456

20 PAUSE USING “#### ##"; A

30 PAUSE A, USING "####"; A

Executing this program displays the following.

*PC-1210/PC-1211

-123.45
| 123 ~1a
*PC-1403 | ~123.45 |
| 12345 ~123 |

For the execution of line 30 in the PC-1210 Series, the display on the left side also
follows the displayed format on the right side. In the PC-1403, the display follows
the previous specified format. This applies not only to the PAUSE command, but
also to the PRINT and LPRINT commands.

Omitting “)"”

in the PC-1210 Series, the “)" which comes immediately before the or

- {colon) can be omitted. It cannot be omitted in the PC-1403. Therefore, be sure
to add the “)" to the program, if omitted.

Print command

The PC-1403 has a PRINT command for displays and an LPRINT command for
printing. However, all PRINT commands can be used for printing if PRINT =
LPRINT is specified.

The PC-1210 Series does not have the LPRINT command. To print using a PC-
1210 Series program, add PRINT = LPRINT to the program or, execute
manually,

Variables

When the RUN command has been executed in the PC-1210 Series, all variables
are retained. In the PC-1403, however, all variables from A(27) and upwards
are cleared.

Therefore, if there is a need to retain variables at the start of program execution,
start the program execution using the GOTO command or function defined keys.

217

APPENDIXG
Using Programs Written on Other PC Models

Modifications Required for PC-1260 Series

(1) Character Code modification
Character code 96 (&60) is a space in PC-1260 Series but is a left single quote
() in PC-1403. Accordingly, when the CHR$ command is used to specify a
space with character code 96, change this code to character code 32 (&20).

(2) CLS, CURSOR commands
PC-1403 does not have the CLS or CURSOR display commands. Deletion and
modification of these commands in any programs containing these are required.

Modifications Required for PC-1401, PC-1450, and

 PC-1460 Series

Programs written on PC-1401, PC-1450 and PC-1460 Series computers can be used
without modification on the PC-1403.

Modifications Required for PC-1350 and PC-2500 Series _

PC-1403 does not contain the following commands. Any program contairing these
must be modified.

CLS, CURSOR, MEM$, GCURSCR, GPRINT, LINE, POINT, PRESET, PSET,
(TEST)

218

Having read the description of each of the various functions in the preceding chapters,
you have by now gained a knowledge of a number of program commands. However,
in order for you o have a command of developing application programs in BASIC
language, it is absolutely necessary that you write and execute your own practical
application programs as well as those explained in this manual.

Just as you can improve your driving skill by actually operating the steering wheet or
your tennis game by swinging the racket, proficiency in programming can only be
attained by practicing as many programs as possible, regardless of the degree of your
skill at each practice.

It is also very important for you to refer 10 programs developed by others. In this
chapter, some programming examples using various commands in “BASIC”
language are introduced o your reference.

For better understanding of the programming examples in this chapter, the conven-
tions used in such exampies are explained as follows:

(1: PROGRAM LIST
All the program lists contained in the programming examples are provided using the
hard-copy outputs from the GE-126P printer in actual size.

(@ PROGRAM CAPACITY
At the end of each program list, the capacity of the program itseif is indicated in
number of bytes.

@ PRINTOUT

For a program requiring a printout, the output of the program executed using the
CE-126P printer is given in actual size.

@ MEMORY CONTENTS
in the table of memory contents in each program example, variables with predeter-
mined use are indicated by their specific use and those without predetermined use
{e.g., those to be stored in the work area to retain intermediate results of a
calculation, etc.) are indicated by the checkmark “+*,

219

SHARP CORPORATION and/or its subsidiaries assume no responsibility or obligation
for any financial losses or damages that may be incurred from using any of the
examples of programs described in this manual. When using these programs, be
aware that these programs may not fully satisfy your purpose or some programs may
not be as precise as you wish them to be. Therefore, please carefully check the data in
each of the program examples you use and confirm that they meet your requirements.
If not, please modify them as required to meet your purpose before using them.

220

CONTENTS

Program Title Page
¢ Conversions between Orthogenal Coordinates and Polar Coordinates 222
e Caleulationof Areaof N-sided Polygon 227
e ACircle Oseulating Twa Circles i e 234
o NumberGuessingGame ... e 238

221

PROGRAM TITLE: Conversions between QOrthogonal Coordinates and Polar
Coordinates

This is a very useful program for effecting conversions between orthogonal coordinates
and polar (spherical) coordinates in three dimensions. When each data for conver-
sion is input, the result of the conversion is obtained according to the unit of angle
which is effective at that time.

W HOW TO OPERATE

1. Press (A] (for conversion to polar coordinate from orthogonal coor-
dinates).
When the value of each of orthogonal coordinates x, y, and z s input according to
the display, the value of each of polar coordinates r, 8, and ¢ appears on the
screen in the order named and then the program ends.

2. Press [DER (for conversion to orthogonal coordinates from polar coor-
dinates).
When the value of each of polar coordinates R, 8, and ¢ is input, each value of x,
y, and z appears on the screen in the order named and then the program ends.

Mote: When the unit of angle specification is DEG, the result of a conversian is
obtained in units of degrees. Likewise, when the angular unit specified is RAD,
conversion is performed in units of radians.

B REMARKS
1. Conversion to polar coordinates from orthogonal coordinates r=0 and 8 =indefinite
if r=y=0

r= Vx2 + y* + 2

f=sin"' (21

p=tan~" (y/x] if x>0

p=90° if x=0 and y=0

$=—90" if x=0 and y<0

G=tan™' (y/x)+180° if x<<0 and y=0
d=tan"" (y/x)—180° if x<0 and y<0

222

2. Conversion to orthogonal coordinates from polar coordinates

x=rcos - cos¢ ¥
y=rcosé - sing) P -
z=rsin e z P
4 7]
// ,’ |
g Plx, y, 2D
- — = — —_—— - |
: r I ly
0 !)
[Yy
I Nz : 7
I .1
| ¢ N //
2yl N
4
B EXAMPLES

—

. Converi orthogonal coordinates 1o polar
x=-1
y=2
z=-3
Angular unil specification: DEG

2. Convert polar coordinates to orthogonal

r=3.741657387
6=—-53.30077478
$=116.5650512

Angular unit specification: DEG

223

coordiantes

coordinates

B KEY OPERATION SEQUENCE

[Orthogonal coordinates — Polar

coordinates]

1. B

)
2. —1

v =_ 1
3. 2

[2=-]
4. -3

L |

3.741657387

6. [EntER]

| THETA |
7. [

| —53.30077479 |
8. [EnTen} -

| PHI |
9. [entEn]

[116.5650512 |
10. [entER]

E

[Polar coordinates — Orthogonal

coordinates)

1

=

]

2. 3.741657387

| THETA=_

|

3. —53.30077479

| PHI=_

|

4. 116.5650512

el

|

5. [ehmEn)
| —1.000000001
6 |
]
7.
| 2.
8.
E N
S,
| 2]
10,
>

224

B PROGRAM LIST B MEMORY CONTENTS

16 AT THRUT “x="3¥

2@ THPUT =iy v

3@ THPUT “z="iZ o

4AIR=50R (HaHTATHIHRE ¢
IF R=@ PAUSE *r=0 Un r

defined” END

x-coordinate

SR C=A5H (EfF)-IF L]

LET F=aTH (7<% rnrn y-coordinate

N<[>x[D|T|O| >

38

z-coordinate

BB =CY=@1+56HN ¥iIF s=8
LET F=A%ACS A:LUTC 2
£]
TEIF=ATH (Y8 r+fA+xpCs -1
SE:WAIT (PRIHT “r™:
FRINT R:FPRINT YTHETH
“IPRIMT CiPRIHT “FHI
"$PRINT FSENHD
FHIYBYIINPUT "r="3g
1BF: ITHPUT “THETH=":iLC
11H IHPUT *PHI
120 Y=F+CO0 Cig="Y+L05 F:
Y=Y#5 TN FiZ=R+#5IN C
1ZALMAIT PRIMT “x*:
FEINT ”‘PFIHT R
PRINT Y:PRINT "z7:
FEINT Z:END

300 Bytes

225

B FLOWCHARTS

{Onthogona!l coodinates — Polar coordinales)

Lines 101030

Valuesolx,y,and z
arginput.

Line 40

= SRR VY + 2 2]

r=Qundefined s
displayad.

Line 50

C~ASN(Z/R)

F-A%ATS0

Line 70
FOATNIYIX) + AT
ACS 1

F = ATN{Y/X}

Ling80

Valuasof r. 9 and
aredlsplayed

226

(Polar coordinates — Grthogonal coordinates)

Waluesof 1, (hand ¢
arainput.

Ling 120

Y=R*COSC
X=Y*CO5F

Line130

Valuesofx, y, and z
are displayed.

PROGRAM TITLE: Calculation of Area of N-sided Polygon Required Peripheral
Equipmant
CE-126P

Any polygon is theoretically an aggregation of triangles. By utilizing this theory, let us
calculate the area of a polygon. This program figures out the area of a polygon by
dividing the polygon into triangles, calculating the area of each triangle, and obtaining
the sum total of the areas of all the friangles.

R HOW TO OPERATE

1. Press (&) . (Program starts)
Input the number of vertexes {i.e., poinis) and the coordinates x and y of each
vertex according to the display.

2. Next, press .
Input the vertex number (i.e., point number) of each of the three veriexes of the
triangle according to the dispiay, and the area of the triangie will be printed out.
When you press before entering the vertex number, the sum total of the
areas of all the triangles is ouiput on the printer.

3. if you press (€], the sum tolal of all the triangle areas will be cleared and
then the program ends.

MNote: The number of vertexes may be stored up to the following limits:
255 vertexes

B REMARKS

S=vV5(s—a)(s =)

o}
I

n

=

:a+b+c

s 2

Area of triangle 1

8' ZEIZL

where
L: Base length {the longest of sides a, b, and ¢}
h: Height (Figures are truncated to three decimal places.)

227

W EXAMPLE
Figure out the area of a 4-sided polygon as shown below.

Y

A
X=10
4
=70
1)
X=4
Y=10 o X =16
Y=8
2
X=8
v=4
2 X
H PRINTOUT

Faint lx= 4

Faint ly= 1@

Foint Zx= &

Faint =4

Faint Zx= 1o

Faint Zy= 5

Foint d4x= 14

Point 4uy= Z@

H= T.211

=]
1l
fuu]
Dw)
o
I

Ly E
nonon
H

wn
R
w0 T
[
(4]
[alx]
=0

,_..
1
1+
|
Ju

R 12,165
b= 13.414
C= 11.662
H= 3,333
5= B3, 993354
*T54= 9T.933834

228

B KEY OPERATION SEQUENCE

<Input coordinates X and Y of each 5. 1 [enten)
vertex> Point=
1. —
6. 3
| Numbers=_] Point
oint=_
2. 4
- 7. 4 |[EniER
l Point 1x= } Point= l
l’
- 8.
3. 4 {entem L) “
lﬁoint 1y=
<Clearing of sum total of triangle

‘ 2] areas>
1. [Ber]

’ s TS CLEAR seste 1

Inputdata inthe same manner as o

above. | L} ‘l

<lInput vertex {(Point} Nos. of each
triangie >

1.
| Point=_

2. 1
[Point=_ i

3. 2 [ovwm)

Point=_ |

4. 3
Point=_

229

B PROGRAM LIST

la:

21
EsiH

4

%0

-t 1T LR
A R o]

[w i u]
=
"

1=

1R@:

1ia:
1281

138
1462

158:

1ad: ¥

PINFUT “Mumbers=

.y ¥ h(hdrjflujUTE'm
=

HES

YAYIUSING
WAIT #@

tCLERR :

YN
IF M<1 BEEP Z:GCTH
a

PDIM HOH-1xs%CM-13+2%

T

iFOR I=H Tﬂ H-1
tBFcA =Y g="
sIHPUT ¥<iriB$i@r="g=

tLOSUE 358

YHETRE w(I3:GOSUE 32
TRIGOTD 98

tH=I:END
BECBr="u="1005UR Z&H

FIHPUT Y9I
B#{Bx="y= *+5TR¥ Yil
JIGOSUR ZTOMEXT I
EEEP 1:EHMD
"BY:UUSIHG f IMPUT “Pa
1nT=’#D,*Pn|nT=’: .
Paint="39:507T0 148
LOTo 318

IF €0<13+{0M2+ (P12
FEPEMIFCRLL IR NI
5 GOTO 128
C=ge0=-12:8=Y{0=-12:E=
AIP—=13iF=Y(P-12iG=R(
B-13tH=Y(E-17

=E-£: ¥=F-DiGA5UB 33

=N
03O0 B

1
k]

E LET A= B

+B+C - 215=50R (I
Ak {I-Bay#{I-Cn
NT (C2#5-51418a3
»3 L-\ Gﬂ:UB 349

—
ulhﬁl I»w

I >~ 1 -~ T

S

IL=B:GOSUB 348
PL=C:GOSUE 348
iL=5:G05UE 356

230

5TR$ &

29BLPRINT "a= "3 USIHG
"RERRENARARRE, KRLE A

ZRB: PRIMT “B= "iB:
LPRINT “i= *iiC:
LPRINT "H= ®"§l:
LPRINMT USING “f&gash
TRt gannARtivS= ¥
155560TD 128

318:LPRIMT *"iLPRINT “#T
S¥="3 USIHG “IRRERIR
FE. REEROR i K END

3281 "CYIR=ANSING =PAUSE
*odk TH CLEAR ##Y3
EHD

RESHES M A N S
RETURM

34@: = I[NT (L#1888+.53)-1
BRAIRETURK

338:L= IHT (L*1BBAEEAY-1
ARBEHER: RETURN

3089:PAUSE “Foint “iSTRS$
CI+1 58 BECAYIRETURN

ZTAILPRINT “"Point *i3TR$
CI+133BF(B)IRETURN

962 Bytes

B MEMORY CONTENTS

B FLOWCHARTS

A a
B b
C X, V
D Y
E Xz
F Yz
G X3
H ¥s
i S
J
K Zs
L \%
N Number of vertexes
0] Vv
P Vv
G v
S S
X 2%
Y v
X (N—1} | x-coordinate
Y (N—1) | y-coordinate
B$0O) |V

231

Lina20

No. olvertexes
15 input

Line 40

BASIC arrays
are secured.

Line 60

Subroutine 4

Only [ENTER] 1o be
<'\I“:u \ T Pressed?
-1

Ling 110

BEEP

; ©

Cnly [ENTER

lo be pressed?

YES

Sum total of
Iriangle areas is
prinked.

s
entered within
lmits?

Lines 1501160 | YES

C=X{0-1):D=Y{0-1)

E=X{P=1):F=Y({F-1
G=X(Q~1)H=Y10-1)
A=E-C
¥=F-D

Subroutine 1

Une 170

Line 200

Linas 21010 220}

I={AtB+G)2

S=SQR{IF APl BIEI-C))
Ju INT {1ZS/X)#10™ 301073
L=X

l Subrouline 2 I

232

Lines 240 10250

I Subroutine 3

Linas 290 la 300)
Baselenglh, height, &
area of each triangle

areprinted,

Line 320

Sumletalis
cleared. USING
israleased.

HETS CLEAR ¥
is displayed

i

Subroutine 1

Line 330
X=5QRECEX 1 YY)

RETURN

Subroutine2

Line 340

L~INT
({L#1000+.5/1000
RETURN

Subrouiine 3

Lina 350

L=INT{L:1000000)/
1000000

233

Subrouling 4

Line 260

PalntX=
PoinlY= }B ©
displayed.

RETURN

Line 370
Poin X= } ar
(]

Point¥=
oulpul,

RETURN

PROGRAM TITLE: A Circle Osculating Two Circles

There are two adjoining circles to both of which another circle is tenderly adhering. Will
a warm feeling begin to bud there? Such a way of looking at these circles may bring a
light touch to your study of geometry. This program finds out the center of a circle
osculating two circles and the coordinates of the two points of contact by inputting the
center coordinates and radius of each of the two circles together with three discriminat-
ing conditions.

m HOW TO OPERATE
1. Press (& . (Program starts)

2. Input the center coordinates (x; and y,) of circle C; and radius Ry, the center
coordinates (x; and y;) of circle C, and radius Rp, and the radius R of the circle
osculating circle C; and G; according to ihe display.

NC

3. Then input the value of each of the following three discriminating conditions:

Conditions Value
(1 When the circle to solve with respect to circle C; is osculating externaliy 1
when the circie to solve with respectto circle C; is osculating internally -1
(2) When the circle to solve with respect ta circie C, is osculating externally 1
When the circle to solve with respect to circle C; is asculating internally —1
{3) When the circle is on the left side as circle C, is viewed from circle Cy 1
When the circle is on the right side as circle C, is viewed irom circle C, -1

When all the above data is input, the center coordinates of the circle osculating circles
C, and C, and the coordinates of points of contact P, and P, are displayed on the
screen in the order named. Then, the program ends.

234

m EXAMPLE

Y

B KEY OPERATION SEQUENCE

[DEF] (&

C1 x=—

C1: x1=0, y1:0, ry=30
C2: =50, y»>=20, r:=40
R=10

Discriminating conditions
(1) 1 {osculating externally}
(2) 1 (osculating externally)
(3) 1 {on left side)

(Q [FwiER]

Ci y=_

C [enten)

Cl r=_

Input data in the same manner as
above.

P1 x= 3.06

P y= 29.84

. ENTER

P2 x= 13.27

.

P2 y= 35.83

10 [EnveR!

C1.0UT:1 IN:—1=_
1

'€2.0UT:1 IN:—1=_
1

13.

(EnTER]

B

|LEFT: 1 RIGHT : 1—1=_

H PROGRAM LIST

o
=
1T

:vﬁ? rr

1 1—*~H

PIHPUT

PIHPUT M

PIHPUT

PIHPUT 7

tTHPUT

T IHPUT

tIHPUT ”LL._HT i IH:=-

i="38

DIHPUT “CZ.0UT:d IHE-

i="iKE

tEa: INPUT “LEFTYL RIGHT:
-1="il

118t F=P+R*5: C=0+0+51H=D~
fit I=E-R:.T=50F (H#*H+I
k[t K=ACS (HsTatIF B
*1 LET K=-K

12@:L AcE ((C#C+HIxJ-FxF2
20T

139:H h+hkL M=p+CkC05 N3
H=B+#SIH HiE=Ex{H-H
VY =ExCE-H3:00SUE 24
&

14@: IF ¢if==13%x{5:A00=]
LET k=W+120

1591 H=M+5+C05 Wi I=k+S4
SIH 4t IRy DO L
CE~-M2:GOSUR 248

16T IF (iR=—13#%(533Px=1

LET H=W+128

.y
(o]

THPUT “C

n

U

15 1
R

=
]

= =
tam aa tmw cmm cum

L B 1 B

wooz

VAT T T -ﬁl

S LI I O L
-

P [ST ¢ R S IR I
=3 I

o T R ST

(SR [N VR | I 1

(N}
o

1780 T=H+S4C03 Wik=hi+5e
SIN M
15 H=T+SGH M, BTSN

SGM M. 385
19@:H=H+EGH H4. BB I=1+
SOM 1,883
20@: J=T+56H T, 8832 K=K+
SOH K+.88932
Z1@:PRINT "P@ xz="% USING
“RREBEEAL, AN
FRINT “P@ 9="iH

B MEMORY CONTENTS

X4

¥i

vV

Xa

Ve

vV

Discriminating condition (3)

Pix

Py

Pax

Py

2%

Pox

Pay

¥

Iz

Discriminating condition (1)

Discriminating condition {2)

<|xlgjwjz|p|0v|o|=Zz|g|r|X|=|—-|T|@|mmO|[O|@ >

<<l

236

B FLOWCHART

b &3

Lines 1010 30

Canler cocrdinates [x, y)
and radws rolereie £1
arginpul.

Lines40 1060

Cenercoordinates (x. y)
and radiust ol circle €2
arainput.

Lines 7010 100

Radius Aol circle esculating
1 & G2 anddiscriminaling
condHions are inpul

Lina 110

F=P-+R¥S
C=0+0%SH=D-4
1=E-B

J= BOR{HE +)}
K=ACS{H.}

a=17?

Line 120

L=ACS({(CHC: JFI FFF}
{2iC0)

Ling 130

YES

N=K+GHL
M=A+CECOS N
N=B4GHSINN
X=O(A-M)
Y=QH{B- N}

Subroutine 1

Line 140

0O=-1.5=07

W=W+180

Line 150

M=+ SECOSW
I=N+SHEINW
X=R¥D-M)

¥ =R#(E-i)

Line 160

W=W+ 180

Lines 17010 200

Cenlercoordinales of circle
osulating C1 & C2and
points of conlact P1 & P2
are calculated.

Ling 210

Center coordinales
(x, ¥) of circla asculating
C1&CRare displayed.

Lins 220

¥, y coorginates of
poinlof contact Pt
aredisplayad

Line 230

¥ yceordinates of
point of contacl P2
aredisplayed

END

Subroutine 1

Lina 240

W=ACS{XBRAXHX+ YY) 1

RETURN

PROGRAM TITLE: Number Guessing Game

This programis designed to allow you to play a game of guessing a 3-digit number to be
generated randomly from the computer. Don't study too much for examinations. Try
this game for a change. Now, let us see how many attempts you must make before you
can make a hit!

N HOW TO OPERATE
1. Press A7 . {Program staris)

2. "X=" will be displayed on the screen. Now, input a 3-digit number which you
think the computer might have generated. Then, the screen will display the
number of attempts you made and the 3-digit number you entered, followed by a
comment (about 1 second later).

For example,
¢ Comment: 1 1

If the display reads as shown above, the first number (1) following comment tells
you that one digit of the 3-digit number you have input matches the random number
generated with respect to its digit position and value. The second number (1) tells
you that one digit of the 3-digit number you have input matches the random number
generated with respect to its value oniy.

¢ Comment: 3 0

If the display reads as shown above, all three digits of the number you have input
match the random number generated with respect to their digit positions and
values. When you make a hit, the message "VERY GOOD!" and the number of
attempts you made before the hit appear on the screen. Then, the program ends.

Note: Remember you can only input a 3-digit number.

238

B KEY OPERATION SEQUENCE

)]
1 123 |

| Comment:0 1
X=_

3. 145
| 2 145 |

 Comment:1 0]
| X=_)

input data in the same manner as
above.

1. [DER[A”
| X=-

2. 123 [EnTER

4. 305
L 6

Comment:3

305 |

N PROGRAM LIST

18" GY S CLEAR tRANDOM ¥
=1

ZEIFOR A=2 TO 4:pidrs
RHD 1@-1:HEYT @:IfF «
B=Ci+0C=Di+¢D=R1< R
THEH 2@

ZEBEEP 1:IMPUT *H=v3x

dA1USZING fPAUSE Yl

JBIFOR A=6 TO B:racpi=¥-
INT (H-1@0%i@:d= IMT
CASTBINERT A

bl: J=Ril=51P=3

TRIFOR #=2 TC 44[F fA¢Az
=aCLY LET J=J+i1

E8:GO5UR 11@:G0SUB 11g:
M=FtF=G:G=HsH=MzL=t -
2HHEXT &

SH:IPAUSE "Comment:*;
HSIHMG “BBR~s JsP:IF
JOF3OLET Y=¥+1:G0TO
%8

1BB:BEEF Z:PRIHT "VERY &
OO0 | *FIY:ENTD
11@:l=L+1:IF Ad@a=ALy
LET P=P+1
1ZBIRETURH
309 Bytes

B MEMORY CONTENTS

A

v

| VERY GOOD !

3-digit number

0]
6]
|

>

W

14

A%

v

Comment

14

A

Comment

Input value

<|x|TE|r|-lTIITMO0 0 D >

Number of attempts

239

B FLOWCHART

&

Line 10

l Initialization

0
l.ing 30
Numeric valug
npul.
Line 40
nput value &
No. of aitempts
displayed.

Lina 50

A{A)=X - INT (X415}
X=INT(X10)

Line €0

e
i
ama

AlAY=A(LI7

Linz 80

Subroutine 1

Lina g0

COMMENT s
displayed

240

“VERY GOOC!"
& No. cf attempls,
aredisplayed.

Subrouting 1

Line 110

AfAY=AILY?

&

*

|

/
N
<

-«

AA
Il

>

V¥Vl

=

T

i

A()}variables
ABS

ACS

AHC
AHS

AHT
ALLRESET
AND

AREAD

ASC

ASN

ATN

Array variables
Auto off (Auto Power Off)
BASIC key
BASIC mode
BEEP

CAkey
CALkey

CAL mode
C.CEkey

77
86
a6
86
86
86
183
86
57
86
86
86
86
57
86
178
94
94
84
179
178
179
179
179
10
87
131
185
180
180
81
15

133
205

205

CE-126P
Celireplacement
CHAIN

CHR$

CLEAR

CLOAD

CLOAD?
Clearkey

CONT

COS

CSAVE

CUR

Cursor

Cassette tape
Character Code Chart
Commands
DATA

DEF key

DEG

DEGREL
DELETE

DELete key

DIM

Direct calculation feature
DMS

Debugging
Display

END

ENTER key

EXP

Edition calculations
Editing programs
Error Messages
Expressions
FACT

Fixed variables
FOR..TO..STEP
Formatting output
Functions

103

11
134
185
136
118
116

i7
117
180
118
180

110
197
92
137
101
180
138
118
95
138
74
180
189
20
141
56
181
56
94
193
85
181
79
142
199
90

GOSsuB 144 | ON...GOSUB
GOTO 120,145 | ON...GOTO

GRAD 146 | OR

Hard cover 4 | Operator priority (BASIC) mode
HCS 181 Operators

HSN 181 | P« NP

HTN 181 | PASS

iF...THEN 147 | PAUSE

INKEY$ 176 | PI

INPUT 148 | PRINT

INPUT# 150 | PRINT#
INSertkey 59 | PROgram mode
INT 181 Parentheses
LEFT$ 185 | POL

LEN 185 | Printer

LET 153 | Priority (CAL mode)
LIST 121 Program

LLIST 122 | Pseudovariables
LN 181 | RADIAN

LOG 181 | RANDOM

LPRINT 154 | RGP

Labeled programs 101 | READ

Last answer feature 68 | REC

Limits of numbers 67 | Relational expressions
Line numbers 91 REM
Linearregression 37 RENUM

Logical expressions 87 | RESET

MATRIX operations 44 | RESTORE

MEM 177 | RETURN

MID$ 186 | RIGHTS$
Maintenance 191 RND

Manual calculations 55 | RUN

Masks 199 | RUNmode

MDF 185 | Range of numbers
Memory Protection 127 | Relational expressions
MERGE 123 | ROT

NEW 126 | Scientific notation
NEXT 156 | SGN

NOT 87 | SHIFT key
Numeric expressions 86 | Simple variable
Numeric functions 179 | SIN

Numeric variables 79 | Single-variable statistics
ON (Startup) 15 | SQR

242

157
158

87
203

86
104
127
158
178
161
163

89
182
103

29

91
176
165
166
182
167
182

86
168
128

10
169
170
186
182
130

90

67

86
183

66
183

i6

80
183

36
183

saQu

STOP

STR$

Statements
Statistical calculations
String expressions
String function
String variables
Subroutines

TAN

TEN

TROFF

TRON

Tape Recorder
Template
Troubleshooting
Two-variable statistics
USING

VAL

Variables

Verbs

WAIT

183
171
186
9
35
86
185
79
144
184
184
172
173
105
102
187
37
174
186
78
92,113, 131
175

243

SHARP CORPORATION i

OSAKA, JAPAN

1986 (C) SHARP CORPORATION

PRINTED IN JAPAN/IMPRIME AU JAPON

1G0.5T(TINSET066ECZZ) ()

