
1990. oS

DIVISION

~ PC-ESOO

TECHNICAL REFERENCE MANUAL

SHARP CORPORATION
INFORMATION SYSTEMS GROUP
PERSONAL EQUIPMENT

(OOH'05H)
(01 H)

(02H)
(03H)

(04H)
(05H)

(08wOEH)

(08H)
(09H)

JOCS Entry " .

IOCS

(OOH)
(01H)

(02H)
(03H)

Writing (04H)
(05H)

Writing (06H)
(07H)

(08H)
(09H)

(OAH)
(OSH)
(OCH)

(OEH)

OH)

1FILE

Contents

. CHAPTER 1 CONTROL SYSTEM

Howtocal l 1

Function 3
. File Handle Table 4

. Contents of error 5
. Explanation of Each Function 6

. Creating a file 6

. Opening a file 6

. Closing a file 7
. Reading a block of the file 7

. a-block of the file 8

. Reading a byte of the file 8

. a byte of the file 9
. Verifying a file 9

. Nondestructive reading a file 10
. Moving a file pointer 10

. Reading various information of a file 11
. . Changing directory information of drive 11

. Searching for corresponding file name 12
. Renaming a file (ODH) 12

. Deleting a file 13
. Reading a free capacity of drive (OFH) 13

. Initializing a file control system (1 13
. File name character string 14

. CHAPTER 2 OUTLINE OF 15

17
. Device number 17

. Command number 17

Errorcode 18
. Device Driver Control Command 20

. Checking the header address 1 20

. Checking the header address 2 20
. Checking the drive name 21

. Processing the format 21
. All initialize 21

. Processing the File of Standard Character Device 22
. Character device OPEN 22
. Character device CLOSE 22

Writing

(50H)

(51H)
(52H)

(54H)

37

(4AH)
(4BH)

(4CH)

(4DH)

(4EH)
(4FH)

(46H)

(47H) •.....................................
(48H)

STOO:

(3FH) E500

(40H) ...•.............................
(41H) ••.................

(OCH)

(OAH)
Write block (OSH)

(OEH)

(1Ow17H)

°H)
1H)

(12H)

(13H)
(14H)

(15H)
(16H)

(17H)
(2Ow2FH)

(3Fw7FH)
(3FH)

10CS (40H)

(41w7FH)

. Read byte data 22

. Write byte data (ODH) 23

. Read block data 23

. data 23

. Nondestructive read byte data 24
. File Processing of Standard Block Device 24

. Media check (1 24

. Media parameter block address (1 25
. Read sector 26
. Write sector 26

. Write 8 verify sector 27
. Verify sector 27
. Status read 28

. Get sector address 28
. Processing of Special File Device 29

. Other Devices 30
. Format processing 30

. initialization 30
. Function peculiar to device 30

. CHAPTER 3 HOW TO USE EACH DEVICE 31

. No . 00 Icd Driver SCRN: 31

. Format peculiar to 32

Initializing LCD driver 33

One character output to arbitrary position 33
. Setting cursor position 33

Character output to arbitrary position 34
. Setting the type of cursor display 34

. Symbol display 35 .

n line scroll-up 35

. n line scroll-down 35
. Clear line 36

. 8-dot pattern display 36
. 8-dot pattern read 36

. 1-dot display 37
. 1-dot read 37
. Line display

. . Paint out of box 38

. Setting of display state 38
. Clearing of display 1 39

. Clearing of display 2 39
. n line insertion 39

. Reading of one-line dot pattern 40

. of one-line dot pattern 40

Format (3FH)
Search

Format (3FH)

(STDL:PRN:l
Format (3FHl .

(41 H)
(42H)
(43H)

RS, RR, (44w49H)
of CS CD ports (4Aw48H)

t-byte

Format (3FHl
(RS232C)

t'.c 01
Parameter

_ :::_ :; ~e;arG,ess (57H)

s: w::-: (58Hl

. a. of range 40 . . a. . guide iine 41
. work 41

. Key Driver (STDI: KYBD:) 43

Format peculiar to E500 43

. Initialization of key device driver 44
. Read out of matrix code 44

. Non-destructive reading of matrix code 45
. Key reading 46

. Data set to keyboard buffer 47
. Key clear 47

. Display of function key 48
. Parameter for key input device driver 48

. No . 02 SIO Driver (COM:) 50

50
. Initialization of each parameter 51

. 1-byte direct output 51
. direct input 51
. Setting of hardware 52

. Setting of and ER ports 52
. Reading and 52

. Parameter work 53
. No . 03 Printer Driver 60

60

Initialization of each parameter 61
. Printing data output 61

. Read of printing position 61
. Printer check 61

. No . 04 Tape Driver (CAS:) 62'

Write. read. and verify of the header block 62

. Initialization of each parameter 63

. Write. read. and verify of the data block 63
. Format 63

. Parameter work 64

. Structure of file 65

. No . 05 RAM Disk Driver (E: F: G:) 67

. 67

. Initialization of each parameter 68

. No . 06 Memory Block Driver S2: S3) 69
. Initialization of memory driver 69

. 70
. for physical address 70

. Ccncense 70
. of block size 71

IOCS

Type of Variable .

(45H,46H) .•...•••.....•............

(40H) .
. ~.

(45H) .

(46H)••....•••.•......•.......

Power off (41H)

Creation.of

Rename of block 71

Transfer of block 72

memory block 72

Deletion of memory block 73

Creation of memory block 2 peculiar to E500 73

Parameter of memory block device 74

Structure of slot 74

No . 07 2.5" FDD Driver (X: Y:) 75

Initialization of each parameter 75

No . 08 System Control Driver 76

76

. Secure the work 77

Execution of 78

Acquire the address for processing
from the intermediate code 78

No . 09 Function Driver 79

83

Internal format of numeric value (at execution of operation) 83

Internal expression of character string 84

. Special Technique 85

BASIC 87

Internal expression of BASIC program 87

Location to store data 90

. Interrupt 91

. List of interrupt factor 91

- 1 -

0:

• 0:

•
•

Input/output

input/output

., cA("'L..F t/OFFFE4H·

Input

input/output

input/output to/fromsystem

FILECHAPTER 1 CONTROL SYSTEM

File control is the software to execute the file processing or
the device. In BASIC programming, in addition to the ordinary file processing, input
from key and output of PRINT statement are executed through this file transaction. Fil-
ing is performed using the file handle. Also, file and device are operated in the same
way. Accordingly redirection of is possible between the device and the
file.

How to call

To use the file control system, enter function number in register and execute far call
of For some functions, a, (cl), x, or y register may be used.

and output include characters, drawing line in the display and calculation of func-
tion.

This means every program has input and output. However, various levels (degree or
stage) of are required by the program.

of our pocket computer can be largely classified into three levels. Fea-
tures of each level are as follows.

Level 2: Level on which each device can be handled as a file. On this level, you
can only open a file, receive the data and close the file.

Level 1: Function of each device driver is utilized to its utmost on this level. Var-
ious functions can be used in accordance with device. You can handle a
function etc. only on this level.

Level Hardware is operated directly on this level. The operation on this level is
troublesome, but processing is very quick.

Concrete example of level as to LCD device

Level 2: It is possible to execute all processing that can be executed by OPEN state-
ment in BASIC.

Level 1: Commands such as writing the character, drawing the line from the arbitrary
position in the display or scrolling down etc. are supported to perform various
processing.

Level Every processing can be performed on this level. Actually it is rather difficult
to operate LCD, though it is very quick.

Level is considerably related to compatibility of program with different type device.

·2 -

IOCS
structure/extension

"0"

o

1

IOCS

Each devicer"-----SlQ.....I--...J--...J-----.L-__J dnver

Calif OFFFE4HCalif OFFFE8H
&HFFFDC)

BUilt-In

Relation Input

2.5" FDD
BEEP

of and output

(Call

Command number

software such as BASIC

I

Level 2

Level

Hardware I Level

When creating program with this pocket computer, it is recommended to use level
(direct operation of hardware) only when you have to perform quick processing to cor-
respond to succeeding device. (Actually, it is better not to use level

.

Following is the outline of each chapter.

Cassette

CHAPTER 1: File control system (level 2)
How to use F.C.S.

CHAPTER 2: Outline of (level 1)
Instruction of of device driver
Explanation of call from file control system of device driver

Key

3: Use of each driver (level 1)
Mainly, explanation how to use (command) of individual device driver.

bytes

- 3 -

byte

OOH
01H
02H
03H
04H
OSH
06H
a7H
a8H
09H
OAH
aSH
DCH
OOH
OEH
OFH
10H

Function No.

(004H)
(OOSH)
(006H) =
(QD7H)= (qU: 1
(008H) ~I):
(009H) (dk):
(OOAHr (Soi):
(OOSH
(OOCH

~i):

1 byte: (bl), (bh), (cl), (eh),

Supplement) .

For transfer of parameter, symbols such as (cx), (dh) other than CPU register
are used. These are the logic register existing in some specified position on the
internal RAM, to make up the number of CPU registers.

(dl), (dh)
2 bytes: (bx), (cx), (dx)
3 bytes: (si), (di)

Internal RAM address Connection
= (bl): 1 byte (bx): 2
= (bh): 1 byte

(e l) : 1 byte (cx): 2 bytes
byte

= 1 byte 2 bytes
= 1 byte

3

(ODDH) = 3 bytes

Function

The contents of each function are shown below.

Create a file
Open a file
Close a file
Read a file block
Write a file block
Read a byte of file
Write a byte of file
Verify a file
Nondestructive read of file
Move a file pointer
Read of various information on file
Alteration of directory information of drive
Search of corresponding file name
Rename a file
Delete a file
Read of empty capacity of drive
Initialization of file control system

stdo:

::·'_f;'-fCB No. o T
31 p)"te:'S

1.:... "~_"'''''''''''''"''"_' __ ''~''''' __ '' __ . -e- .'. """::-",-l>", ----

'---~f~,kii¥ct;;&ll

E

corre-

- 4 -

=
0=

#n

+F

+3

+3

~ +1

BFC6DH+O

File Handle-Table

File handle table is stored in the system memory and shows the relation of file handle
and FCB number. File handle is the value returned from the file control system when a
file is opened and it is a kind of of BASIC.

This value is used to read or write a command. The FCB is the table on which infor-
mation for controlling file is written and indicates which is FCB number.

Address File handle FCB No. Control block
sponding to FCB No.

Here, file handles from to and are included in the FCB number.

FCB number
unused

This file handle table can be altered directly with application. However, the following
operations will cause incorrect execution of file control.

(1) to write FCB number that is not open in the table.
(2) to delete FCB number that is open from the table.

0, 1, and 2 of file handle are reserved by the system. When BASIC is activated, these
file handles have been already opened and are assigned as follows.

Handle LCD display (standard output)
Handle 1 =key (standard input) stdi:

. Handle 2 printer (standard listing output) stdl:

- 5 -

OOH

01H
02H

03H

04H

05H
06H

07H

08H

09H

OAH
OSH
OCH
FEH
FFH

.

Contents of error

When an error occurred in each function, cf = 1 is obtained, it returns to a register with
the following error codes.

An error occurred in the device and aborted.

The parameter is beyond the range.

The specified file does not exist.

The specified pass code does not exist.

The number of files to be opened exceeds the limit.

The file whose processing is not permitted.

Ineffective file handle was attempted.

Processing is not specified by open statement.

The file is during open.

The file name is duplicated.

The specified drive does not exist.

Error in data verification.

Processing of byte number has not been completed.

Fatal low battery.

Processing has been interrupted. (break key was pressed.)

cf = 1
=
=

o

o

o.

.-

Explanation of Each Function

After entering function number and various parameter, execute fcall of Expla-
nations of each parameter are as follows.

Creating a file

New file with the specified file name is created in the corresponding drive and is
opened so that read and write are possible. When the file has been in the drive, open
with the file size

File attribute to be opened is given by putting value in a register. The file pointer is set
at Open as the read-out file in the read-out only device and as the write-in
file in the write-in only device.

entry
=

a = file attribute
bit write protect
bit 1 invisible

x = the lead address of file name character string in last with
shift JIS)

return
cf =

(cl) File handle
a File attribute

Error (a =

Opening a file (01

Open a file of the specified file name. File pointer is set at Even i f the file is
opened for writing-in, new file is not created. In case the file cannot be opened in the
specified mode, an error occurs.

entry

a = File is opened for reading-out.
2 File is opened for writing-in.
3 File is opened for reading and writing

x = the lead address of file name character string in last with
shift JIS)

=

c~=
E~~or = OOH, 06H, 07H, OCH, FFH)

cf= 0

=0

=

cf = 1

o

=

cf = 1
=

=
cf = 0

(cl) File handle
a File attribute

Error (a =

C l o s i n g a file

Close a file of the specified file handle. Renewed directory information or FAT is writ-
ten on the display. The file handle is released.

entry

(cl) File handle

return
cf =

No error

Error (a

Reading a block of the file

Reading of datas with a specified number of bytes from files "in the specified file han-
dle" and writing into specified memory.
The number of bytes can be chosen by using the code (end of file) which speci-
fies the whole file or by specifying the number of bytes to be read.

entry

(cl) File handle
x =The lead address to which data is transferred.
y = Number of bytes to be read
a: bit 0 File end is code.

(Pointer stops indicating is read.)
1 File end is a physical end of the file.
(Pointer stops indicating final byte of pointer + 1)

return

x = Next data of the read data
y = Number of read bytes
1

(a
x Sex: address that read correctly.
y of bytes that was read correctly.

=
=

=
=

o

o =0).

o
0.=

b
cf = 1

cf = 1

Writing a block of the file

Write the data of specified number of bytes in the file of the specified file handle from
the specified memory.
Also, if the number of bytes to be written is set at (y the block from the file
pointer to the file end is discarded.

entry

(cl) = File handle
x =The lead address of data
y =Number of bytes to be written

return
cf =

x Next data of the written data
y Number of written bytes

Error (a
x Next address that was written correctly.
y Number of bytes that was written correctly.

Reading a byte of the file

Read 1-byte data in the register from the file of the specified file handle. You can
specify whether the file end is set code or in the physical file end.

entry
i =

(cl) = File handle
a : bit 0 = Fiie end is dode.

(Pointer stops indicating is read.)
1 File end is a physical end of the file.
(Pointer stops indicating final byte of pointer + 1)

return
cf =

Data
= Number of read data

Error (a

·9 -

=

=0
=

=
o

=

cf = 1

cf=O

ofiheWri t ing a b y t e file

Write 1-byte data to the file of the specified file handle.

. entry

(cl) File handle
a = Data

return
cf =

b Number of read data
cf = 1

Error (a =

Verifying a file

Read the data of number of specified bytes from the file of the specified file handle and
verify the contents of memory.
You can specify whether the file end is set in code or in physical file end.

entry

(cl) = File handle
x =The lead address of the data to be verified
y Number of bytes to be verified
a: bit 0 File end is code.

(Pointer stops indicating is read.)
1 File end is a physical end of the file.
(Pointer stops indicating final byte of pointer + 1)

return

x Next address of the data that was verified
y = Number of bytes verified

Error (a =
x =Address of data that an error was occurred
y = Number of bytes verified

0, of la' register
(0

- 10·

=

7= 0

IS

cf = 1

cf = 0

=OOH:
01H:
02H:

cf = 0

=

ooaaaH FFFFFH

Nondestrucfive reading a file

Read I-byte data into a register from the file of the specified file handle. File point
does not move.

entry
=

(cl) File handle
a: bit 0 = File end is code.

(Pointer stops indicating is read.)
1 File end a physical end of the file.
(Pointer stops indicating final byte of pointer + 1)

bit without data
1 with data

return

a = Data at the position on which the file pointer is.
b = Number of read bytes or 1)

when number of bytes is value is invalid.
cf = 1

Error (a =

Moving a file pointer

Move the specified amount of the file pointer with the specified method. Value from
to is specified.

In the write open mode, you can specify the value beyond file end. It is not possible to
specify excessively in the read open mode.

entry
=

(cl) = File handle
(si) =Number of bytes to move (3 bytes)

a Relative value from the file top (24 bits without sign)
Relative value from present position (24 bits with sign)
Relative value from file end + 1 (24 bits without sign)

return

(si) File pointer value (3 bytes)

error (a

- 11 -

e~"-,., ~,
c' = .

Size

o attribute
i nrr.e information OOH
cats information OOH

c: = 0

teeR iR la~
~~"PGQ'5g .<L"~,,,,"~e 9",'~

y =The lead address Of memory which directory information

cf = 1

(1 byte)

(1 byte)

OH
6H

+ EH =" ..
FH

12H

=
=

=
cf=O

=
=0:

::e:""._
-ea: ; e 5 ze. pc r.ter

Reac.~g var.cus intormation o f a f i le

:re value, file name, extension and attribute in the file that is

(cl) = File handle
a Reading of file size, pointer value

1: Reading of file name, extension and attribute
x =Address to read various information of file (when a 1)

return

when called out with (a = 0)
. a Open attribute

b = Device attribute
(si) = File pointer value
(di) File size

when called out with (a 1)
X + = drive name + : (6 bytes)

+ = file name (8 bytes)
.

+ = extension (3 bytes)
+ = attribute

error (a

Changing directory information of drive

Read and change the directory information of the drive. This is used for processing of
files.

entry
i =

a Reading of the directory information of drive
1 Writing of the directory information of drive

x =The lead address of a file name character string
I . I

in is
written (write directory information)

y + byte
+ (all when not specified)
+ 3 (all when not specified)
+ ' e (read only) .

,a

- 12 -

cf = 1
error OOH.02H. 03H. OSH. 08H. 09H. OAH. FFH)

cf= 0

- iA la5t with 6t:lilt .lIst-
=
~OA ;1'1 last "ill, sl,ift jl~)

file=

cf = 1

cf= 0

=

file
(OOA i•• last witi'l ~RiH dIS)

=

Tor

FILECHAPTER 1 CONTROL SYSTEM

Searching corresponding file name

Search for the file in the specified direction from the specified directory number. Wild
card can be used for the file name character string to be searched for. Also, it is pos-
sible to specify disregard of error.

entry
i =

a Search for the back of the specified directory number
Search for the front of the specified directory number
Perform disregarding to be invisible

81 Perform 01 disregarding to be invisible
(bx) Directory number to start searching (This position is also

searched for.)
x =Lead address of name character string to be searched

for.
y Lead address to return the result

return

(bx) =Directory number of the file detected
x = Lead address of file name character string to be searched

for
y = Lead address of file name character string that was detect-

ed

error (a

Renaming a file

Rename the file to the specified name.

entry

x Lead address of name character string before renaming

y Lead address of file name character string after renaming

return

none

(a =

• 13 .

i = 10H
=OOH 01H"
01H

Initializing (10H)

=
o

string (OGAi, i last i~ilR sAift diS,.

drive(OFH)

cf= 0
nil

cf =,
error (a=DOH. 02H. 03H, OSH. OAH. FFH)

return

tOeA iA 1831 with sl:1ift Jist

file (OEH)Deleting a

Delete the specified file.

entry

x =Lead address of the file name character string to be deleted

Reading a free capacity of

Examine free capacity of the specified drive.

entry

a=O
x =Drive name character

return
cf =

(si) Free capacity of drive (3 bytes)
cf = 1

error (a =

a file control system

Initialize the work, FCB, file handle table, file buffer in the file control system.

entry

a Operation of initialization of the work and "a=
Release all FCB, file handle, and file buffer. Open
standard input, standard output, standard listing out
put.
Release file handle other than standard.

return
nil

• 14 -

I II : I

C~AP'7"E'" 1 F,LE CONTROL SYS,EM

File name character string

File name character string consists of the drive name and file name

Drive name is expressed in the byte from 1 to 5. End of drive name is marked with a
colon.

File name is expressed in 8 bytes filling from the head. The space is used to fill va-
cancy. P u t period (.) at end of the file name.

Extension

Extension is expressed in 3 bytes from the head. The space is used to fill vacancy.
Vacancy may be filled with only space. Put in last.

1-5 bytes 8 bytes 3 bytes

. Drive name File name

• 15 •

built-in device IS

Next address ~! f-r--. M'
!

8

I I I

this
• ADevice

OFFFFFH
•

+8

+5

+4

+3

IOCS

IOCS

OOH

I

+0

tile-
cAlLF
-tefti+ ot FFFE8H_

CHAPTER 2 OUTLINE OF IOCS

CHAPTER 2 OUTLINE OF IOCS

IOCS is a software with which you can make efficient use of the hardware. In addition
to a display and key, memory control and power control are provided as IOCS. As a
compatibility will be given on this level in future, it is recommended to design your ap-
plication software or device driver in accordance with this spec.

You can use IOCS by performing Command is used to operate
control and peculiar to device.

The IOCS consists of the IOCS main routine, IOCS routine of individual device, and
IOCS header. As the IOCS is built in the system by the IOCS header, you can write a
program assembled by the machine language and add the header to correspond with
new device or to alter the function of existing device.

Structure of IOCS header

Address to next header 3 bytes

Device number 1 byte

Device attribute 1 byte

Entry address of each 3 bytes

Drive name n bytes n byte

List the drive name marked with a colon.

in last.

Drive name is expressed in max. 5 bytes.

Address of next IOCS header
Lead address of next IOCS header is shown. In the case of last header,
is set.

number
The number to represent device. Device number is peculiarly assigned to each
device.

newly Device in ROM in the E500

Next address Next address Next address

+ 8 + 8 +

In case of same device name, newly selected.

. 16 -

0, "COM2" 1.
"COM'"

"COM1:"

IOCS

read/write,

=
simultaneously.

=0

=

=0:

=

"COM2",

•

IOCS

• Device attribute
The following information to show characteristics of device is stored.

Bit 7 1: device able to handle file-control

Bit 6 = 1: special file device (device that cannot be handled with standard process-
ing by file-control) '

Bit 5 block device (device controlled by cluster)

1: character device

Bit 4 1: device that default is performed by ASCII code.

Bit 3

Bit 2 = 1: device that read and write cannot be executed

Bit 1 1: write enable device

Bit 0 = 1 : read enable device

For example, is the special device that enable but cannot execute
read and write simultaneously.

entry address
Address of entry. If BlOS call is executed, the desired header is detected
from BlOS number and control is transferred to the address shown in BlOS main
routine processing.

Drive name
List the drive name (max. 5 bytes) enable to handle by the header marked off with a
colon, and write OOH in the end. For example, i f the drive name is and

indicate as follows.

The drive number corresponds to the drive name. In the above example,
becomes to

• 17 -

08H • OFHi

10H - 1FH

20H ·3FH
3FH

40H

41H ·7FH

SOH· FFH

STOO: I SCR.N : 0 0, 1

Key
- 1 0, 1

2 °
3 0, 1 A2H

4 0

F:,G: 5 0, 1, 2 83

si. S2: S3: 6 0, 1,2
I I

7 0

8 0

9 NIL

ca.n 'f\Ot {
aso: i /(l.bJe.1

H
and

IOCS

roesCHAPTER 2 OUTLINE OF

Entry

Device number

Device number is the peculiar number to represent the device. If the different numbers
in every IOCS header unable to handle'are specified, an error occurs.
Device attribute is as follows. 8 is the standard block device, A X is standard
character device and and C are special devices.

IOCS

Display

SIO

Printer

Tape

Memory file

Memory card

2.5" FDD

System

Function

Drive name

STDI:, KYBD:

COM:

STDL:, PRN:

CAS:

E:,

X:

SYSTM:

NIL

Device No.
--

Drive No. Device attribute

A2 H

A1 H

D3H

D7H

H

C3H

OOH

OOH

OOH

C o m m a n d number

IOCS entry command number consists of the part common to every device and the in-
dividual part of each device. Contents of the command are as follows.

Command for IOCS main routine. It does not jump to entry of each
IOCS.

File processing of standard character device. Use from file-control.

File processing of standard block device. Use from file-control.

File processing of special device. Use from file-control.

Format processing

Initialization. Common to all devices

Processing peculiar to each device

Reserve

- 18·

IOCS

• = OOw1FH, 40H

OOH

01H
_02H

03H

04H

OSH

06H

07H

OSH

09H

FEH

FFH

• =2Ow3EH

DOH
01H

02H

03H

04H

OSH

06H

07H

OSH

D9H
OAH
OSH

OCH
OOH
FEH
FFH

IOCSCHAPTER 2 OUTLINE OF

Error code

When an error occurred, each entry is returned with cy = 1. In this return, an er-
ror code is set in a register. Error codes are classified into 4 systems depending on
the commands.

Command No.

An attempt was made to write in the media of write protect.

The drive does not exist.

The drive is not ready.

The command cannot be handled.

The media has been changed.

Write error

Read error

Verify error

Device unable to write

Device unable to read

Fatal low battery

Break was made.

Command NO.

An error occurred in the device and aborted.

The parameter is beyond the range.

The specified file does not exist.

The specified pass code does not exist.

The number of files to be opened exceeds the limit.

The file processing is not allowed.

Invalid file handle was used.

Processing is not specified when opened.

The file is during open.

The corresponding file does not exist.

The file name is duplicated.

The specified drive does not exist.

Verify error

Processing of the specified number of bytes has not been completed.

Fatal low battery

Break was made.

loes

. 19·

•

•

CHAPTER 2 OUTLINE OF

Command No.
Same error code with BASIC

Command NO.
Refer to specifications of each device.

·20·

cy = error (a= 01 H)

=

= 02H
(cI) =

0:

i= 01H
(cl) =

cy 0:
cy = error (a= 01 H)

(cI)

IOCSCHAPTER 2 OUTLINE OF

Device Driver Control Command

Searching for the drive name

Search the device number and drive number from the specified drive name.

en try

x = drive name lead address

return
= device number

(ch) = drive number
. = no error

1:

Checking the header address 1

Search the header address from the specified device number.

entry

device number

return
cy = x = header address
cy = 1 : error (a

Checking the Header Address 2

Search the header address from the specified device number.

entry
i

device number
x the first header address to start searching for return

return
cy = 0: x = header address

1:

- 21 -

0:

cy

= 0: =

cy = (a = 01 H)

= 0: wdtten
20H·by

x=

lOCSCHAPTER 2 OUTLINE OF

Checking the drive name

Search the drive name from the specified device number and drive number.

entry
=

(cl) = device number
(ch) = drive number

the lead address of area that returns drive name
(6 bytes are required.)

return
cy drive name +colon is from the position indicated

x, and filled with
1: error

Processing the format

Execute format of the device of the specified drive name.

entry

x = the lead address of (drive name +the set information charac-
ter string)

return
cy x next address processed as the set information char-

acter string
= 1: error

(a same error code with BASIC)

All initialize

Initialize all of the stored devices.

entry
=

a = initialization level
all reset

1: reset
2: off
3: on

return
nil

- 22·

=
cy = 0:

return

reading/writing

file-

.- ... 'II - ~-- - - ,,:::_ ~... ---- -..-_- =._-.:..

Processing the File of Standard Character Device

Common commands are provided for the character device that is able to handle
control with common processing. By supporting the following commands, file-control
car, be handled as the standard character device.

Character device OPEN

Execute initialization when the standard character device is opened.

entry
=

(cl) = device number
(ch) =drive number

x =the lead address of file name (1 2 bytes)
a = OPEN mode

1: for reading
2: for writing
3: for

return
cy : error (a =

Character device CLOSE

Execute processing when the standard character device is closed.

entry
=

(cl) =device number
(ch) =drive number

return
none

Read byte data

Read the data of 1 byte only.

entry
=

(cl) =device number
(ch) =drive number

no error
a =data

cy 1 : error (a 01

·23 -

cy =0:
Cj = 1: = O'H. 02H. 03H• 04H• OSH.08H. FEH. FFH)

=
=

return

=
cy 0:

=
=

= OAH
(c1)

=
cy 0:

.ocsCHAPTER 2 OUTLINE OF

Write byte data

Write the data of 1 byte only.

entry
i

(cl) = device number
(ch) = drive number

a = data
return

= no error
cy 1: error (a

Read block data

Read out the data to the specified position by the specified number of bytes only.

entry
i
= device number

(ch) =drive number
x = The lead address to which data is transferred.
y = Number of bytes to be read

return
x Next address that read correctly.
y Number of bytes that was read correctly.

= no error
cy 1: error (a =

Write block 'data

Write out the data from the specified position by the specified number of byte only.

entry

(cl) = device number
(ch) =drive number

x =The lead address of the data
y = Number of bytes to be read

x Next address that read correctly.
y Number of bytes that was read correctly.

no error
error (a

·24·

=
cy 0:

= 0:

(10H)

=

cy=O:

=

...... ., - - ~ ...~..... - ~~~ --

Nondestructive read byte data

Read data by only 1 byte. Data is returned but not deleted.

entry

(cl) device number
(ch) = drive number

return
no error

a = data
cy 1: error (a

File Processing of Standard Block Device (1 OH-1

Common command is provided to block device in which file-control is handled with
common processing. By supporting the following commands, file control can be used
as the standard block device.

Media check

Store in memory the media that is currently installed for checking of the media change.
Delete the contents stored.

entry

(cl) = device number
(ch) =drive number

a Media is stored in memory. After that, when the media is
changed, an error occurs.

1: Makes change of media possible.
2: Check whether at present media has been changed or

not.
return

= no error
cy 1 : error (a = 01

directo-

...)

- 25 -

sector/32

=x

ries/number

2)/1.5]

E,F)

1092
(x + 5) = OOH
(x+6)=01H

0)=
=

cf 0

Media

IOCSCHAPTER 2 OUTLINE OF

parameter block address (1

The lead address of several bytes which show the physical structure of media is re-
turned.

entry

(cl) = device number
(ch) = drive number

return
= : no error

x the lead address
- (x + media descriptor

of media parameter block
byte (first byte of FAT)

(x + 1, 2) =number of bytes per sector (2 bytes of low and hi)
(x + 3) = (number of directories entered in a sector) - 1, but 32 bytes

per directory.
(x + 4) = (number of directories entered in a sector)

(x + 7, 8) = number of spare sectors (2 bytes of low and hi) - lead sector
of FAT

(X + 9)
(x +A, B) =number of root directories (2 bytes of low and hi)
(x + C, D) = Lead sector of data (2 bytes of low and hi)
(x + = Number of usable sectors + 1 (2 bytes of low and hi)
(x + 10) = Number of sectors occupied with 1 FAT

(x + 11, 12) = Lead sector of directories (2 bytes of low and hi)
However, number of bytes per sector = 2n 32 (n 1, 2,

number of directories contained in one sector = number of by-
tes per

Number of sectors occupied by one FAT = [number of usable sec-
tors +

Lead sector of directory =number of spare sectors + number of sectors
occupied by one FAT
Lead sector of data = lead sector of directory + [(number of root

of directories entered in one sector)]
Number of usable sectors = total number of sectors - lead sector of data

[x] =the smallest integer more than x

- 25 .

=

=
=
=
=
=

cf = 0

=
=
=
=

=
=
=
=
=

cf= 0

=

=

Cr., the

sector(12H)Read

number of specified sectors is read to the specified position.

entry

(cl) device number
(ch) =drive number

x address to which sector is transferred
(dx) =number of addresses to be transferred
(bx) = sector number to start transfer

return

x address that transfer has been completed + 1
(dx) number of sectors correctly transferred
(bx) sector number that transfer has been completed + 'I

cf = 1: error (a=
x address of data in which an error occurred.

(dx) =number of sectors that has not been transferred correctly.
(bx) sector number to continue transfer

Write sector (1

Only number of bytes that was specified from the specified position is written.

entry

(cl) device number
(ch) drive number

x address to which sector is transferred
(dx) number of addresses to be transferred
(bx) =sector number to start transfer

return

x address that transfer has been completed + 1
(dx) number of sectors correctly transferred
(bx) sector number that transfer has been completed + 1

cf 1: error (a =
x address of data in which an error occurred.

(dx) =number of sectors that has not been transferred correctly.
(bx) sector number to continue transfer

=
=
=
=

=
cf = 0

=

x = address
=
=

=
=
=

=
=

cf= 0

=

&Write ver i fy sector

Only number of sectors that was specified from the specified position is written and
after that is verified.

entry

return

Verify sector (1

(cl) = device number
(ch) drive number

x =address to which sector is transferred
(dx) = number of addresses to be transferred
(bx) = sector number to start transfer

x =address that transfer has been completed + 1
(bx) sector number that transfer has been completed + 1

cf 1: error (a

x address of data in which an error occurred.
(dx) number of sectors that has not been transferred correctly.
(bx) sector number to continue transfer

Only number of sectors that was specified from the specified position is verified.

entry

(cl) device number
(ch) drive number

to which sector is transferred
(dx) =number of sectors to be verified (number of bytes)
(bx) sector number to start to verify.

return

x address that transfer has been completed + 1
(bx) =sector number that transfer has been completed + 1

cf 1: error (a =
x address of data in which an error occurred.

(dx) number of sectors that has not been transferred correctly.
(bx) sector number to continue transfer

- 28 -

=
=

=
o

=

=

1 = 0: ???
???

drive=

o
0=

=

IOCSCHAPTER 2 OUTLINE OF

Status read

The specified drive attribute is read.

entry

(cl) device number
(ch) = drive number

return
cf =

ba bit 0: non write protect drive
1 : write protect

bit
= 1:

cf 1: error (a

Get sector address

The address of the specified sector is got.

entry

(cl) = device number
(ch) drive number
(bx) =sector number

return
cf =
x lead address of the specified sector

(cx) = sector size
(di) lead address of lead sector of the specified drive
cf 1 : error (a = 01

·29 -

(cl), i,

•
j= 20H DOH

21H 01H
22H 02H

23H 03H
24H 04H
25H 05H
26H OSH
27H 07H

28H 08H

29H 09H

2AH OAH

2BH OBH

2CH OCH

2DH ODH

2EH OEH

2FH OFH

10C:CHAPTER 2 OUTLINE OF

Processing of Special File Device

Execute processing of file control device that is neither standard character device nor
standard block device.

Contents of entry operation and error code are same as file-control. For more details,
refer the file-control.

Command No. file-control

Creating a file

Opening a file

Closing a file

Reading a block of the file

Writing a block of the file

Reading a byte of the file

Writing a byte of the file

Verifying a file

Non-destructive reading a file

Moving a file pointer

Reading various information of the file

Changing a drive directory information

Searching for corresponding file name

Renaming a file

Deleting a file name

Reading a drive space capacity

Entry specification

Registers (ch), x, y, a,.. , same as file-control, are called after putting FCB
No. in (dl). When using FCB as work, use this value as a reference.
.

·30.

cf 0:
1: 01H. FEH. FFH)

0:

Ices

=

cf = 0
x=

=
=

INIT

IOCSCHAPTER 2 OUTLINE OF

Other Devices

Format processing

Format processing of device (media) common to all devices.

For example, card is initialized in RAM file, or parameter is set when COM: device.
Format is called out with in BASIC program.

entry

(cl) device number
(ch) =drive number

x lead address of set information character string
return

next address that was processed as set information character
string.

cf = 1: error (same error code as a BASIC)

initialization

Each device is initialized in accordance with the specified level.

entry
=

(cl) = device number
(ch) = drive number

a = all reset initialization of all parameters
1: reset initialization of some parameters
2: off initialization for "off"
3: on initialization for "on"

return
= no error

cf = error (a =

Function peculiar to device

Command for use of function peculiar to each device

- 31 •

OSH ~Je3l3eeiBII3Fes9i.ing t..) • ." opera..tl"OVl
09H --No speerBI plocessillg Non op-c. rGl-t:io ...
OAH
OSH
OCH
OOH
OEH
OFH

•

• STDO:
•
••

LCD Driver STDO:

CALL&HFFFDC

OSFEOOhH OSFE02H

../'" CALL 'H FF f ~S
(V (<:ALLFmr

IOCS ex- l"rFFEP:I-I

CHAPTER 3 HOW TO USE EACH DEVICE

This chapter describes how to use all device drivers equipped in the pocket computer
as standard features.

The device driver supports two command groups in rough classification. One is the
part called from the file control system explained in the previous chapter. And other is
"operation particular to each device" detailed in this chapter.

After setting the specified register, etc., each device driver is called using
plained in previous chapter.

And, command that requires only register il, (cl), (ch) is called after writing each value
for address to with setting as'follows.

For example, if called as follows, power is turned OFF.

POKE

The following is command list and the method to use peculiar commands of each de-
vice driver separately shown.

The "NO." of the left end of device name indicates the device number particular to
each device driver.

No. 00 SCRN: =

. LCD driver is the following type of device.
Device usable as a file.
Standard character device
Able to write only.

LCD driver is opened as a standard output.

Command list

Command for standard character device
-
-

Error
Output to display
Error
Output to display
Error
Error

·32 -

•
FH

•
2Ow2FH

•
3FH Fo,. In(tt tin ~
40H
41H
42H n
43H' Not
44H
45H
46H
47H n
48H n
49H
4AH
48H
4CH 1
4DH 1 dot.
4EH
4FH
50H
51H
52H
53H
54H n
55H
56H
57H
58H

(3FH)

entry
(ex) = OOOOH

il= 3FH

CHAPTER 3 HOW TO USE EACH DEVICE

Command for standard block device
1 OH-1 Error

Command for special device
Error

Command peculiar to each device

Initialization of each parameter
1 character output to arbitrary position

character output to arbitrary position
used

Sets cursor position
Sets type of cursor display
Performs symbol display

line scroll-up
line scroll-down

Clears line.
Displays 8-dot pattern.
Reads 8-dot patterns.
Displays dot.
Reads
Displays line.
Paints out the box.
Sets display state.
Clears display.
Clears from the specified position.
(Deletes one line.)
Inserts line.
Transfers one-line dot pattern to memory.
Displays dot pattern on the memory.
Displays regardless of display range.
Displays guide line.

Format

return
nil

·33·

(ex) = OOOOH
i =0044H

0:

(ex) = OOOOH
j = 0041H

0:

(ex) = OOOOH
jl = 0040H

Initializing LCD driver

Initialize work area of LCD driver.

entry

a = level of initialization
all reset

1: reset
2: off
3: on

return
nil

One character output to arbitrary position (41

Output one character. After output, add 1 to x coordinate (bl). No processing is ex-
ecuted if it is outside range.

entry

(bl) = x coordinate at output position
(bh) = y coordinate at output position

a =output data

return
(bl), (bh) = indicates next display position

cy = normal completion
cy = 1: outside range
a =output data

Setting cursor position

Set the display position of cursor. Condition of cursor does not change.

entry

(bi) = cursor x coordinate
(bh) = cursor y coordinate

return
cy =An attempt was made to display outside range.

·34·

(.pIG

Co I /
I () ()Insert

~.(; I
OG0:

).10
=
=
=
=

(ex) =OOOOH
i =0045H

0:

0:

(bt),

position (42H)Character output to arbitrary

Character string is displayed. (bl) is displayed with adding one address. When
reached right end of display, display is stopped.

entry
(cx) =

=
(bl) = x coordinate at output position

(bh) = y coordinate at output position
x =the lead address of character string
y = length of character string

return
(bh) = next display position is indicated.

x =address of data shown in last + 1
y =number of data that was not displayed.

cy = Displayed all.
1: Stopped display.

Setting the type of cursor display

Set the cursor type.

entry

a = Cursor is not displayed.
Bit 7=0
Bit 6 0
Bit 5 Cursor is displayed.
Bit 4 0
Bit 3 Blink
Bit 2-0 =

return
nil

Underline 6

1: Double underline
2: Full mark
3: Full space
4: mark

·35·

0,
0, DSL,

0,2ndF,
0, RAD,

(ex) :: OOOOH
i =0048H

(bx) = OOOOH

(ex) = OOOOH
i = 0047H

(bx) = OOOOH

(ex) = OOOOH
i = 0046H

entry

ON/OFF

Symbol display

Execute of symbol.

a =symbol pattern (1 =light up)
(bl) = symbol number

0: 0, 0, 0, 0, 0, 0, Low battery
1: 0, 0, 0, PRO, RUN, BUSY
2: 0, 0, CAPS, hyp, kana, lower case
3: 0, 0, DE, G, E, PRINT

return
nil

n line scroll-up

Execute scroll-up. Number of lines can be specified.

entry

a =number of lines to be scrolled.

return
nil

n line scroll-down

Execute scroll-down. Number of lines can be specified.

entry

a =number of lines to be scrolled.

return
nil

- 36 -

(ex) = OOOOH
004BH

[dotsop]
0sFc 9bH _.y 0:

(\Me r t: Q.ye <t.)

U:;,C CAI,.,M UCYlvCI,.,MAt-' t:H.jI n u w u

Clear line

Clear the specified line.

entry
(cx) =

(bh) = Y-coordinate of the line to be cleared.

return
nil

8-dot pattern display

Pattern of one vertical line composed of 8 dots is displayed in down direction from the
displayed arbitrary dot.

entry
(cx) =

=
x =X-coordinate on upper end of the pattern
y =Y-coordinate on upper end of the pattern
a = pattern data (1 =light up, upper end is LSB)

=operation mode when dot is displayed.
light up

1: clear
2: reverse

return
nil

8-dot pattern read

Pattern of one vertical line composed of 8 dots is read in down direction from the dis-
played arbitrary dot.

entry

=
x = X-coordinate on upper end of the pattern
y =Y-coordinate on upper end of the pattern

return
a =pattern data (1 =light up, upper end is LSB)

- 37 •

2:

0:
[dotsopj
_f

0BFc9bH
(WIJt'"k a.vea.)

(ex) = OOOOH
i = 004EH

(ex) = OOOOH
i 004DH

0: lightup

= Y-coordinate
=

(ex) =OOOOH
i 004CH

t-dot (4CH)display

Displayed arbitrary 1 dot is lit and cleared.

entry
.

=
x X-coordinate of dot
y of dot
a =operation

1: clear
2: reverse

return
nil

read

Displayed arbitrary 1 dot is read.

entry

=
x = X-coordinate of dot
y = Y-coordinate of dot

return
a =data (1 =light up)

Line display

Straight line is drawn between the specified 2 points in accordance with mode.

entry

x = X-coordinate of start point
y = Y-coordinate of start point

(bx) = X-coordinate of end point
(dx) = Y-coordinate of end point

= operation mode when dot is displayed.
light up

1: clear
reverse

·38 -

(ex) = OOOOH
i =0050H

0:
[dotsop]

(ex) = OOOOH
i =004FH

return
=specify the dot pattern in 16-bit data.

return x = X-coordinate of end point
y = Y-coordinate of end point

[linptn] =Pattern next to the last pattern.

Paint out of box

Paint out a rectangle that has diagonal made of the specified 2 points.

entry

x = X-coordinate of diagonal .

y = Y-coordinate of diagonal
(bx) = X-coordinate of diagonal
(dx) = Y-coordinate of diagonal

=operation mode when dot is displayed.
light up

1: clear
2: reverse

[linptn] =specify the dot pattern in 16-bit data.

return
x = X-coordinate at entry
y = Y-coordinate at entry

[linptn] = Pattern next to the last pattern.

Setting of display state

ON and OFF of display

entry

a = display mode
0: OFF
1: ON

return
nil

- 39 -

(ex) = OOOOH
i 0054H

Insert n

(ex) = OOOOH
i 0052H

(ex) = OOOOH
i = 0051H

I,..:HAI-' j t:.N.j HUW I U U:;it:. I::A(..;H Ut:VICI::

Clearing of display 1

Clear the display completely.

entry

return
nil

Clearing of display 2

Clear the display from the specified position.

entry

=
a =number of characters to be cleared.

(bl) =X-coordinate to start to clear
(bh) = Y-coordinate to start to clear

return
nil

n line insertion

line.

entry

=
(bh) = Y-coordinate to start insertion

a =number of lines you want to insert.

return
nil

·40 -

=

(ex) = OOOOH
i = 0057H

(ex) = OOOOH
i 0056H

(ex) = OOOOH
= 0055H

CHAPTER 3 HOW TO USE EACH DEVICE

Reading of one-line dot pattern

Expand the dot pattern of one line to an external memory.

entry

i
(bh) =Y-coordinate of line you want to read.

x =data expansion address.
(240 bytes are necessary.)

return
nil

Writing of one-line dot pattern

Write (display) the dot pattern of one line on external memory.

entry

=
(bh) =Y-coordinate of line you want to write.

x =data address

return
nil

Displaying regardless of range

Display one character regardless of the specified range of display.

entry

(bl) = X-coordinate of output position
(bh) = Y-coordinate of output position

a =output data

return
(bl), (bh) Next display position is indicated.

·41 -

(OBFCA1H.

• (OBFC9BH.

• (OBFC9CH.

• (OBFC9DH.

• (OBFC9EH.

• (OBFC27H.
stdo :/scrn

location

0:
=
=
=

(cx) =OOOOH
i 0058H

[].

DEVICEHUWTUCHAPTER 3 USE EACH

Display with guide line

Character string is displayed with guide line

entry

=
(bl) X-coordinate of output position

(bh) Y-coordinate of output position
a Number of character strings
b bit 0 = indicates with [

1: indicates with ()
bit 8 = 0: display after clearing the specified line.

1: display without clearing the specified line.
x =line of character string. One character string ends with

A character string may be composed of any number of
characters, but characters over 7 cannot be displayed.
When the code is on the lead of one character string,
portion succeeding to to the last of that character
string is displayed until next appears.
Also, when the code is at the other than the
lead of one character string, portion from the lead of char
acter string to the from of it is displayed.

return
nil

Parameter work

Icd mode 1 byte)
Setting of display mode. Character output succeeding bit 6 is displayed reversely.

Icd crsr x 1 byte)
X-coordinate of cursor

Icd crsr y 1 byte)
Y-coordinate of cursor

Icd width 1 byte)
Number of digits possible to display is shown.

Icd height 1 byte)
Number of lines possible to display is shown.

scrn crsr x 1 byte)
X-coordinate displayed next to : device is shown.

·42 -

00W1FH
20w7FH
80w9FH
AOWCFH
EOWFOH

(BFC87H.
(BFC90H.
(BFC8AH.
(BFC93H.
(BFC8DH.

• (OBFC29H.

boxfull
• linprn (OBFC2AH.

0:

• dotsop (OBFC96H.

stdo: /scrn:
(OBFC28H.

CHAPTER 3 HOW TO USE EACH DEVICE

scrn srst y 1 byte)
Y-coordinate displayed next to device is shown.

1 byte)
Specify operational method of the dot that has been already displayed by the line
etc. combined with the dot that is about to be displayed.

light up
1: clear
2: reverse

2 bytes)
Specify the dot pattern that is displayed by the line or with 16 dots.

1 byte)
Control code succeeding bit 6 is displayed.
(No control operation is executed.)

Storing address of character font
3 bytes) Storing address for character font
3 bytes) Storing address for character font
3 bytes) Storing address for character font
3 bytes) Storing address for character font
3 bytes) Storing address for character font

One character is composed of 6 bytes.

(ex) = 0001H
i =3FH

entry

ASCII

3FH Formo.ttl'lfl~
40H

H
42H
43H
44H
45H
46H

•

•

•

08H ~Jeflf9CQSSif'lg- tJo ~ _ ope (4. t \0 Yl

09H 40JQprOC9S9if'l~ tJo n -opeva.t ,OV)

OAH
OBH
OCH
ODH
OEH
OFH

•

•
•

•

CHAPTER 3 HOW TO USE EACH DEVICE

No. 01 Key Driver (STDI: KYBD:)

The key driver is a device of the following type.
Device possible to use as a file.
Standard character device.
Only read is possible.
The key driver is opened as the standard input of STDI:

Command list

Command for standard character device

Key input
Error
Key input
Error
Key input
Error

Command for standard block device
1 OH-1 Error

Command for special device
20H-2FH Error

Command peculiar to each device

Initialization of each parameter
41 Read out matrix code

Non-destructive read out of matrix code
Key read out
Set data to key buffer
Buffer clear
Display of function key

Format

Return the pointer of the table that converts matrix code to code. (The pointer is
not referred inside the device driver.)

return
nil

- 44-

CQ,nce I

=

1:
0:

0,

=

" 1/
!"Ion - Bv$"(

[(CPV is stefP'

Lc

of
ofCTRL

SHIFT
SHIFT

0:

=0

(ex) = OOOlH,
i =0041H

0:

= 0001H
i = 0040H

l-byte
tor 2-byte

l-byte
2-byte

entry

[OBFC2DH1:
[OBFC30Hj:
{OBFC33HJ:
[OBFC36HJ:
[OBFC39HJ:
[OBFC3CHJ:

CHAPTER 3 HOW TO USE EACH DEVICE

Pointer of conversion table (each 3 bytes)
for code
for code
for 1-byte code of
for 2-byte code of
for code CTRL

code
62 bytes per one table

Initialization of key device driver

entry
(CX)

a level of initialization
all reset

1: reset
2: off
3: on

return
nil

Read out of matrix code

Next data is taken out of the buffer of the key scan.
If the key is not input, next key input is waited in the state of lo , power. In case key
scan is impossible by some reason, such as low battery etc., return as cy 1.
When this routine is called up, counter for auto power off is reset and activates decre-
ment. If the key is not input even if the counter is showing code OFH is brought
back.

return
cy

a: bit 7 = when key is released.
when key is pressed.

bits 0-6 Matrix code
b = no key input

1: key input
cy = 1 error ()

a = error code

_45 _.

Auco powlltr'
OFF

~E3'~'~ Ii'Y f.'_';:firilwr~ ~ ~~i ~~~~~--
III 10 15PACE1 P hyp RCL

Ii! a sin STO

~ I 2 a R cos I
~ (>"<,BRl(FI 3 S tan

OFF F2 T FSE

~SIC 5 E U HEX

:NU 6· F 1/ DEG

'fIT F5 7 G I
as 8 Inll

ICAPS 9 y I;'

12nd F Z I
DEL + EXP

IS C-CE ., L ; r

~~
.. _(r:
1)

~ ., I / +1-

ta.ple

=
ey

=0

0:

=0

(ex) = 000lH
i = 0042H

CHAP I t.t-I J HUW IU U~t. c;Al,.;Hut.VICE

Non-destructive reading of matrix code

The next data is read from the buffer of key scan. However, the data is not removed
from the buffer. In case key is not input, return immediately. .

. entry

return
cy

a: bit 7 = 1: when key is released.
when key is pressed.

bits 0-6 = Matrix code
b :no key input

1 :key input
= 1 error

a error code

Matrix code

-46·

Ii=TIIl 0 1 / ? 0 - 0 DEL! I 1"";1: '/ , "7 i • i I

, Ir: ~T~~~ '" < : L Y I i 1';" 7 ? iii
!~~.~,~C~0TR~,L~'~+-~~~~_~~=:_~I-=M-+~J~--m--t--I-+--~1~--t--~-t--A-;--~--t-~~~!----~:--I!

~ CTRLNT> N ... n I - i I I I 't! "".! I !

:t- i I) ,

jl "7 I7' I ..

m CTRLJ\ CTilL ~ + : I K (k I " .., t: a: 1
t CTR\. J CTIILI. : i,J Z j I ,I I %::J" V j

_ • CTRLH CTALX
as

1
8 ! H X h. i :7

II I '"
CTFIL' eTR\.l

B CTRlG CTAl.

., I
::I I." I =6&

~ I
y I1/F

euEE CTlll F CTIILV

IE CTlll (CTIIl U %
T I Idos Ta :TR~ 0 CTRl T

.,
'" 1 Jc3 s.-!I CTAl C CTRLS

II;,:;; uN8R~

;J 1 !RB2

c

IP!II CTAL8 CTALRU 'NS

·IQI .7.,. 1..1 J
b

IICTR~" CTALQ QA

4~£fT fNiE./+first

--=-

~ [K

1st 41H

I OOH I OFH

of(waiting for key input or execut·

LJ"'pr. ..ese. 1(I,r1&l,i.a.~e,

cy

11 0:

H
j = 0043H

a:bit

CHAPTER 3 HOW TO USE EACH DEVICE

Key reading

Key input routine for the Roman character conversion routine. Execute processing of
shift key and ctrl key and then return in 2 bytes of shift JIS +expansion code. In case
of no key at call time, it is possible to specify either
ing immediate return.

entry

return

(cx) = 0001

7 0: return immediately when key does not exist.
1: wait for next key in low power mode when

key does not exist.

= No key input
1: key input

a =key data of the first byte
b =key data of the second byte

= 1: error
a = error code

--

byte ~ O H

2nd byte

A]

Value returned b y key reading The byte a =?? (value in the table)
b =

[CTRL] + [off]

=0001H
j = 0045H

= 0001H
i 0044H

HOW TOCHAPTER 3 USE EACH DEVICE

Data set to keyboard buffer

Set the data to keyboard buffer.
Set the keyed-in data displayed with data type of shift JIS +expansion code in the buff-
er in which result of Roman character conversion or contents of key function is. Cur-
rent data in the buffer is lost.

entry
(CX)

=
x =lead address of set data
a =number of set data bytes

return
nil

Key clear

Clear the key scan buffer and keyboard buffer.

entry
(CX)

return
nil

Value returned by key reading the second byte a = 00, b = ?? (value in the ta-
ble)

Display the following key in 2 bytes by the code came immediately after code.

Auto power OFF

- 47

• (BFC46wBFC51H.

"S1:"is0.If

• (BFC45H. 1

• (BFCC3H.
(BFC41H.

• (BFCCOH.

• tBFCBEH ISOFTINT]

sec
(OBFCBCH.•

Interval
(OBFCBBH.•

(OBFCBAH.•

=0001H
i = 0046H

[BFC3FH]

CHAPTER 3 HOW TO USE EACH DEVICE

Display of function key

Display or clear the function key. Display status must be below 3 lines. And, if bit 2 of
is set at 1 display is prohibited.

entry
(CX)

return
cy = 1 It was in 4-line display state.

Parameter for key input device driver

repeat wait 1 byte)
Specify the time from pressing of key until start of repeat. Unit: 16 msec.

repeat pitch 1 byte)
between two keys in repeat state. Unit: 16 msec

auto power off time 2 bytes, Low, hi)
Time for auto power off. Unit: approx. 0.5

bit 7: break
bit 6: low battery

bit 7: repeat on
bit 4: click on

3 bytes)
Lead address of the table to convert the code in hardware into the matrix code in
software.
This table corresponds to key matrix of hardware. Key can be rearranged.

3 bytes) Both are hook for key processing routine.
3 bytes)

byte)
Slot number having function key data (FUNCKEY.).
Ex: it is item in referred.

9 bytes)
File name having function key data.

Shift
JIS ")
code)

Hard-

I

·49 -

IJse r S. program

Keyboard bvHerCAPS, FUNCKEY
processing

32
characters•I

.--_--L --l-_---. FUNCKEY .-- -l'-- --,

...,

Data flow

Input

3,5,7,8,
File

AH• CH, EH
charac

terdevice

41H.421-\
Reading ~.. I ~,
matrix

•

CHAPTER 3 HOW TO USE EACH DEVICE

Internal RAM
bit 3: break key

From key pressing until reading out with file control sys tem

request

Timer
interrupt
program

16 characters

out of
code

CTRL. SHIFT HYP 2nd
processing

Kana

wear
code

. Matrix
code

standard

control
command

• 50·

(ex) = 0002H
i= 3FH

entry

•
08wOFH

•
Ow1FH

•
29H. 28H• 2DH,2EH,2FH error
2Ow2FH

block (2S"H).
yt>rifJ (2'TH).

•
3FH
40H
41H
42H
43H
44w49H RR,
4Aw4BH CS CD

(3FH)

••
• Read/write

SID (RS232C)

l:Al,;H DEVICE(.;HAI-' ERI 3 HOW TO USE

No. 02 Driver (COM:)

SIO driver is the device of following type.
Device usable as a file.
Special device

possible.

Command List

Command for standard character device
error

Command for standard block device
1 error

Command for special device

excluding the above supported
However, setting of a register is ignored at reading This is the same for

Use byte reading.

Command peculiar to each device
Format
Initialization of each parameter
Direct output of 1 byte
Direct input of 1 byte
Setting the hardware
Setting of RSL, and ER ports
Reading of and ports

Format

Clear the parameter and buffer to return to initial state of entire no input.

return
nil

- 51 -

OOH:time
FEH:
FFH:

cy
=

cy 0:

(ex) =0002H
j =42H

entry

X-control1

occLl ved
cy 0:

= 1:
OOH
FEH
FFH

(ex) = 0002H
i =41H

(41H)

0:

(cx) = 0002H
40H

HOW TO USECHAPTER 3 EACH DEVICE

Initialization of each parameter

entry

=
a = level of initialization

all reset
1: reset
2: off
3: on

1-byte direct output

Output I-byte data without conversion. However, X-control is possible according to the
setting condition.

entry

a =output data

return
= no error

cy error
a = : time out

: low battery
: break

1-byte direct input

Input -byte data directly. X-on and X-off (1 controls are ignored. is
possible according to the setting condition.

return
= no error

a input data
= 1: error

a = out
low battery
break

=0:

= 0002H
=4AH:
48H:

of

= 0002H
44H:Set
45H:Set
46H:Set RR port at level.
47H:Set
48H:Set
49H:Set

(ex) = 0002H
i =43H

entry

IOCS

CHAPTER 3 HOW TO USE EACH DEVICE

Setting of hardware

Set the condition of system work in hardware and format.

return
nil

Setting of RS, RR, and ER ports

entry
(CX)

i = RS port at high level.
RS port at low level.

high
RR port at low level.
ER port at high level.
ER port at low level.

return
nil

Reading CS and CD ports

entry
(CX)

i Specify CS port.
Specify CD port.

return
cy Port is specified at low level.

1: Port is specified at high level.

- 53 -

0: X-on/off

~
data =OBFD62H

\
Transferred. SIO

x-orvon=0:

J
= OBFD61H

dati

(
Transferred.SIO open

\
0:

I\
in SIO0:

open/close.
OBFD34H

shift in/out, on/off.
H

SIO

o
10CSchanqed,' 43r[

1bita-bit

• OBFD31wOBFD32H
n x (sec) OFFFFH

= OFFFFH

• OBFD33H

=3CH (001 1100(3)

0

c. Pit -t'l) stop

Odd-parity 2 bits

3CHAPTER HOW TO USE EACH DEVICE

Parameter Work

SIO timer master
Time on error timer 0.5 However, is unlimited.
default value (unlimited)

SIO baud rate
Specify baud rate, length, parity
default value I

Bit 6, 5, 4 Bit 3, 2 Bit 1 Bit
Baud rate Parity Character length bit

000 None 00 Even-parity 0: 8 bits 0: 1 bit

001 300 baud 01 1: 7 bits 1:

010 600 baud 10 Non-parity

01 1 1200 baud 11 Non-parity

100 2400 baud

101 4800 baud

110 9600 baud

Example
1200 baud, Non-parity, length, stop

Note
If the specified condition has been hardware set must be
called.
Bit 7:

Setup
Specify X Specify transfer of transmission code at
Default value = 21
Bit 6 = 1-byte data stored open send data is not transmitted at open

state.
1 : send data

Bit 4 = 1-byte data stored in SIO close send is not transmitted at close
state.

1: close send
Bit 2 Without designation at receiving

1: With designation
Bit 1 = Without designation at sending
. 1: With designation

- 54 -

data blMk
=

=

OBFD38H

=

CS
=

OBFD37H

0:

RR 0:

RS= 0:

OBFD36H

=

=

OBFD35H

in/out0=0:

• SIO

• SIO

• SIO

• SIO

CHAPTER 3 HOW TO'USE EACH DEVICE

Bit Without shift designation
: With designation

receive port condition
Control of receive port
Default value =
Bit 2 CS 0: don't care

1: take in as receiving data when the CS signal is high and ignore at
low.

Bit 1 CD 0: don't care
1: take in as receiving data when the CD signal is high and ignore at

low.

receive port control
Control of receive port
Default value =
Bit 6 ER = When receiving buffer becomes full, ER signal becomes low.

1: don't care
Bit 5 = When receiving buffer becomes full, RR signal becomes low.

1: don't care
Bit 4 When receiving buffer becomes full, RS signal becomes low.

1: don't care

Example

If RR-receiving buffer becomes full, the transmission side is stopped in RR Low.

send port condition
Control of SEND port
Default value =
Bit 2 CS 0: don't care

1: Transmit when the signal becomes high.
When the CS signal is low, wait until it becomes high.
(within range of error timer)

Bit 1 CD 0: don't care
1: Transmit when the CD signal becomes high.

When the CD signal is low, wait until it becomes high.
(within range of error timer)

send port control
Control of send port
Default value
Bit 6 ER 0: don't care.

1: ER signal becomes high before transfer of transmission data block
and becomes low after transfer.

Bit 5 RR 0: don't care.
1: RR signal becomes high before transfer of transmission

and becomes low after transfer.

- 55 -

• SIO

y
°9H
,

OOH OAH~OOH : OOH +- OOH OAH
OOH -OOH OAH\ OOH ~ OOH OAH

OBF03CH
(1AH)·)

tA,i

09H,

1AH -09H 09H +- 1AH
09H ~ 1AH 09H 1AH

at

01 = OOH
10 = OAH
11 = OOH+OAH

=
H=

OBF03BH• SIO

SIDsend bytewail x

Ltransmission data

= H [

• SIO OBF039H
[OO-OFFHlX 2

=

HOW TOCHAPTER 3 USE EACH DEVICE

Bit 4 RS 0: don't care.
1: RS signal becomes high before transfer of transmission data block

and becomes low after transfer.

send delay
[msec] wait time is specified before or after transmission data block

at transmission.
Default value 01 2 msec

n byte block

n 2 [rnsec]

msec]

crlf
Specify the delimiter. External code is converted into internal delimiter +

Default value 01 If
Bit 1, 0: 00 Not use

Example bit

when specified the delimiter at with 01, code is converted as follows.
External Internal E500

sending + +
at receiving + +

eof code
To specify the end code (external code is converted in internal end code

va lue r
Example

When specified in end code code is converted as follows.
External Internal E500

at sending
at receiving

- 56 -

1.IJyte sata

conditioniwith'SIO
waiting

(1

SIC software

in/out:

:1

rate:300,

• n OBFD60H
[00 x OFFH] x 2

=OOH

• OBFD61H
(H

When SIO SIO

• SIO OBFD62H
3H

When\SIO close.

=

=
=

OBFD41H• SIO

IV) I j m VI YY'l GO! I~

nx
OBFD40H• SIO

CHAPTER 3 HOW TO USE EACH DEVICE

open close wait
Wait 0.5 (msec) immediately after opening or immediately before closing.
(for level converter CE-130T standby)
Default value = (20 msec)

Note
Input of specifies 256 5 (msec) . . . n

open port control
Open of SIO port.
Default value =
Bit 6 ER 0: don't care

1: ER signal becomes high at open and low at close.
Bit 5 RR 0: don't care

1: RR signal becomes high at open and low at close.
Bit 4 RS 0: don't care

1: RS signal becomes high at open and low at close.

SIO send byte wait
Specify insertion time of (msec) wait between send data 1 byte at
sending.
Default value (non-wait)

SIO open send data
Default value = 1 1

setup'bit-6 is 1, open send data is transferred by 1 byte at open.

close send data
Default value = 1

setup
1
bit-4 is 1, SIO close send data is transferred by 1 byte at

SIO hardware specifications
Baud 600, 1200, 2400, 4800, 9600 (bps)
Data length: 7 or 8 bits
Stop bit or 2 bits
Parity :even number, odd number, none
Duplex
Xon-off :possible to specify
Shift possible to specify

specifications

Transmission byte)

In case of Xon-off is specified, i f Xoff code is being received, transmission side
keeps until X-code is received and released.
And, if the signal (port specified send port to be monitored is
not set ON (high level), it keeps waiting.
When above conditions are satisfied and in CPU ready, empty state,
is output.

5 IV)
o (V) TXO pin

(SO)

ONfBRK

MSB

·57 -

TxO_j, ;,I.~~ M~~,: L
~I+------____'I++I++I

Error
processing

N

~---

CHAPTER 3 HOW TO USE EACH DEVICE

Xon-off designation?

Receiving Xoff code

Temporary stop state (

Error processing

Normal end

Data processing

.

Start bit Data Parity Stop bit

Example
, parity odd number, stop bit 1

LSB

.....

Data

Parity

Stop

- 58 -

(High) status

SIO
specified

routineSIO
PC-E500

~on

CHAPTER 3 HOW TO USE EACH DEVICE

X-off code

X-on code

at sending: When Xoff code is received, sending stops tempo-
rarily.

at receiving: If the buffer is almost full, X-off code is sent and
transmission is stopped temporarily.

at sending: When transmission is stopped temporarily, if
code is received, transmission is resumed.

at receiving: If the buffer is empty and the opponent side is tem-
porarily stopped, code is sent and then receiv-
ing is resumed.

- shi f t - c u t code :

Reception (1 byte)

has the receiving buffer for reception of data from SIO. When the data is
being received, reception is interrupted and interrupt writes the data. Xon
and Xoff control codes do not write in the receiving buffer.

SIO buffer is the ring buffer controlled by write-pointer and read-pointer. When the
received data are accumulated and the receiving buffer come short, Xoff code is
transferred if specified by Xon-off. Also, regardless whether or not, the port
that is indicated by receive port control is made off (low) status and the unit of
other party is stopped.

When buffer becomes empty, Xon code is transferred. And regardless whether speci-
fied or not by Xon-off, the port that is indicated by SIO receive port control is made
on and permission of transfer is given to the unit of other party.

When the data is read from the receiving buffer, it is checked whether the data is in
the receiving buffer. If there is the data, 2 bytes is read.

- 59-

input/output(voltage
of

so (TXf)) ~

RD(Rx1)) Input
_.

(RTS)

Clear to Send CS Input(CTS)

Signal Ground SG

is
-- ----

ER Output(DTA)

VC

DEVICECHAPTER 3 HOW TO USE EACH

Pin
number

2

3

4

5

7

8

11

14

1

10
13

Signal name Symbol Signal direction Functions

Send Data

Receive Data.

Signal Ground

Request to Send

Output

RS

Carrier Detect

Equipment
Ready

Output

Receive Ready

Frame ground FG

CD

Data signal to be sent

Input

RR

Receiving data signal

Output

This signal become high level
by data transmission and low
level by transmission end.

When data is sent, transmis-
sion is executed if this signal is
in high level, and is stopped if
the signal is in low level.

Adjust the reference electric
potential between inpuffoutput
devices.

Transmission is executed
when this signal is in high level
and is stopped when the signal

in low level.

High level when reception is
possible and low level when
reception is impossible.

When serial inpuffoutput device
circuit is open (if executed
OPEN command), signal be-
comes high level.

Grounding for maintenance

Supply voltage

Notes 1) High level means voltage level of VC. Low level means voltage level of SG.
2) As the inside is composed C-MOS parts, i f voltage exceeding permissible

range level between SG-VC) is given to pin, the inside
may be broken.

·60 -

•
08H
09H
OAH
OSH
OCH
ODH
OEH

•
OW1FH

•
2Ow2FH

•
3FH
40H
41H
42H
43H

(3FH)

•
••
• sroi,

(STDL:PRN:)

DEVICECHAPTER 3 HOW TO USE EACH

No. 03 Printer Driver

This device is explained as follows.
Available as a file.
Standard character device
Only write is possible.

: Printer driver is opened as the standard listing output.

Command list

. Standard character device command
open
close
error
output to printer
error
output to printer
error

Standard block device command
1 error

Command for special block device
error

Command peculiar to each device
Format
Initialization of each parameter
Printing data output
Read of printing position
Printer check

Format

entry
(cx)

i

return
nil

- 61 •

= max.
0:

(ex)

(ex) = 0003H
i =42H

ey 0:

0:

(ex) = 0003H
i =40H

TOCHAPTER 3 HOW USE EACH DEVICE

Initialization of each parameter

entry

a = level of initialization
all reset

1: reset
2: off
3: on

Printing data output (41

entry
(cx)

a = output data

return
= no error
= 1: error

Read of printing position

entry

return
a =position of present printing head

Printer check

entry
= 0003 H

i =

return
cy = a = type of printer

i number of printing digit
cy = 1: not connected

a = (Printer error)

ey

ey 0:

(ex) = 0004H
= 44H: OlltpUt. to t"'pe

entry

3FH
40H
41W43H
44H - 45H

•

•

•

•

•••

CHAPTER 3 HOW TO USE EACH DEVICE

No. 04 Tape Driver (CAS:)

Tape driver is the device driver shown as follows.
Device can be used as a file.
Special device
Both of read and write possible. Execute read only or write only one time.

Command List

Standard character device command
error

Standard block device command
1 error

Special device command

excluding the above command 20H - 2FH supported

Command peculiar to each device
format
initialization of each parameter
write, read, verify of data block

write, read of the header block

Write, read, and verify of the header block

i
= 45H: Input from tape

x =address of header block

return
= no error

x = next address of the data that could be transferred
(compared).

y = number of bytes of the data that could be transferred
(compared).

= 1: error
x = next address of the data that was correctly transferred

(compared).
y = number of bytes of the data that was correctly

transferred
a = error code

(Vevi:fy)

·63·

All

cy =

cy 0:

=0004H
41H: Output
42H:
43H: Input

0:

CHAI-' I t:H J HUW I U U!::ic EACH DEVICE

Initialization of each parameter

entry
(cx)

a = level of initialization
all reset

1: reset
2: off
3: on

return
nil

Write, read, and verify of the data block

entry
(cx)

i = to tape
Input from tape

from tape and comparison
x =data address
y =data size

return
= no error

x = next address of the data that could be transferred
(compared).

y = number of bytes of the data that could be transferred
(compared).

1: error
x = next address of the data that was correctly transferred

(compared).
y = number of bytes of the data that was correctly

transferred
a = error code

Format

parameter are initialized.

entry
(cx)

return
nil

a

9
[BFD4AH

[BFD4CHl [BFD4DHl 30 [BFD49Hl[BFD48Hl

Header block -11U:Ire tJ\Q.n rl'l:m! thlln
[BFD4CHJ tho..~

\ [BFDnH.UyCt
[BFD4DHl

{BFD4AH [BFD50HJ [BFD51HJ 1 0
[BFD52Hl

byte +_a_
'"tore tl\(l11mo....e tha.V1

[BFD51Hl 1 0
'0' ifp-RlS3H,2byte

[BFD50Hl 'e ,byte .a.

•

o
oPll---.I-P10--.,...' PhySical

PhysicalL..- _---,I"LogICal

r------------- Physical 1."eJ 1
__I-+PO1 -+-1-+poa -+-1 Physical level 0Logical ~el 0

•
(BFD42H, 0 (P01)
(BFD43H, 0 0
(BFD44H, (P1
(BFD45H' o (P10)
(BFD46H, 1 0

CHAPTER 3 HOW TO USE EACH DEVICE

Parameter work

Pulse length (baud rate can be changed.)
1 byte) length of logical level and physical level 1
1 byte) length of logical level and physical level (POO)
1 byte) length of logical level 1 and physical level 1 1)
1 byte) length of logical level 1 and physical level

byte) threshold of logical level and physical level 1

level 1
level 1 level

Following and 1 should be logical level.

Header block and data block

: Check sum (1 byte)

Header block
at write

at read

Data block at
write

Data block at
read

a

0'

0

b

2 byte]

c d e

1

1

2 byte]

f

byte + a

30 byte + a

or more arbitrary

or more arbitrary
+

more

'0'

more than

sys-

- 65-

+ 10 20

+ 20 ""'0-0-',;-:00----1-;.-00""""&-0-0-1",:::'O~.:_::00'_ ,06R::OO)
(01, Dh, De) = Data size

File name+00 02

+6+4+2 +8 +A +C +E

20 20 20 20

00 '·;00 00', 00 De 00 :00
.0,:t..

:

::00- OO~)too'00. 00 ::00 ',00. RO,:._.

+0

•

tern'(ex .

+ 00 04 File name 20 20 20 20 20 !!~fo~n:...
+ 10 ~ 00 I?9::\:~~:00 ':,-??d-~.~-:~\:9:?:::~_p~.;,qo;~,~P.:.?,~__'_00:-_:00 :-_00
+ 20 00 ,00 -00:- 00 00 '-00 ;:QO'-\OO" 00-:::--90 : 00 00 ::00-" 00 00 00

.'::._'

+A+8+6+4+2 +E+C+0

of ;one

•

TOC H A P T E R 3 H O W USE EACH DEVICE

Structure of byte

start end

Structure of file

One file consists header block and some data blocks.
Data of header block is always bytes with following composition.

The most top is the discriminator. indicates that this is the file control
SAVE, OPEN commands, etc.). Files created by csave, csavem do not take

this form.

Basically, length of the data block is arbitrary. One data block created by open or save
is 256 bytes. In this case, file ends with

Structure of CSAVE header block

+0 +2 +4 +8 +C

+00

+ 10 Ee

+20 00 00 00 00 00 00 00 00 00 00 00 00 00
(OI,Dh, size
{SI,
(EI.:£h, =

•

OEVIC~CHAPTER 3 HOW TO USE EACH

Structure of CSAVEM header block

+ 6 +A + E

Sh, Se) =data start address
Ee) entry address

20 20 01

Eh 00 00 00 00 00 00

File name

00 oo oo
De) = data

OD

20 20 00 00

El Sh Dh

BASIC

·67 -

=
cy= 0:

(0/1/2)
(cJ) =OSH

08wOFH

•
1Ow17H

•
2Ow2FH

•
3FH
40H

(3FH)

<file)

S1,

Read/write

••

TO USECHAPTER 3 HOW EACH DEVICE

No. 05 RAM Disk Driver (E: F: G:)

This driver is the device of following type.
Device that can be used as a file.
Standard block device

possible

Command List

Standard character device command
Error

Standard block device command
Supported

Special device command
Error

Command peculiar to each device

Format
Initialization of each parameter

Format

Secure, change and release the RAM disk area. The RAM disk area is secured as
memory block "RAMFILE." as E on F on S2 and G on S3.

entry

(ch) drive number

x =lead address of set information character

return
no error

x last of the set information + 1
= 1: error

a = same error number as

- 68-

3=on

= reset
o

CHAPTER 3 HOW TO USE EACH DEVICE

Initialization of each parameter

entry
(cx)

=
a = level of initialization

= all reset
1
2 = off

return-
nil

- 69-

0:

3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H

•

•

•

•

••
• Read/write

(S1 :

CHAPTER 3 HOW TO USE EACH DEVICE

No. 06 Memory Block Driver S2: S3)

This driver is the device of following type.
Device that can be used as a file.
Special device

possible

Command list

Standard character device command
- Error

Standard block device command
1 OH-1 Error

Special device command

Command peculiar to each device
Format
Initialization of each parameter
Search for physical address
Change of block size
Transfer of block
Rename of block
Creation of memory block
Deletion of memory block
Condense
Create memory block on the block top. (not supported)

Initialization of memory driver

entry
(cx)

a =level of initialization
all reset

1: reset
2: off
3: on

return
nil

·70·

cy

0:cy

(cl) = 06H

cy 0:

=

= H

j =3FH $1:

S1:

CHAPTER 3 HOW TO USE EACH DEVICE

Format

Connect and disconnect RAM in the pocket computer with RAM in the RAM card.

entry
(cx) 0006

x =lead address of the set information character string
[x] = "P": connection. Combined one becomes

"S": disconnection. Divided into "S" and S2:

return,
x =next address

= no error
1: error

a = syntax error
memory error

Search for physical address (41

Search for the lead address of the block from the memory block name.

entry

(ch) =slot number (01112)

x =address of block name character string

return
= no error

x = last of block name + 1
y = lead address of block

= 1: error
x = (no change)
a = 01 no specified slot.

no block is found.

Condense

Fill the space in each memory block.

entry

(ch) = slot number
i

return
nil

·71.

x = last
y = last
cy =0:

1: error
a= OOH:

01H:
04H: ~ot

(el) = 06H
= old

lbioek

OOH:
01H:
04H: blo,k hot
OCH:

ey =

ey =0:

=
(eI) =o6H

DEVICECHAPTER 3 HOW TO USE EACH

Change of block size

entry

(ch) slot number
=

a =free area pointer number (011)
x =address of block name character string
y =request size

return
no error

x = last of block name + 1
1: error
x: (no change)
a = slot (card) is protected.

no specified slot.
is found.

insufficient memory
y = size possible to change
block is protected.

return

Rename of block

Change the block name.

entry

(ch) slot number
x =address of name character string
y =address of new block name

of old block name +
of new block name + 1
no error

slot (card) is protected.
no specified slot.
block is found.

block is protected.
the same block name exists.

OOH:
01H:
09H:
OCH:

cy 0:

(cJesf.i l1a {.

DEVICECHAPTER 3 HOW TO USE EACH

Transfer of block

Transfer the block to the address from the specified address by the specified size.

entry
(cx)

x =address from which transferred
y =address to which transferred ion)

(si) =size to be transferred

return,
x =completion address from which transferred +
y =completion address to which transferred + 1

Creation of memory block

Create new memory block.

entry
(cl)

(ch) =slot number
i
x =address of block name

return
= no error

y =lead address of created block
x =last of block name + 1

cy = 1: error
a = slot (card) is protected.

no specified slot.
the same block name exists.

insufficient memory

- 73-

OOH:
01H:
09H:
OCH:

=

OOH:
01H:
02H: blod:: ISnot
OSH:

cy 1:

cy 0:

cy
cy 0:~

CHAPTER 3 HOW TO USE EACH DEVICE

Deletion of memory block

Delete the memory block.

entry
(cl)

(ch) = slot number

x =address of block name

return
= no error
= 1: error

a = slot (card) is protected.
no specified slot.

found.
block is protected.

Creation of memory block 2

Create the memory block at the lead of the blocks

entry
(cl)

(ch) =slot number

x lead address of block name
y =size of memory block you want to create

return
= no error

x = last of block name + 1
y = lead address of block created

= error
a = slot (card) is protected.

no specified slot.
the same block name exists.

insufficient memory

- 74-

Memory
block dataAbsolutelu-existed

delimiter

Space

+FIle
length

11-------11
File enbty

(19, lA. B]:
[IF. 21J:

16. 18J
ic, 10. E]1

+18

+100
'. Lel1g1tl of memory
, biOck data 10next

I

+8ext,ed' ~lU .tt.I-;
010 c.k "a.1I1e ':" IxAte

+0 +, +2 +3 +4 +5 +6 +7

00 02 00 00 +0

00 00 00 00 +8

00 00 00 +10

protect 5101 lIag

+ 1 +2 +3 +4 +5 +6 +7

+0

(83:)
212K (83:)

(52:)
1/2K (82:)

0(51:)
O/2K (81:)

0(81:) 1

(BFC09H.
(BFCOCH•
(BFCOFH.
(BFC12H.
(BFC15H.
(BFC18H.
(BFCOEH.

Arbitrary

18 bytest
Afbotrary

Parameter of memory block device

3 bytes) lead address of slot 2
2 bytes) capacity of slot bytes
3 bytes) lead address of slot 1
2 bytes) capacity of slot bytes
3 bytes) lead address of slot
2 bytes) capacity of slot bytes
3 bytes) last addres of slot +

Structure of slot

Memory block
data

Memory block

Memory block
data

one
or data

Block name 1

Same as above

[+ 17. and 1 free area
[+ 1 and 20, lree area

Memory data
block length

-75 -

0:

•
08wOFH error

•
OW1FH

•
2Ow2FH

•
3FH
40H

No. 07 2.5" FDD Driver (X: Y:)

This driver cannot be used.

Command List

Standard character device command

Standard block device command
1 error

Special device command
error

Command peculiar to each device
error
initialization of each parameter

Initialization of each parameter

entry
(cx)

a = level of initialization
all reset

1: reset
2: off
3: on

·76·

L ':'_

(ex) =OOO8H
i =41H

entry

•
08wOFH

•
1OW1 FH

•
20w2FH error

3FH
40H
41H
42H
43H
44H
45H,46H

(41H)

U.:::>C C/"II.-M UI: V II.-t;;I n u v v u

No. 08 System Control Driver

This driver cannot be used.

Command List

Standard character device command
error

Standard block device command
error

Special device command

Command peculiar to each device
error
no processing
power OFF
secure of work
execution of BASIC
(polynomial evaluation)
Obtain processing address from the intermediate code.

Power off

Stop all of interrupt, switch off the LCD and stop the CPU.
With pressing ON key, original state returns from this routine.

return
nil

- T7.

cy 0:

BFCDEH:
BFCE1H:
BFCE4H:
BFCE7H:
BFCEAH:
BFCEDH:
BFCFOH:
BFCF3H:
BFCF6H:
BFCF9H:
BFCFCH:
BFCFFJ-i:
BFD02H:
BFD05H:
BFD08H: reserve
BFDOBH:
BFDOEH:
BFD11H:
BFD14H:
BFD17H: IOCS
BFD1AH:

o (S1:).

Secure the work

Specify one of 21 work area pointers on the system memory and change the area size.
Work area itself is secured by dividing slot
Condensation of slot of memory area may be necessary before executing this comm

entry

return

(cx)
=

x =work area pointer
for U stack
for S stack
reserve
reserve
reserve
reserve
reserve
reserve
reserve
reserve
reserve
reserve
reserve
reserve

reserve
BASIC work
reserve
reserve

work
machine language area

y =size you want to secure

= no error
cy = 1: error: insufficient memory

of BASfe.

(uec~tlon)

-78·

= 0:

= 0:

= 0:

= 0:

cy

cy 0:
y

=0008H
i =45H:

46H:

cy 0:

Execution of BASIC

Execute the specified intermediate language character string.

entry
(CX)

i
x = intermediate language character string address

a: bit 1 TROFF
1: TRON

bit 2 program execution
1: manual execution

bit 4 PRO mode
1: RUN mode

bit 0 normal operation
1: step operation

return
x =data up to position where executed

= no error
1: error
a = error code of BASIC

Acquire the address for processing from the intermediate code

entry
(cx)

When command address is needed.
When function address is needed.

a = intermediate code

return
= no error

= address for processing mu (
= 1 : error

y = address of syntax error routine

bp-sop

bp-sop
bp-sbp

()._1 =

[BFE03H]
{BFEO~Hl E (../

(bp)-(bp =

(bp 14)-(bp =

cy =

cy = 0:

(cy) =A
B

=c

•

•

No. 09 Function Driver

Device unable to use.

Command List

Standard character device command
error

Standard block device command
1 OH-1 error

Special device command
error

en try

(ch) =
i

when adding D and E,
= D
=

when X is necessary,
+ 14) X

also when Y is necessary,
+ + 29) Y

return
no error

(bp + 5) pointer to number or character string
2-variable function, + 15 in comparison
1: error
2-variable function, + 30 in comparison
1-variable function, + 15 in comparison

·80 -

IA B C

~ 47H

Subtraction ~ 48H
,. Multiplication y*x ~x 49Hf

ylX. ~X 4AH

YI\X~X 4BH

EXP ~~X 4CH

SIN sinX~X 4DH -

COS cosX~X 4EH

TAN tanX~X 4FH

SIN-' sin-'X~X 50H
Numerical COSo, COS-1X~X 51Hvalue
f TAN-' tan-1X~X 52H

1 X-DEG~X 9 0 53H

f" X-DMS~X 54H

ASS Ixl-x 55H

intX-X 56H

sgnX~X 57H

RND rndX-X 58H

SQR v'x~X 59H

LOR logX-X 5AH

LN InX-X 58H

Y<>X 41H

Y<X 42H

,.. Y>X 43H
Comparison

value Y=X 44H

Y~X 45H

Yi;X 46H
r- '~

Individual command of each device

Function
I

Addition Y + X X

Y-X X
?-variable
unction

-variable
unction

Division

Power

unction

DEG

DMS

INT I
SGN

Jumerical

- 81 -

A 8 C

Y< >X 70H

Y<X 71H

Y>X 72H
Comparison

73H
9 0

Y;;;X 74H

Y=,=X 75H- 7EH
Conversion - 7FH

I 76H
Character

Istring oper- CJR S :; H ';: ~ 77H

ational lune- S 78H
tion f-VAL -

79H

Addition I

41H
I

I

42H

Multiplication 43H

44H

in verse 45H

46H

47H

HIl.t.i'"ix: Multiply scholar 48H
opera- X-1 9 1 49H

tion
I 4AH

Transposed matrix 48H

Reversion ot symbol 40H

4EH

4FH

50H

5tH

Function I

Character
Y=X

Decimal Binary conversion

Binary Decimal conversion

ASC

STR

Addition

Subtraction

Division

Addition to scholar I
Subtraction from scholar

Multiply scholar

Replace X with Y

Value of determinant

Square

Store X in M
- -

Call M to X

Add M and X

CALL after entering
scholar value in X.

4CH Answer enters in x.

- 82-

A 8 C

to -
r1cz..trj:::(.

53H A-Z
1

54H

55H

1-variable statistics 41H 255

Line regression 42H

~I regression" 43H ~

Logarithm reg~

~

44~ ~

------ L--
v45H quence

.>--~6H

Secondary r~ 46H'__
~ssion· 47H ~

t:A~H Ut:VI~t:L.Mt'l1'"' _.j HUVVI I u us t

opera-
tion

Statistics
regression

Function I
I

Put X MA MZ

Balance of simultaneous equations

Put MA - M Z to X

Simultaneous equations

Power regression' 9

Reciprocal regression'

9

52H A-Z

0-8 Y se-
quence

·83·

Computation
correction

Mantissa

I I
(bp+ 14)(bpl

1099±± x 10-99

•
o

o.

90 0-99)-63 0-99)

mantissa

fo"!
~

.;zE ?0/ Eight
I

Computation
correcuon

Mantissa

(bp+ 14)(bp)

oX 10-99±± x 10-99

•

CHAPTER 3 HOW TO USE EACH DEVICE

Type of Variable

Internal format of numeric value (at execution of operation)

Single accuracy numeric value
Single accuracy numeric value consists of 15 bytes. It is possible to represent
numbers from 1 to 9.999999999 and with combination of expo-
nent, mantissa sign and mantissa.

don' care

Exponent

is used when the mantissa is positive.
is used when the is negative.

Exponent
The exponent is expressed using hexadecimal. The negative numbers are ex-
pressed using a complement.

(1 (1

Carry
This is used only during operation. Normally, it is reset to

Mantissa
10-digit mantissa of numerical value is stored in memory with BCD code.

Computation correction
Computation correction is performed only during computation. Normally, it is

reset
to after rounding off.

Double accuracy numeric value
Double accuracy numeric value consists of 15 bytes and is able to express num-
bers from 1 to 9.9999999999999999999 x and 0.

Exponent

·84·

stnng

identification code

(bp + 14)(bp)

ASCII

BCD

CHAPTER 3 HOW TO U S E E A C H DEVICE

Mantissa sign
1 is used when the mantissa is positive.
9 is used when the mantissa is negative.

Mantissa
20-digit mantissa of numeric value is stored in memory with code.
Other portions are same as single accuracy numeric value.
The above expression method is expression at operation. In the text or
variable, it is expressed in the style excepting carry, computation correction
and don't care.

Internal expression of character string

When a character string is stored in the variable, it is stored with code. At op-
eration of character string etc., when the processing is carried out in the CPU, internal
expression is composed of 15 bytes (effective data 5 bytes) as a character string infor-
mation.

t care

Character string
Character head address

70 *P:Q=PEEK P+PEEK (P+l)*&100+PEEK (P+2)*&10000
W:Q=PEEK P+PEEK (P+1)&

*P=&BFD17:GOSUB *P:Al=Q
110 W=(10-PEEK (A1+&27»*&IF

L Al+&27.10
P=Al+&28:GOSUB ,W;Q=W+Q

Q &FF.Q/&100
P=Al+&2B:GOSUB *W:Q=W+Q

Q & Q/&100
P=&FFFfD:GOSUB *p

180 CALL Q

&FFFD8&FF.S1/&100:Sl

P=&BFD17:GOSUB *P:Al=Q
P=&BFDIA:GOSUB *P:A2=Q
W=(10-PEEK (A1+&27»*&lF
S=(A2-AI)+W:S1=S/&100

&BFE03.&17.&FD.&B.S-INT Sl*&

GOTO*. :

Input

~K.e:e,!w'QHlQ~ar~g...t;a~Hf~feH'-r-~·s9-pessieleIe ehooge Ie FA9fe thSA 32 ehBfseters.

IOCS

TOCHAPTER 3 HOW USE EACH DEVICE

Special Technique

Area from address written in to address written in is assigned, as the
working area of IOCS. Address written in is also written in of internal
RAM. This area is generally bytes.

Some buffers are included in this area. Following three buffers will become effective
by changing the size.

It

SIO buffer: Buffer of serial interface can be expanded.
FCB area: .Maximum open-capable number can be extended to more than 5.

Pointer informations are shown in the figure.
Example: Refer the following program. Set the maximum opencapable file

number at 10.
Execute as: (1) program

(2) RUN .
(3) When the menu appears, select BASIC mode and input

The following table shows meaning of some parameters.

10
20
30
40
50 POKE 100. AND CALL
60 EKD

:RETURN
80 100 :RETURN
90
100

120 POKE
130
140 POKE P. AND
150
160 POKE P. AND FF.
170

- 86-

[P + 8Hl

-
[P + 9Hl

=0

=2 full

=0
=

[P + BH, CHl

IP + EH, FHl
. . sec .

each parameter
f

14Hl J
EH.

1FHl >-
[P 1CH. 1DH]

~
FCB
[P 27Hl

>

~
-

[BFD17H 0, 2)

P + IP +28, 29HI
H

Pt- [P"tlBH,.2CH)
(~FVIAI'1+0, L2J

P + [P + 25, 26H]
H

P+IP+ 16, 17Hl
101

P+[P+1~,11H]

CHAPTER 3 HOW TO USE EACH DEVICE

Pointer information

P is set as (internal RAM + 0, 1, 2) or + 1,

address

P + O

address

keyboard buffer
[P + buffer

size

Amount of buffer
when [P + 1

Xon.
SIO buffer
+

buffer size

area
+

maximum OPEN
capable file

number

Other buffer

Other work

size

Meaning

LCD display start offset value
Set in LCD in every approx. 5 min.

Information of cursor form
bit 0-2 underline

= 1 double underline
mark

= 3 full space
= 4 insert mark

bit 3 no blink
1 with blink

But, when all bits are 0, cursor is not displayed.

Relative position of cursor screen buffer

During power is ON, counter to effect increment in
approx. 5 interval.

·87·

z:

Code BASIC

00
OA

10

FE
jlntermediate

61

.,

00

14

A

00

1E

GOTO GOTO
B

0

~ termination program

BASIC

Internal

TO USECHAPTER 3 HOW EACH DEVICE

BASIC

expression of BASIC program

BASIC of this pocket computer, same as other microcomputer, uses the intermediate
language to store program. By converting into the intermediate language, mem-
ory saving and operating speed have been improved.
Following table shows the command and intermediate code of function. Actual pro-
gram is converted as follows.

Data
(hexadecimal)

Description

10 Expression of line in decimal
A

I

OD

INPUT code of INPUT

showing head of program

I
I

41 A Character code of A

04

0 D Delimiter of 1 line

Line length (4 bytes by inclusion of stop code)

20 Expression of line 20 in decimal

04

FE

60

30 Expression of line 30 in decimal

4 1

OD

PRINT

Line length (4 bytes by inclusion of stop code)

Intermediate code of PRINT

06

FE .

2

Character code of A

Delimiter of 1 line

1 F

00

A

0 D
FF

Line length (6 bytes by inclusion of stop code)

lntermediate code of

10

Delimiter of 1 line

Code showina of BASIC

Line number discrimination code

Expression of line 10 in decimal

L,ei~'F'U

0=0:

GOTO

n at skip

1E 10

n

CHAPTER 3 HOW TO USE EACH DEVICE

Line number discrimination code (1 put in front of line number to which
command in the program (statement) jumps. Actual line number is stored in memory
by 2-byte binary code. The 2 bytes are stored in the order from the upper rank to low-
er rank contrary to normal case.
In addition, skip number discrimination code (1 and real number discrimination code
(1 are provid.

Skip number discrimination code, real number discrimination code

Number of bytes
bit single accuracy data

1 : double accuracy data

ELSE etc.

IO:RUN 20:CSAVE 30:01M 40: - - -

01 : II: NEW 21:0PEN 31:CAll
02: 12:CONT 22:ClOSE 32:POKE 42:lF
03: 13:PASS 23: 33:GPRJNT 43:CSIZE
04: I4 :LIS T 24:CONSOLE 34:PSET 44:COLOR
05: 15:LlIST 25:RANDOMIZ~ 35:PRESET 45:
06: 16:ClOAO 26:DEGREE 35:BASIC 46:0EFDBl
07: 17:MERGE 27:RADI 37: TEXT ••• _. I ••• V

08: 28:GRAD 38: 48:
09: 29:BEEP
OA: IA:AUTO 2A:WAIT 3A:ERASE 4A:
OB:BTEXTS IB:DEtETE 2B:GOTO 3B:lFllES 48:
OC:BOATA$ 1C :F I 3C:Klll 4 C:
OD:MEM$ 10: INIT 2D:TROFF 3D: 40:
o E : IE: 2E:ClEAR 4E:
OF: H:USING 3F:SET 4f:
50:ClS 50:PRINT 70:PAINT 80: MD F
51 S 1: 71 :OUTPUT 81 :R EC 91 :IN
52:TO 62:GOSUB 72:APPEND 82:POl 92:
53:STEP 63: 73:AS 83:ROT 93:EXP
54:THEN 64:lPRINT 74:ARUN 84:0ECI SQR
55:0N 65:RETURN 75:AUTOGOTO 85:HEX 95:SIN
56: IF 66: 76:ElSE 86:TEN 96:COS~ I 77:RESUME 87:RCP 97:TAN
58:lET 68:GCURSOR 78: 88:50U
59:REM 69:LlNE 79:KEY 89:CUR 99:ABS
5A:ENO iA: 7A: 8A:HSN 9 A:
5B 6 B :R L 7B: 8B:HCS 9B:OEG
5C: '6C:GlCURSOR 7 C: 8C:HTN 9C:OMS
5D:READ ·60 : 70: 8D:AHS 9D:ASN
5E:OATA 6E:CROTATE 7E: BE:AHC 9E:ACS
5F:?AUSE 6 F :C I 7F: BF:AHT 9F:ATN
AO:RND B 0 : F CO:ERN DO:ASC fO:CHR!
AI: AND Bl:DSKF C 1 :E R L 01: VAl f STR
A2:0R 82:l0F C2: 02: E2 : F 2 :
"3: 83:l0C C3 : 03 : F 3 :
A4:PEEK B 4 : C4: 04: F 4 :
A5:XOR 85: C5: 05: E 5 : F 5 :
A 6 : B6:NCR- C 6 : 06 : E6 : F 6 :
A 87:NPR C7: 07 : E7 : F 7:
A8: B 8 : CB: 08: E 8 : Fa
A9: 89: C9: 09: E9:INKEYS F9:
AA; B A: EA:MIO$ FA:
A B : B B : F B :
A- - - EC:R1GHT$ Fe:
AO:POINT B0: co: Oil: ED: FD:
AE: P I BE :HR C E : DE: E E : I

AF:FRE Bf:CUB .- - - E F : F

HOW TOCHAPTER 3 USE EACH DEVICE

Table for BASIC intermediate code

0 0 : (R E S E R V E D)

: L O C A T E

i 7 : F O R

: N E X T
S T O P

N O T

1 8 : L O A D
1 9 : RENUM

L E S

IF:

I N P U T

R E S T O R E
j 7 : C H A I N

L L INE
INE

S O R G N

R C L E

. E O

.

7 : E V A L

C : B C :

S A V E

AN

2 C : T R O N

E R R O R

: V A L
D 2 : L E N
D 4 :

3 9 :

C O P Y
3 E : N A M E

I E O :
E l :

E 3 :
E 4 :

C A : D A :
C B : D B : E B : L E F T S
C C : D C :

C F : D F :

L T E X T
4 1 : G R A P H

47: D E F S N G

4 9 :

9 0 : F A C T

L O G

9 4 :

98: INT

S G N

I :
H E X $

F E :
F :

Intermediate code is expressed in 2 bytes for plus value in the above table.
For example, INPUT command is stored in memory in the order

• 90 -

FILES "S1:"

BASIC
o
©o
o

CHAPTER 3 HOW TO USE EACH DEVICE

Location to store data

Data that may be necessary when operating are roughly classified as follows.
Text data (program)
Variable data
Function key data
AER data

All of these data exist as the block of slot file. Set as and press the
[RET] key.
If no alteration is in each, data is stored in the following file name.

TEXT . BAS
DATA . BAS
FUNCKN .
AER

Explanation on text data and variable data. Below is memory map in PRO mode and
RUN mode.

RUN MODE PRO MODE

Others Others

=

interval
interval

PC·E500

processing-

•

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

•

CHAPTER 3 HOW TO USE EACH DEVICE

Point to pay attention is that free space of memory moves according to RUN mode and
PRO mode. Structure of the block file requests to separate the time when variable is
increased and the time when text (program) is increased.

lnterrupt

Interrupt processing for is described below concretely.

lnterrupt service

Eight kinds of interrupt are provided in out pocket computer, but only one address for
interrupt by CPU specification is on the ROM.

This interrupt is index service routine that jumps to each processing classified by the
factor.

It is advantageous to the users that this interrupt service sub-routine has 8 addresses
for processing separated by its factor on the RAM. Accordingly, we can rewrite freely
the addresses for processing into own interrupt processing program.

List of interrupt factor

Fast timer interrupt
Slow timer interrupt
Key interrupt
ON key interrupt
SIO transmission interrupt
SIO reception interrupt
External interrupt
Software interrupt

All of key scan including break key
Blinking of cursor, etc.
not used
not used
not used
completion of SIO reception
low battery
not used

Description of each interrupt

Fast timer interrupt

lnterrupt occurs in every constant time. Possible to select one of time arbitrar-
ily from 4 msec and 16 msec. Ordinarily time is set in 16 msec.

(Internal RAM bit 1 0: 4 msec.
1 16 msec.

However, as this interrupt is made with the CPU clock divided, it is ignored when the
CPU clock is stopped, that is, during execution of half or off command.

·92·

{4}
rupts.

{3}

•

e

(K10-K17)
interrupt

sec
sec

sec.sec.sec

CHAPTER 3 HOW TO USE EACH DEVICE

Slow timer interrupt
An interrupt occurs in every constant time. Possible to select one interval of time arbi-
trarily from approx. 0.5 and approx. 2 Usually, it is set in approx.. 5

(Internal RAM bit 2 = 0: approx. 0.5
= 1 : approx. 2

However, as this interrupt is made with the sub-clock divided, interrupt is ignored when
sub-clock is stopped, that is, during execution of off command.
Also, time interval fluctuates considerably in compliance with power voltage.

Key
In the key matrix, when any of key-input ports is level 1, that is, when
(internal RAM F2H is not 0, an interrupt occurs.

On key interrupt
An interrupt occurs when ON key is pressed.

SIO transmission interrupt
An interrupt occurs when the SIO has completed to transmit 1 byte.

SIO reception interrupt
An interrupt occurs when receiving 1 byte from the SIO.

External interrupt
Request of interrupt from outside of the CPU. This is connected with battery
checker in the pocket computer.

Software interrupt
If command ir is carried out, this interrupt occurs.

Caution when creating interrupt processing program

For interrupt program
(1) Complete processing is executed with "retf".
(2) Do not use U stack or S stack frequently. (Limited to several ten bytes)

Display'
In case of continuous input in horizontal direction just before interrupt, i f display
output is executed during interrupt processing, irregular shape may appear on the
display.
Avoid overlapping of the program with the program just before a work area inter

Do not run several work.
It is not permitted to operate same area of program just before interrupt except
when receiving data.

(5) Keep aside the contents of the internal RAM. Return it to the original value after
use.

·93.

ca.llf

=

=
O.

© (OFBH)
=
= sec

=
=
=

O.

(OEBH)

sec

sec.timer

•

BP

CHAPTER 3 HOW TO USE EACH DEVICE

(In case the program of just before interrupt is using as stack pointer, it is
possible to use as work corresponding to BP.)

Register related to interrupt

The following three registers are provided for interrupt.

lnterrupt status register isr
bit 0 = 16 msec timer
bit 1 = 0.5
bit 2 = key
bit 3 = ON key
bit 4 =transmission
bit 5 = reception
bit 6 = low battery
bit 7 0
lnterrupt is requested by 1. Completion of service makes

lnterrupt enable register imr
bit 0 16 msec timer
bit 1 0.5 timer
bit 2 = key
bit 3 ON key
bit 4 transmission
bit 5 reception
bit 6 = low battery
bit 7 =carry out all mask of interrupt.
lnterrupt is permitted by 1. lnterrupt is prohibited by

lnterrupt during service register iisr
bit 0 = 16 msec timer
bit 1 = 0.5 timer
bit 2 =key
bit 3 = ON key
bit 4 = transmission
bit 5 reception
bit 6 = low battery
bit 7 = execution of'ir'command
Bit = 1 while interrupt routine is executed.

isr register is set in accordance with interrupt status. By setting imr, interrupt process-
ing is controlled actually by the factor.
Wile executing interrupt processing routine, bit corresponding to iisr has become 1.
And, bit of isr is reset.
If an interrupt occurred, the' 'control is carried out to address shown by vector ac-
cording to the kind.

·94 -

vector
BFCC6H:
BFCC9H:
BFCCCH:
BFCCFH:
BFCD2H: SIO
BFCD5H: SIO
BFCD8H:
BFCDBH:

among

r
factor

(OFCH) I I

isr r I

iisr {OEBH.I J I
roune routine prorubu secuon servce

execuuoo t trouune

CHAPTER 3 HOW TO USE EACH DEVICE

lnterrupt vector

All has 3 bytes.
fast timer interrupt
slow timer interrupt
key interrupt
ON key interrupt

transmission interrupt
reception interrupt

Outside interrupt
Software interrupt

Relation isr, imr, and iisr operations

interrupt

isr

(OFB,)

Contents
of

Normal

Interrupt

Interrupt Interrupt
Normal routine

n

