
SHARP

POCKET COMPUTER

 MODEL

 PC-G850V(S)

USERS GUIDE

Copyright © 2018 Jack W. Hsu

Version 3.0, 09/2018

All rights reserved. The manual may be freely used as a PDF for non-commercial purposes

and posted on the internet.

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 i

INTRODUCTION
The Pocket PC Sharp PC-G850V(S) is the latest model of a long line of pocket computers

that originated in the late 1970s. At the same time, it stands out from the other models

because of its special features. As there are no direct ancestors to the G850 series, the basic

functionality of the PC-E200 / PC-E220 / PC-G815 was used as a foundation. Functions from

the PC-1600 and PC-E500S were added. Additionally, some mathematical functions from the

PC-14xx models were introduced.

A C compiler / interpreter has been integrated in the PC-G850V(S). This is most likely to be

compared with the C-interpreter of the Casio Z-1GR. In addition, an integrated CASL

assembler and COMET environment have been included.

This guide is made for both the Sharp G850V and Sharp G850VS. The difference between

the two models is the slightly lower weight (10g) and the location of the operating system of

the VS in flash memory. However, since there never was an update for the operating system,

this property is irrelevant. This manual should also apply for the G850 and G850S, however,

it has not been verified.

Unfortunately, Sharp's G models were only distributed within Japan, so they are hard to find

in the rest of the world and no official non-Japanese documentation is available.

This manual was developed to address the lack of English documentation for this computer.

It is based on the German translation of the official Japanese version of the Sharp PC-

G850V(S) manual by Jörg Wrabetz. Additional information from the official Japanese

version of the manual, the description of the 11-pin interface by Ton Stahl (Appendix A), and

the Sharp PC-E500 manual was added for clarification. Thanks to hpmuseum.org forum

members SMP, toml_12953, and rprosperi for catching errors and making suggestions for

clarifying. Thanks to forplus for additional programming examples. This manual was NOT

created by the SHARP CORPORATION and should not be considered official. Distribution

of this manual is subject to the friendly (not yet available) permission from Sharp.

For errors in the text, in the technical descriptions, etc., as well as their consequences, no

liability can be accepted.

Jack W. Hsu

jwhsu01@yahoo.com

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 ii

BASIC FEATURES OF THE SHARP PC-G850V(S):

1. Built-in assembler: The calculator is equipped with a built-in assembler which allows

you to write programs in Z80 machine language.

2. Programming in Basic: The G850V(S) has a powerful basic language similar to the PC-

1600 and has been enhanced with elements of the PC-E500S.

3. Programming in C: To do this, the computer has a built-in compiler to execute simple C

programs.

4. Programming in CASL: CASL is an assembler language for a COMET virtual machine.

This virtual machine and assembler system was created by the Japanese Ministry of

Education to provide students and students with consistent training without the need for

special hardware.

5. Scientific calculations: Simple and easy execution of scientific calculations.

6. RAM disk: A part of the internal memory can be used like a RAM disk to store programs

and data.

7. Serial interface: This makes it possible to exchange programs and data between different

pocket computers or even a PC.

8. Connecting programmable PIC microcontrollers.

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 iii

TABLE OF CONTENTS

1. OVERVIEW 1
1.1. Precautions...1
1.2. Using the PC-G850V(S) for the First Time ..3

1.2.1. Replacing the Batteries ... 5
1.2.2. When to Change the Batteries ... 5

1.3. Device Overview ...5

2. BASIC FUNCTIONS AND MODES 7
2.1. Switching on the Computer ...7
2.2. Automatic Shutdown ..7
2.3. Setting the Contrast ..7
2.4. The SHARP PC-G850 Modes ...8

Mode Switching ... 8
2.5. Basic Operation ..9

Cursor control ... 9
2.6. The Display ... 10

3. MANUAL CALCULATIONS 15
3.1. Keypad Operation ... 15

3.1.1. Keys for Mathematical Operations ... 15
ANS .. 15
EXP, 10x and ex ... 16
DIGIT .. 16
USING .. 16
MDF (Modification Function) .. 17
Sign Change ... 17

3.2. Memory Operations .. 17
3.3. Calculations with Constants .. 18

Using constants ... 18
Viewing constants ... 18
Delete the last constant .. 18

3.4. Priority in Direct Input Calculations ... 19
3.5. Base Conversion (BASE-n) ... 19

3.5.1. Value Range .. 20
3.5.2. Input Number ... 21
3.5.3. Base Conversion ... 21
3.5.4. Two’s Complement ... 22
3.5.5. Calcuations.. 22

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 iv

4. STATISTICS MODE 25
4.1. Entering STAT Mode.. 25
4.2. One-Variable (Univariate) Statistics ... 25

4.2.1. Data Entry ... 26
4.2.2. Univariate Statistical Calculations .. 27
4.2.3. Correcting Errors .. 27
4.2.4. Printing ... 28

4.3. Two-Variable (Bivariate) Statistics ... 29
4.3.1. Bivariate Statistical Calculations .. 29

4.4. Calculation Storage ... 32

5. PROGRAM OPERATION 33
5.1. Constants ... 33

5.1.1. String Constants ... 33
5.1.2. Hexadecimal ... 33

5.2. Variables .. 33
5.2.1. Types of Variables .. 34
5.2.2. Fixed Variables ... 34
5.2.3. Simple Variables ... 35
5.2.4. Array Variables ... 35

5.3. Program and Data Files ... 37
5.3.1. File Names .. 38
5.3.2. File Name Extensions ... 38

5.4. Expressions ... 38
5.4.1. Numeric Operators ... 38
5.4.2. String Expressions .. 39
5.4.3. Relational Expressions .. 39
5.4.4. Logical Expressions ... 40
5.4.5. Parenthesis and Operator Precedence .. 41

6. PROGRAMMING IN BASIC 43
6.1. Programs .. 43

6.1.1. BASIC Statements ... 43
6.1.2. Line Numbers ... 43
6.1.3. Labeled Programs ... 43

6.2. BASIC Commands .. 44
6.2.1. Direct Commands ... 44
6.2.2. Modes (Operating Modes) ... 45

6.3. Beginning to Program ... 45
6.3.1. Entering and Running a Program ... 45
6.3.2. Editing a Program ... 46
6.3.3. Using Variables in Programming .. 48
6.3.4. More Complex Programming ... 50

6.4. Debugging .. 51
6.4.1. Trace Mode .. 51
6.4.2. Debugging Procedures ... 52

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 v

7. TEXT MODE 55
7.1. Functions in TEXT mode .. 55

7.1.1. Editing Programs and Files.. 56
7.2. TEXT Editor ... 57

A Auto .. 57
L List .. 57
R Renumber... 57
D Delete ... 58
C Copy ... 58
S Search ... 58
E Replace ... 58

7.2.1. The .TAB. Key .. 59
7.3. Delete TEXT Memory (Del) .. 59
7.4. Print TEXT Program (Print) .. 59
7.5. Serial Input/Output (SIO) .. 60

7.5.1. Set I/O Parameters (Format) .. 60
Communication Parameters ... 61

7.5.2. Send Program (Save)... 62
7.5.3. Receive Program (Load) .. 62
7.5.4. Printing ... 62

7.6. Program File Management (File) .. 63
7.6.1. Save TEXT Program (Save) .. 63
7.6.2. Load TEXT Program (Load) .. 64
7.6.3. Delete Program File (Kill) .. 64
7.6.4. List File Names (Files).. 65
7.6.5. About TEXT files .. 65

7.7. BASIC Converter (Basic) ... 65
7.7.1. Conversion of TEXT and BASIC Programs ... 66
7.7.2. Out of Memory when Using the TEXT/BASIC Converter .. 66

7.8. Data File Management (RFILE) ... 67
7.8.1. Create File (Init) .. 67
7.8.2. Load Data File (load) ... 68
7.8.3. Delete Data File (Kill) .. 68
7.8.4. List Data Files (Files) .. 69
7.8.5. Save Data File (Save) ... 69

8. THE C PROGRAMMING LANGUAGE 71
8.1. Properties of the C Programming Language ... 71
8.2. The C Compiler ... 72

8.2.1. Call the Text Editor: .. 73
8.2.2. Enter the C Source Program: .. 73
8.2.3. Compile the Source Program .. 73
8.2.4. Compile ... 73
8.2.5. Running the Program .. 74

8.3. Trace .. 74
8.3.1. Start TRACE Mode... 74

Functions in Pause Mode: ... 75
8.4. Redirecting Screen Output to the Printer ... 75
8.5. Functional Diagram of the C Compiler .. 76

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 vi

8.6. C Programming Basics ... 77
8.6.1. Formatting Options for Output (i.e. printf) .. 77
8.6.2. Variable Types .. 77

Variable Names .. 77
8.6.3. Operators ... 78

Comparison Operators ... 78
Arithmetic Operators ... 78
Assignment Operators .. 78
Increment / Decrement Operators .. 78
Logical Operators ... 78
Bitwise Operators ... 79
Shift Operators ... 79
Keywords .. 79
Escape Control Characters ... 79

8.7. C SYNTAX .. 80
8.7.1. Compound Instructions .. 80
8.7.2. Conditional Jumps .. 80

If…else .. 80
switch…case ... 80

8.7.3. Loops .. 81
for ... 81
while ... 81
do-while .. 81

8.7.4. Unconditional Jumps .. 81
goto .. 81
continue ... 81
break ... 82
return ... 82

8.8. Storage Classes ... 82
8.9. Arrays ... 82
8.10. Structures ... 83
8.11. Compiler Runtime Options .. 84

#include “file” ... 84
#define name [value] ... 84
#if ... #elif ... #else ... #endif .. 84
#ifdef name ... #endif ... 84
#ifndef name ... #endif ... 84

8.12. Library Functions .. 85
8.12.1. Standard I/O Functions .. 85

getc, getchar, fgetc ... 85
gets, fgets ... 86
scanf, fscanf, sscanf .. 86
putc, putchar, fputc .. 88
puts, fputs... 88
printf, fprintf, sprintf .. 88
fflush ... 90
clearerr ... 90

8.12.2. Character Functions ... 91
isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit 91
tolower, toupper .. 91

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 vii

8.12.3. String Functions .. 92
strcat ... 92
strchr ... 92
strcmp ... 92
strcpy ... 92
strlen ... 92

8.12.4. Memory Functions .. 93
calloc ... 93
malloc .. 93
free .. 93

8.12.5. Mathematical Functions ... 93
abs ... 93
asin, acos, atan .. 94
asinh, acosh, atanh .. 94
exp ... 94
log, log10 ... 94
pow .. 94
sin, cos, tan .. 95
sinh, cosh, tanh ... 95
sqrt .. 95

8.13. Hardware Interface Functions ... 95
8.13.1. Mini I/O Functions .. 95

miniget .. 95
miniput .. 95

8.13.2. 8-bit PIO Control via the 11-pin Interface .. 96
fclose ... 96
fopen ... 96
pioget .. 96
pioput .. 96
pioset ... 96

8.13.3. SIO (RS-232C) Control via the 11-pin Interface .. 97
fclose ... 97
fopen ... 97

8.13.4. Buffer / Communications Controller .. 97
feof .. 97

8.13.5. I/O port functions ... 97
inport ... 97
outport .. 98

8.13.6. Memory Functions / Program Call .. 98
call ... 98
peek ... 98
poke ... 98

8.13.7. Datafile Functions ... 98
fclose ... 98
feof .. 98
flof ... 99
fopen ... 99

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 viii

8.13.8. Graphic Functions .. 99
circle ... 99
gcursor .. 99
gprint .. 100
line .. 100
paint ... 100
point ... 100
preset ... 100
pset ... 101

8.14. Other Functions .. 101
abort, exit ... 101
angle ... 101
breakpt ... 101
clrscr ... 101
getch ... 102
gotoxy ... 102
kbhit.. 102

8.15. Error Messages ... 102
8.15.1. Compiler Error Messages ... 102
8.15.2. Run-Time Error Messages .. 104

9. CASL 105
9.1. The CASL assembler .. 105
9.2. CASL mode Functions .. 105
9.3. CASL Programming Procedure ... 106
9.4. Entering / Editing the Source Program ... 108

9.4.1. Line Format .. 108
9.5. The CASL Assembler .. 109

9.5.1. CASL Assembler Log ... 110
9.5.2. CASL Assembler Error Messages .. 111

9.6. Simulation .. 111
9.6.1. Normal Execution ... 112
9.6.2. Trace Mode .. 112
9.6.3. Trace Error Messages ... 113

9.7. Monitor .. 113
9.7.1. Display Register Contents .. 113
9.7.2. Set Registers ... 114
9.7.3. Display Object Code ... 114

9.8. Sample CASL Program ... 116
9.8.1. Operation Example:.. 116
9.8.2. Trace Example .. 119

9.9. COMET Specification ... 120
9.10. COMET Architecture ... 121

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 ix

9.11. Command Summary .. 122
9.11.1. Registers and Abbreviations ... 123
9.11.2. Commands .. 123

LD .. 123
ST ... 123
LEA ... 123
ADD ... 123
SUB .. 123
AND, OR, EOR .. 124
CPA .. 124
JPZ, JMI, JNZ, JZE ... 124
JMP .. 124
SLA, SRA ... 124
SSL, SLR .. 125
PUSH .. 125
POP .. 125
CALL ... 125
RET... 125

9.11.3. Assembler Syntax .. 125
START .. 126
END .. 126
DC .. 126
DS .. 126

9.11.4. Macro Commands... 127
IN ... 127
OUT ... 127
EXIT .. 127
WRITE .. 127

9.11.5. Sample Program ... 127

10. MACHINE LANGUAGE MONITOR 129
10.1. Using the Monitor ... 129
10.2. Monitor Commands .. 130

USER Set User Memory .. 130
S Update Memory ... 131
D Display Memory .. 132
E Edit Memory ... 133
P Toggle Printer ... 134
G GOSUB .. 134
R Receive data via the serial interface ... 135
W Send data via the serial interface ... 135
BP Set Breakpoint .. 135

10.3. Error Messages in Monitor Mode .. 136

11. ASSEMBLER 137
11.1. Programming with the Assembler ... 137

11.1.1. Example Program .. 138
11.1.2. Assign Machine Code Area ... 139
11.1.3. Assemble Source Program .. 139
11.1.4. Check Generated Object Program .. 140
11.1.5. Run Object (Machine Code) Program ... 140

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 x

11.2. Coding / Editing a Source Program... 141
11.2.1. Source Program Format ... 141
11.2.2. Line Format (Instructions) .. 141
11.2.3. Deleting a Source Program... 144
11.2.4. Entering a Source Program .. 144

11.3. Assembler Functions ... 145
11.3.1. Assembler Menu .. 145
11.3.2. Assembling ... 146

Successful Assembly ... 146
Unsuccessful Assembly ... 146
Displaying the Object Code .. 147
Printing the Assembler Log .. 149
Sending the Assembler Log to the Serial Interface (SIO) .. 149

11.4. Assembler Pseudo-Instructions ... 150
ORG Beginning ... 150
DEFB / DB / DEFM / DM Define Byte / Message .. 151
DEFW / DW Define Word .. 151
DEFS / DS Define Memory ... 152
EQU Equal .. 152
END End ... 153

11.5. Error Messages ... 153

12. PIC 155
12.1. Defining the Machine Language Area .. 155
12.2. Creating / Editing a Source Program .. 155
12.3. PIC Assembler ... 157

12.3.1. PIC Assembler Directives .. 157
__CONFIG Configuration .. 157
ORG Set Start Address .. 158
EQU Define a Constant ... 158
DW Define a Word ... 158
#INCLUDE Insert a File ... 158

12.3.2. PIC Assembler Error Messages ... 159
12.4. PIC Loader .. 160

12.4.1. PIC Loader Error Messages ... 160

13. BASIC COMMAND GLOSSARY 161
13.1. Scientific and Mathematical Functions .. 162

ABS |x| ... 162
ACS cos-1 x ... 163
AHC cosh-1 x ... 163
AHS sinh-1 x ... 163
AHT tanh-1 x ... 164
ASN sin-1 x .. 164
ATN tan-1 x ... 165
COS cos x .. 166
CUB x3 .. 166
CUR √x

3
 ... 166

DEG dd°mm’ss” → ddd.dddd° .. 167
DMS ddd.dddd° → dd°mm’ss” .. 168

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 xi

EXP ex ... 168
FACT n! ... 169
FIX ... 169
HCS cosh x .. 169
HSN sinh x ... 169
HTN tanh x .. 170
INT ... 170
LN loge x ... 170
LOG log10 x.. 171
NCR nCr = n! r! (n-r)!⁄ .. 171
NPR nPr = n! (n-r)!⁄ ... 171
PI π .. 171
POL (x, y) → (r, θ) .. 172
^ (Power) yx ... 172
RCP 1 x⁄ .. 172
REC (r, θ) → (x, y) .. 173
SGN ... 173
SIN sin x ... 174
SQR √x .. 174
SQU x2 ... 174
TAN tan x ... 175
TEN 10x ... 175
&H ... 175

13.2. General Commands ... 177
ASC .. 177
AUTO ... 178
BEEP .. 178
BLOAD ... 179
BLOAD M ... 179
BLOAD?.. 180
BSAVE .. 180
BSAVE M .. 181
CALL ... 181
CHR$.. 182
CIRCLE .. 182
CLEAR .. 184
CLOSE .. 185
CLS ... 185
CONT ... 186
DATA .. 187
DEGREE .. 188
DELETE ... 188
DIM .. 189
END .. 190
EOF .. 190
ERASE .. 191
FILES .. 191
FOR … NEXT ... 192
FRE ... 193
GCURSOR ... 194
GOSUB … RETURN ... 195
GOTO ... 196

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 xii

GPRINT.. 197
GRAD .. 198
HEX$... 199
IF … THEN … ELSE .. 199
IF…THEN…ELSE…ENDIF ... 201
INKEY$.. 202
INPUT .. 203
INPUT# .. 204
KILL ... 205
LCOPY ... 205
LEFT$.. 206
LEN.. 207
LET .. 207
LFILES .. 208
LINE... 208
LIST ... 210
LLIST .. 211
LNINPUT# ... 212
LOAD ... 212
LOCATE ... 213
LOF .. 214
LPRINT .. 214
MID$... 215
MON ... 215
NEW .. 215
ON…GOSUB .. 216
ON…GOTO .. 217
OPEN... 218
PAINT .. 219
PASS .. 219
PEEK .. 220
POINT.. 220
POKE ... 221
PRESET .. 221
PRINT .. 222
PRINT# .. 223
PSET .. 223
RADIAN ... 224
RANDOMIZE ... 224
READ ... 225
REM (‘) .. 225
RENUM ... 226
REPEAT … UNTIL ... 226
RESTORE ... 227
RIGHT$.. 228
RND ... 229
RUN .. 230
SAVE ... 230
STOP ... 231
STR$.. 231
SWITCH … CASE … DEFAULT … ENDSWITCH ... 232
TRON / TROFF ... 233
USING ... 234

SHARP PC-G850V(S) USERS GUIDE: Table of Contents

 xiii

VAL .. 235
VDEG ... 236
WAIT .. 236
WHILE … WEND ... 237

13.3. I/O Commands .. 238
CLOSE .. 238
INP ... 238
LLIST .. 238
LPRINT ... 239
OPEN ... 239
OUT ... 240
PIOGET... 240
PIOPUT .. 240
PIOSET ... 241

APPENDIX A: 11-PIN INTERFACE 243
Signals and Pin-Out .. 243
SIO mode ... 244

RS-232 Standard and Conventions ... 244
Signal Levels ... 246
Data Transfer Cable CE-T800 and CE-T801 .. 246
USB PC Adapter Cable with Hardware Handshake .. 248
RS-232 printer .. 248

SSIO mode ... 249
CE-126P printer protocol ... 249
LPRT Protocol and Mini I/O Port .. 250

PWM Mode ... 251
CE-126P Tape Protocol ... 251
Generic PWM protocol... 252

PIO mode... 252
PIC mode ... 256

APPENDIX B: KEYBOARD COMMANDS 263

APPENDIX C: CALCULATION RANGES 265
Numerical Calculations ... 265

Functions .. 265
Statistical Calculations ... 266

APPENDIX D: SPECIFICATIONS 267

APPENDIX E: RESETTING THE COMPUTER 269

APPENDIX F: SYSTEM BUS 271

APPENDIX G: KANJI CONVERSION CHART 273

APPENDIX H: CHARACTER CODE TABLE 275

APPENDIX I: MEMORY MAP 277

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 xiv

APPENDIX J: ROM ADDRESSES 279
ROM Routines ... 279

Confirmed Addresses ... 279
BASIC Routines (Unconfirmed): ... 280
Other Addresses (Unconfirmed) .. 281

Display Control Ports 40h, 41h:... 283
Key Matrix ... 285
BIOS Key Values ... 286
Conversion of BEEP Command Values to Tones: .. 286
Self-Test Mode ... 287
BASIC Code Table ... 288

APPENDIX K: ERROR MESSAGES 289

APPENDIX L: Z80 PROGRAMMING REFERENCE 291
Z80 registers and flags .. 291
Z80 Instruction set ... 291

Abbreviations ... 291
8-bit Load Instructions ... 292
16-bit Load Instructions ... 293
8-bit Arithmetic and Logic Instructions ... 294
16-bit Arithmetic Instructions ... 296
Register Exchange Instructions .. 296
Branch Instructions .. 297
Subroutines .. 298
Shift Instructions .. 299
Bit Commands .. 301
CPU Commands ... 301
Copy/Compare ... 302
Input/Output ... 303

APPENDIX M: INSTALLING A SPEAKER 305

SHARP PC-G850V(S) USERS GUIDE: Overview

 1

1. OVERVIEW

1.1. Precautions

Please do not press the liquid crystal

display. The display may break.

Please do not store near heaters or

expose to direct sunlight (for example

in a car). Due to the high temperatures,

deformations can occur.

Do not drop, press or expose to any

other force - The device may break.

Clean the surface with a soft, dry cloth.

Do not use solvents such as thinner,

gasoline or a wet cloth. Color changes

or surface damage may occur.

Please do not store with hard or sharp objects in your pocket. The device can be scratched.

Always use the cover. The product is not waterproof.

SHARP PC-G850V(S) USERS GUIDE: Overview

 2

The hardcover serves to protect the computer against damage. Whenever you are not using

the pocket computer, please install the hardcover. For example, if you put the calculator in

your pocket.

Removing the

protective sleeve:

Using

When not in use:

SHARP PC-G850V(S) USERS GUIDE: Overview

 3

1.2. Using the PC-G850V(S) for the First Time

(1) Insert batteries

Please insert the batteries. To do so, remove the

cover of the battery compartment on the back as

shown in the illustration.

Insert the batteries in the correct direction. Follow

the pictograms in the battery compartment.

Close the battery lid again.

(2) Reset

Immediately after inserting the batteries into the

computer, the internal status of the PC-G850V is

not set yet. To do this, the computer must first be

initialized.

 Press the .ON. button and then press the reset

button under the .SHIFT. button with a

ballpoint pen or similar device. Then release

the reset button again.

SHARP PC-G850V(S) USERS GUIDE: Overview

 4

Immediately after pressing the .RESET. button, the PC-G850V displays the following

screen. If any other indication appears, the above procedure must be repeated.

MEMORY CLEAR O.K.? (Y/N)

The PC-G850V asks for confirmation to clear the memory:

 Press the ..Y.. key. The following message flashes, indicating that the computer has been

initialized and all memory contents have been cleared.

* *

* ALL RESET *

* *

 Press any key. The following display appears:

RUN MODE

>

(3) Check computer function

To ensure normal computer function, press the following keys:

..F.. ..R.. ..E..

RUN MODE

FRE

30179

When the above screen appears, the computer is functioning normally and ready for input.

The number 30179 represents the storage capacity for programs and data.

Note: If the PC-G850V(S) does not show the appropriate display after the above

steps, the corresponding step should be tried again with the correct input

for the step.

SHARP PC-G850V(S) USERS GUIDE: Overview

 5

1.2.1. Replacing the Batteries

If BATT is displayed, the batteries must be replaced.

The computer uses four AAA batteries for operation. If the batteries are too weak while the

CE-126P is being used simultaneously with the computer, it can also be powered by the CE-

126P. This reduces the load on the internal battery.

1.2.2. When to Change the Batteries

If the BATT warning light appears in the lower left corner of the display, it means that the

batteries are too low. They should be replaced with new ones immediately. If the computer

continues to be used, even though BATT is displayed, the computer will turn off after some

time. After that, it cannot be turned on by pressing the .ON. button again.

Note: The Pocket Computer retains its programs and files for a long period

without batteries. To be on the safe side, do not remove the batteries from

the computer for more than 5 minutes.

Caution: NEVER remove the batteries when the pocket computer is switched on, because

after reinserting the batteries the computer must always be reset and thus all data is

lost. Also, you may want to backup or print all programs and data to a PC first.

If an additional peripheral device is connected, the computer can be powered by this device.

In this case, the BATT warning indicator does not appear even though the batteries of the

computer are too weak. Before use, the peripheral should be disconnected at short notice to

check if the BATT warning light appears on the display or not. Furthermore, there is a

connection on the rear right side to power the computer with an external power supply (6V,

0.2W).

1.3. Device Overview

The SHARP computer consists of a QWERTY keyboard similar to that of a conventional

typewriter and an LCD display with adjustable contrast. On the left side is the SHARP 11-pin

interface and on the right side the interface to the PIC microcontroller. Top right is a

connector for an external power supply with 6V and 0.2W (e.g. power supply Sharp EA-

23E).

SHARP PC-G850V(S) USERS GUIDE: Overview

 6

1 Display (6 lines, 24 characters / line) 144x48 pixels)

2 SHARP 11-pin interface for printer, serial interface, etc.

3 Reset button (recessed)

4 Space bar

5 Typewriter keyboard

6 Enter key(s)

7 Interface for PIC microcontroller

8 Delete key

9 Power-on/Wake-up button

10 Power-off button

11 Connection for power supply (6V, 0.2W, e.g. power supply Sharp EA-23E).

12 Battery compartment cover (on the back)

13 Mode toggle keys (Basic RUN / PRO, Assembler, C, CASL, Text Editor)

14 Function key

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 7

2. BASIC FUNCTIONS AND MODES

There are a number of important letters, numbers and symbols on the PC-G850V.

2.1. Switching on the Computer

Press the .ON. button on the right side of the computer keyboard. The computer is in RUN

mode after being turned on.

2.2. Automatic Shutdown

To protect the batteries, the computer automatically shuts itself off if no buttons are pressed

after approximately 11 minutes. Press the .ON. button to turn it back on after the computer

turned itself off.

If the computer is executing an INKEY$ command, the auto power off function is disabled.

It is active while the computer is executing an INPUT command.

If the computer is not used for a long time while the automatic shutdown is disabled, battery

power will be consumed. This can lead to the loss of stored programs or data.

2.3. Setting the Contrast

The menu for setting the contrast is called by pressing .SHIFT. and .ANS.. Adjust the contrast

so that you can see the display clearly.

 *** LCD CONTRAST ***

 DARK

 LIGHT

Pressing the cursor keys (Increase Contrast) and (Decrease Contrast) adjusts the

contrast.

If the display is set correctly, the setting can be set by pressing the .BASIC., .TEXT. or .CLS.

key.

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 8

2.4. The SHARP PC-G850 Modes

The Sharp PC-G850V has 7 different modes:

RUN mode execute BASIC programs or BASIC commands, input of

mathematical functions

PRO mode writing or correcting BASIC programs

TEXT mode entering, editing, deleting and saving (ram disk, SIO), loading (ram

disk, SIO) text programs in ASCII format, conversion to BASIC or

vice versa, creating and deleting data files

ASMBL mode

(assembler mode)

assemble an assembler program (generation of Z80 machine code)

CASL mode translate and execute CASL programs (accessible via ASMBL)

PIC mode translate source programs and transmit them to the PIC. (accessible

via ASMBL)

C mode compile and run C programs.

Mode Switching

Mode Keys

RUN mode .BASIC.

PRO mode .BASIC. or .BASIC. .BASIC. (to enter PRO mode from outside the RUN

mode, press .BASIC. twice)

TEXT mode .TEXT.

ASMBL mode .SHIFT. + .BASIC. (ASMBL), then ..A..

CASL mode .SHIFT. + .BASIC. (ASMBL), then ..C..

PIC mode .SHIFT. + .BASIC. (ASMBL), then ..P..

C mode .SHIFT. + .TEXT. (C)

Instead of .SHIFT. you can press .2ndF. beforehand.

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 9

2.5. Basic Operation

Turn on the computer. Pressing .CLS. will clear the screen and start typing in the upper left

corner.

Character input

..A.. ..B.. ..C.. ..D.. ..E.. ..F.. ..G..
ABCDEFG

In this way you will get capital letters.

Lowercase input

..H.. ..I.. ..J.. ..K.. ..L.. ..M.. ..N..
ABCDEFGhijklmn

Pressing .CAPS. will quit the CAPS mode (always on after power-on) and will allow entering

of lowercase letters.

Special characters

By pressing the .SHIFT. key and the associated key simultaneously, the corresponding special

character is written. Alternatively, press the .2ndF. key BEFORE pressing the corresponding

key. The following keypress will enter the corresponding special character or mathematical

function.

..E.. ..R.. ..T..
ABCDEFGhijklmn#$%

.2ndF. ..I.. .2ndF. ..O.. .2ndF. ..P..
ABCDEFGhijklmn#$%<>@

This is how numbers are entered

..1.. ..2.. ..3.. ..4.. ..5.. ..6..

..7.. ..8.. ..9..

ABCDEFGhijklmn#$%<>@1234

56789

Cursor control

To change entered characters, use the four cursor keys ().

If the cursor is at the end of a line, an underscore appears to allow continuation of the line. If

the cursor is in the middle of the text field, the corresponding character flashes in black. The

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 10

entry of characters overwrites existing characters from this position. When you hold down

the cursor key, the cursor moves quickly over the screen.

2.6. The Display

The computer has a 6-line liquid crystal display with 24 characters per line and a status bar at

the top and bottom. Each character occupies a 5x7 dot matrix. The display shows key names

and calculations. The display examples in this manual only reproduce the symbols required

for the respective explanation of the function.

In BASIC mode, the display shows:

Standby symbol. This icon appears when the computer is ready to accept an

input in BASIC mode. When typing. As you type, the ready icon disappears

and is replaced by the cursor

The cursor. This symbol marks the location of the next character to be

entered. When you start typing, the cursor replaces the standby icon. As a

marker symbol, the cursor is also used in conjunction with the INSert and

DELete functions. The underscore cursor changes to the block cursor when it

is not on a character.

The status lines reflect the following:

BUSY This word appears on the display when the computer executes a program or

command.

BATT This symbol indicates that the batteries are weak and need to be replaced.

RUN This icon indicates the RUN mode for the computer.

PRO This symbol indicates the BASIC programming mode for the computer.

TEXT Indicates that the computer is in TEXT mode.

CASL This icon indicates the CASL programming mode for the computer. Enter this

mode by pressing the .ASMBL. key (.SHIFT. + .BASIC. followed by ..C..).

STAT This icon indicates that the computer is in statistics mode. Enter this mode by

pressing the .STAT. key (.SHIFT. + .MDF.)

2ndF The display appears when the .2ndF. button has been pressed and disappears

with the following key command. Remember that the .2ndF. key must be

released before pressing another key when the second

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 11

M Indicates that another number other than zero is stored for manual calculations.

CAPS Indicates that the computer is in CAPS mode. If this indicator does not appear

on the display, all letters of the alphabet are entered as lowercase letters. The

.CAPS. key can be used to toggle CAPS mode on and off again.

If you press the key, you can enter katakana syllables with Latin letters.

(See page 11) By pressing this key, you can toggle this feature on and off.

Indicates that the computer is in katakana mode and you can enter lowercase

letters by turning off the CAPS mode.

DEG
RAD
GRAD

Shows the current angle mode of the computer:

DEG (Degree mode)

RAD (Radian mode)

GRAD (Gradian mode)

CONST Indicates that the computer has a constant set for calculations. When this icon is

displayed, the computer performs a calculation with this constant each time the

button is pressed. If the constant is no longer needed, it can be deleted with

.SHIFT. + .CA..

PRINT This icon indicates that the computer is ready in RUN mode to send data to the

printer. Press .SHIFT. + .PNP. to toggle on and off. (Only possible with an

optional printer connected.)

The PC-G850V offers you the possibility of Japanese words in Kanji format entry. This

function is switched off by pressing the button.

 Toggle kanji mode

 Switch to lowercase letters

 Switch to entry of consonants

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 12

Examples:

Input Character Keyboard Input

  KATAKANA

  GAKKOU

  HENNKAN

  DHISUKU

  HAN I

  I OTTI

When entering 'n', if consonants excluding Y come after Shift+U (there is no need to press

SHIFT + U.

For details on how to write Romani, see page 273.

Caution: It is not always possible to display all characters of the entry in the bottom line

become:

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 13

Special kanji symbols:

SHARP PC-G850V(S) USERS GUIDE: Basic Operation

 14

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 15

3. MANUAL CALCULATIONS

The computer can be used as a 10-digit calculator. To do this, the computer must be set to

BASIC RUN mode. The RUN indicator will appear on the top right of the display.

 Math Function Math Operator Input

(1) Addition + +

(2) Subtraction - -

(3) Multiplication  *

(4) Division  /

(5) Integer Division ¥

(6) Modulo division MOD

(7) Sign + or - +, -

(8) Perform operation =

Examples:

51 ¥ 5  10 51 MOD 5  1 (51  5 = 10… 1)

51 ¥ –5.7  –8 51 MOD –5.7  3 (51  –6 = –8… 3)

87.57 ¥ 5.4  17 87.57 MOD 5.4  3 (88  5 = 17… 3)

30º36´ ¥ 14º36´  2 30º36´ MOD 14º36´  1 (31  15 = 2… 1)

30º36´ ¥ 4.4  7 30º36´ MOD 4.4  3 (31  4 = 7… 3)

87.57 ¥ 14º36´  5 87.57 MOD 14º36´  13 (88  15 = 5… 13)

5 + 15 * 2 / 4  12.5

3.1. Keypad Operation

The cursor key, , can be used to edit and change the input. To edit, move the cursor to the

appropriate position using the cursor keys and overwrite the character with a new one. If

characters are to be inserted, press the .INS. key for insert mode. Insert mode remains active

until the .INS. key is pressed again. If the character under the cursor is to be deleted, use

.DEL. (.SHIFT. + .INS.). If, on the other hand, the character in front of the cursor is to be

deleted, use the .BS. key.

3.1.1. Keys for Mathematical Operations

ANS

If .ANS. is used when entering a mathematical function, the result of the last calculation is

inserted at the current cursor position.

Example:

5 + 15 * 2 / 4  12.5

4 * .ANS. (inserts 12.5)  50

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 16

EXP, 𝟏𝟎𝒙, and 𝒆𝒙

Entering the exponent is performed by .SHIFT. + .EXP.. Instead of .EXP., the letter E can also

be used.

Example:

36 .EXP. 3  36E3  36000

52 .10𝑥.  1.E 52

5 .𝑒𝑥.  148.4131591

DIGIT

The .DIGIT. key, in conjunction with a number key, is used to specify the number of decimal

places. If a dot (.....) is used instead of the number key, the display is reset to the default

number of decimal places.

Use the .F↔E. key to switch between fixed and scientific mode.

Example:

.2ndF. .DIGIT. 2

5 / 8  0.63

.2ndF. .DIGIT. 5  0.62500

.2ndF. .DIGIT.  0.625

USING

Format: USING [format-string]

USING allows formatted data output. The format is determined by a format-string,

which consists of a series of characters enclosed in quotation marks. The format-string

is composed of the following characters:

right-justified character of a numeric field

. delimiter between the integer and fractional part of a number

, comma as separator after 3 digits in numeric fields

^ display the number in scientific notation

For each # contained in format-string, a digit of a numerical value or the sign can be

displayed. All other format symbols are used to describe numeric formats in more detail.

Both positive and negative values can be represented, however, the sign is only displayed for

negative values.

The format for USING corresponds to the BASIC command USING (see page 234). USING

without parameters resets the output format to default.

Example:

USING "###. ##"

8 / 3  2.66

17 / 3  5.66

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 17

If the result is greater than that permitted by the output format, an error (ERROR 70) is

displayed.

USING "###. ##"

17865 / 3  ERROR 70

MDF (Modification Function)

With .DIGIT., the computer displays only the specified number of decimal places, but

internally it always stores all digits. Therefore, the displayed data may differ from the

internal data. To match the internal and the displayed data, the modification function is used.

Example:

Without MDF

Keystrokes Output

(.2ndF. .CA.)

55.4 ../.. 9 6.155555556

..*.. 9 6.155555556*9_

 55.4

with MDF

Keystrokes Output

(.2ndF. .DIGIT. 3)

55.4 ../.. 9
.MDF.

6.156

6.156

..*.. 9 6.156*9_

 55.404

Sign Change

The sign (–) (.2ndF. ..–..) reverses the sign of the displayed result (from plus to minus and

vice versa).

3.2. Memory Operations

Independent memory can be selected with the keys .M+., .M-. and .R-CM..

.R-CM. Shows the contents of the memory and inserts it into the calculation. If .R-CM. is

pressed twice, the contents of the memory will be erased. The M symbol clears.

.M+. Adds the displayed result or result of a mathematical function to the memory. If

the memory was empty before (i.e. 0) the M symbol appears

.M-. Subtracts the displayed result or result of a mathematical function from the

memory. If the memory was empty before (i.e. 0) the M symbol appears

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 18

3.3. Calculations with Constants

The .CONST. key can be used to apply constants to basic arithmetic operations as described

below.

Using constants

Addition: ..+.. a .CONST. or a ..+.. .CONST.

Subtraction: ..–.. a .CONST. or a ..–.. .CONST.

Multiplication: ..*.. a .CONST. or a ..*.. .CONST.

Division: ../.. a .CONST. or a ../.. .CONST.

where "a" means the constant. After pressing .CONST., CONST appears on the bottom right

of the display.

Note: If the constant function is not used, make sure that the CONST indicator

does not appear on the display.

Viewing constants

To view the last entered constant, press .2ndF. + .CONST. (.SHIFT. + .CONST.) while CONST

is displayed.

Delete the last constant

To delete the last entered constant, press .2ndF. + .CA. (.SHIFT. + .CA.). It can also be deleted

by switching off the device. The CONST indicator should be off.

Example:

Store "+ (4.8 + 3.6)" as a constant and calculate "24 –18.5 + (4.8 + 3.6)" and "8.2 x 6 +

(4.8 + 3.6)"

Enter: + 4.8 + 3.6 .CONST. (Parenthesis not required)

Enter: 24 – 18.5 Result: 13.9

Enter: 8.2 * 6 Result: 57.6

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 19

3.4. Priority in Direct Input Calculations

The PC-G850V(S) uses the following operator precedence when evaluating an expression:

1. Variable recall or π

2. Functions (such as sin, cos, etc.)

3. Power, roots

4. Sign

5. *, / (operators at the same priority level are executed sequentially from left to right)

6. +, –

7. Relational expressions

8. Logical expressions

9. =, M+

If parentheses are used in a formula, the operation given within the parentheses has the

highest priority.

Note:

 Composite functions are evaluated from right to left

 Chained power (342
or 3^4^2) is evaluated from right to left

 For items 3 and 4 above, the last entry has the highest priority

 -2^4  -(2
4
)

 3^-2  3
-2

3.5. Base Conversion (BASE-n)

In the ROM of the PC-G850V(S) is a BASIC program which allows for numerical

conversion among base2, base10, and base16 systems. It also computes the 2 compliment

allows basic arithmetic and logical operations. To access this program, press .SHIFT. +

.BASE-n.. You will then receive the following prompt asking to clear the BASIC program

memory space (effectively deleting all your basic programs).

BASIC DELETE OK? (Y)

Pressing ..Y.. will load the BASE-n program into memory and execute the program. Pressing

any other key will return you to RUN mode and leave any BASIC programs in memory

intact.

Note: The BASE-n program requires 2794 bytes of free memory plus an

additional 167 bytes for variable storage. If not enough memory is

available to run the program, the process is aborted and BASIC program

memory is left intact. This is true even if you see the above prompt to

clear memory and press ..Y... The computer will return to RUN mode.

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 20

Attempting to run the program with .SHIFT. + .BASE-n. with insufficient

memory will return you to RUN mode.

 If variables cannot be allocated at runtime, you will receive an ERROR 60

message. In this case, clear the variable memory or delete a TEXT

program to free up more memory space. Please make sure that at least

2961 (2794 + 167) bytes are available prior to starting BASE-n.

To exit the program, press .BREAK.. To restart the program, you can RUN in RUN mode

provided no alterations were made in the BASIC program memory space. Using .SHIFT. +

.BASE-n. to restart the program will reload BASE-n from ROM and execute the program.

Upon starting BASE-n, you will be presented with the following screen:

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

(1,2,3,4)?

The four available options are:

1) Input: enter numeric value for conversion.

2) Convert: convert numbers from one base to another.

It also toggles between input and calculation.

3) Complement: finds the two’s complement of the number

4) Calculation: allows calculation with basic arithmetic operators (+, –, *, /) and

logical operators (AND, OR, NOT, XOR).

3.5.1. Value Range

The program is limited to the following range limits

Binary : 16 bits.

The most significant (leftmost) bit is the sign bit. If more that 16 bits are

entered, the first 16 bits are used as the input value. If the result of a

calculation exceeds 16 bits, the results is truncated to the least significant

16 bits.

Hexadecimal : 0000-FFFF (8000–7FFF)

If more than 4 hexadecimal numbers are entered, the value is truncated to

the 4 least significant 4 hexadecimal digits.

Decimal : -32768 – 32767

Decimal values are converted to the corresponding hexadecimal number

then truncated to the least significant 4 hexadecimal digits if it has more

than 4 digits. This means that any decimal value entered will always fall

within the above decimal range.

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 21

3.5.2. Input Number

Pressing ..1.. allows entry of a number for conversion or calculation. The program prompts

for numeric entry. For example, to enter the decimal number 1230 for conversion:

..1..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

(1,2,3,4)?

..1.. ..2.. ..3.. ..0..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[10ツン]= 1230

Note that the program is expecting a decimal number. This is indicated by the value in

brackets. If an incorrect digit is entered (i.e. a hexadecimal digit is entered when the program

is expecting a binary number), ERROR is temporarily displayed and the program waits for

another input.

3.5.3. Base Conversion

After a number is entered, pressing ..2.. allows conversion of the number from one base to

another. The sequence of the conversion is:

Decimal  Hexadecimal  Binary - …

For example, given the decimal number 1230:

..2..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 04CE

..2..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[2ツン]= 0000010011001110

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 22

..2..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[10ツン]= 1230

The converted number is available for further calculations.

3.5.4. Two’s Complement

The two’s complement is the inverse of a binary number. The sum of a number and its two’s

complement is equivalent to the sum of the number and its inverse, which is zero. You can

calculate the two’s complement of an entered number by pressing ..3... The operation works

regardless of the base of the number. For example, to calculate the two’s complement of

12C7:

..2.. (to switch to hexadecimal numbers)

..1..

12C7

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 12C7

..3..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= ED39

Press ..3.. again and you have 12C7. The two numbers are complementary to each other.

3.5.5. Calcuations

This program allows calculations directly on hexadecimal and binary numbers. Normally in

RUN mode, hexadecimal/binary values must be converted to decimal to allow mathematical

or logical operations. In this program, the operations can be performed on the values directly,

without the need for conversion. Pressing ..4.. brings up a list of the available operations:

***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= ED39

(+,–,*,/,A,O,N,X)?

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 23

In addition to the standard arithmetic operations (+, –, *, and /), the logical operators (A)ND,

(O)R, (N)OT, and (X)OR are also available. For example, to calculate the result of 3E7C

AND 0FF0:

..1..

3E7C

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 3E7C

..4..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 3E7C

(+,–,*,/,A,O,N,X)?

..A..

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 3E7C

AND_

0FF0

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 0E70

You can perform further calculations on the result. For instance, to find the result of 92

(decimal) subtracted from the result of the prior calculation:

..2.. ..2.. (switch to decimal)

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[10ツン]= 3696

..4.. ..–.. 92

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 3604

SHARP PC-G850V(S) USERS GUIDE: Manual Calculations

 24

..2.. (switch to hexadecimal)

 ***** n ツン エンサ' ン *****

 1:ニユウリヨク 2:へンカン

 3:ホスウ 4:ケイサン

[16ツン]= 0E14

Note: The the program executed by .SHIFT. + .BASE-n. is named BASE_N.BAS.

If there is a BASIC program of the same name in the File area, the

BASE_N.BAS program in ROM will not be executed. Therefore, to use

the ROM program, the program in the File area with the same name must

be either renamed or removed. Otherwise, pressing .SHIFT. + .BASE-n.

will execute the program with the same name in the File area.

 Additionally, pressing .SHIFT. + .BASE-n. automatically executes a GOTO

100. This may result in an error in the execution of the program with the

same name in the File area.

SHARP PC-G850V(S) USERS GUIDE: Statistics Mode

 25

4. STATISTICS MODE

The PC-G850V(S) can perform statistical and regression calculations on one or two

variables. With statistical calculations, you can obtain mean values, standard deviations and

other statistical quantities from sample data. Regression calculation determines the

coefficients of linear regression formulas or estimate values from sample data. Sample data is

stored in fixed registers U-Z.

4.1. Entering STAT Mode

You can enter STAT mode by pressing the .STAT. key (.SHIFT. or .2ndF. + .MDR.). The

STAT indicator will be displayed on the right side of the screen. The following screen will

then appear:

***** トウケイ フ' ンセ *****

 1: 1~ンスワ トウケイ (x)

 2: 2~ンスワ トウケイ (x,y)

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

From this screen, you can then select between one-variable or two-variable statistics. To exit

from the main STAT screen, press .BREAK..

Caution: When you enter STAT mode, all previous statistical data and calculations are

erased.

4.2. One-Variable (Univariate) Statistics

To calculate one-variable statistics, press ..1.. from the main STAT screen. You will then see

the following screen:

*** ンョリ *** (x)

1:ニュウリョク 2:サクソ'ョ/クリア

3:フ’ンセキ 4:フ’リンタ

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

The menu options are:

1: Enter data

2: Delete/Clear Data

3: Calculate statistics

4: Print statistics

To return to the main STAT screen, press .BREAK..

SHARP PC-G850V(S) USERS GUIDE: Statistics

 26

4.2.1. Data Entry

From the univariate statistics menu, press ..1.. to enter data for statistical analysis. You will

be presented with the following screen:

** テ°ータ ニュウリョク **

1:x=_

The number represents the total number of items entered for analysis while the underscore

tells you that the computer is waiting for an input. To enter data for analysis, type the value

and press to accept.

To enter a negative value, press the sign (.2ndF. ..–..) key then the value. Then press to

accept.

If you need to enter several data points that have the same value, you can enter the value

followed by a comma (..,..), then the number of times the value is repeated. Press to

accept.

Press .BREAK. to accept the entered data and return to the univariate statistics menu.

Example: Enter the values from the following table for analysis:

Value # Entries Value # Entries

30 1 70 8

40 1 80 9

50 4 90 5

60 5 100 2

Keystrokes Output

.SHIFT. + .STAT. (Enter STAT mode)

..1.. (Select 1-variable statistics)

..1.. (Select Data Entry mode) 1:x=_

..3.. ..0.. 2:x=_

..4.. ..0.. 3:x=_

..5.. ..0.. ..,.. ..4.. 7:x=_

..6.. ..0.. ..,.. ..5.. 12:x=_

..7.. ..0.. ..,.. ..8.. 20:x=_

..8.. ..0.. ..,.. ..9.. 29:x=_

..9.. ..0.. ..,.. ..5.. 34:x=_

..1.. ..0.. ..0.. ..,.. ..2.. 36:x=_

.BREAK> (Exit data entry)

SHARP PC-G850V(S) USERS GUIDE: Statistics Mode

 27

4.2.2. Univariate Statistical Calculations

Press ..3.. in the univariate statistics menu to access the available univariate statistical

calculations. The following screen is displayed:

** フ' ンセキ ** (x)

 1:n 2:∑x 3:∑x

2
 4:x̅

 5:s 6:

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

The following calculations are available:

n : Sample size of x

𝑥̅ : Sample mean of x

∑x : Sum of samples x

∑x
2
 : Sum of squares of samples x

s : Sample standard deviation. The formula for the sample standard deviation is:

 𝑠 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛−1
.

 : Population standard deviation. The formula for the population standard deviation is:

 𝜎 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛
.

Press the appropriate number to obtain the corresponding result.

Example: Continuing from the prior example.

Keystrokes Output

..3.. (Select univariate calculations)

..4.. x̅= 71.42857143

..5.. s= 16.47508942

..6.. = 16.23802542

.SHIFT. + .STAT. (Exit STAT mode)

4.2.3. Correcting Errors

If an error is made during data entry, return to the univariate statistics menu by pressing

.BREAK> and press ..2.. to enter Delete/Clear mode. The following screen is displayed:

** サクン'ョ/クリア **

 1: テ’ータ サクン’ョ

 2: オーJ レ クリア

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

SHARP PC-G850V(S) USERS GUIDE: Statistics

 28

Selecting ..1.. will allow you delete incorrect entries in the dataset. The following screen is

displayed:

* テ'ータサクン'ョ *

x=_

Use the same procedure as in Data Entry (section 4.2.1) to delete erroneous values. You can

use ..,.. to delete multiple identical data values. When complete, press .BREAK. to accept

changes and return to univariate statistics menu. You can now return to Data Entry (Option

1) to enter the correct values.

Selecting ..2.. will delete the entire dataset allowing you to start over with data entry. When

pressed, the following screen is displayed:

* オール クりア *

 1:YES
 2:NO

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

If YES is selected, the statistical registers are cleared and the univareiate statistics menu is

displayed. If NO is selected, the statistical registers are untouched and the univariate statistics

menu is displayed.

4.2.4. Printing

After data entry is complete, the calculated statistics can be printed with an optional CE-126P

printer. Connect the printer to the computer and turn on the power to the printer. After data

entry is complete, press ..4.. to print the results of the statistical calculations. You will see the

following on the screen:

** インヅ'チュウ **

The printer will print the results of all the statistical calculations. A sample printout is shown

below:

n= 35

∑x= 2500

∑x
2
= 187800

MEAN(x̅)= 71.42857143

s= 16.47508942

= 16.23802542

SHARP PC-G850V(S) USERS GUIDE: Statistics Mode

 29

4.3. Two-Variable (Bivariate) Statistics

The basic operation of two-variable (bivariate) statistics is identical to univariate statistics.

Enter STAT mode and press ..2.. to enter the bivariate statistics menu. Press ..1.. to enter data.

Data entry is identical to univariate statistics mode except you are now prompted to enter two

values, x and y. As in univariate data entry, the sign key (.2ndF. ..–..) is used to enter

negative values and comma (..,..) is used to enter duplicate value pairs. When data entry is

complete, press .BREAK. to accept values and return to the bivariate statistics menu.

When performing exponential, logarithmic, power, or inverse regression calculations, use the

following table to transform the respective regression calculation formula into a linear

regression. Each statistic can then be determined using the transformed values for x and y.

Type X Y Transformation Formula

Linear x y none

Exponential x ln y Y = ln a + bx

Logarithmic ln x y y = a + bX

Power ln x ln y Y = ln a + bX

Inverse 1/x y y = a + bX

4.3.1. Bivariate Statistical Calculations

Press ..3.. in the bivariate statistics menu to access the available bivariate statistical

calculations. The following screen is displayed:

** フ' ンセキ ** (x,y) 

 1:n 2:∑x 3:∑x

2
 4:x̅

 5:sx 6:x 2:∑y 3:∑y2

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

Note there is an arrow in the upper right corner of the screen to indicate there are additional

statistical calculations available. To access the additional screen of calculations, press .

The following screen is shown:

** フ' ンセキ ** (x,y) 

 1:∑xy 2:y̅ 3:sy 4:y
 5:a 6:b 2:x’ 3:y’

ハ' ンコ' ウ ヲ エランテ' クタ' サイ.

To return to the previous screen, press . Press the corresponding number to display the

result of the calculation. To return to the bivariate statistics menu, press .BREAK..

SHARP PC-G850V(S) USERS GUIDE: Statistics

 30

The following calculations are available:

n : Sample size

𝑥̅, 𝑦̅ : Mean of x, y

∑x, ∑y : Sum of x, y

∑x
2
, ∑y

2
 : Sum of squares of x, y

∑xy : Sum of products of x and y

sx, sy : Sample standard deviation of x, y. The formula for the sample standard

deviation is:

 𝑠𝑥 = √
∑ 𝑥2−𝑛𝑥̅2

𝑛−1
, 𝑠𝑦 = √

∑ 𝑦2−𝑛𝑦̅2

𝑛−1
.

x, y : Population standard deviation of x, y. The formula for the population

standard deviation is:

 𝜎𝑦 = √
∑ 𝑥2−𝑛𝑥̅2

𝑛
, 𝜎𝑦 = √

∑ 𝑦2−𝑛𝑦̅2

𝑛
.

a : Intercept of the linear regression line. The formula for the intercept is:

 𝑎 = 𝑦̅ − 𝑏𝑥̅

b : Slope of the linear regression line. The formula for the slope is:

 𝑏 =
𝑆𝑥𝑦

𝑆𝑥𝑥
.

r : Correlation coefficient. The formula for the correlation coefficient is:

 𝑟 =
𝑆𝑥𝑦

√𝑆𝑥𝑥∙𝑆𝑦𝑦
.

x' : Estimated value of x. The formula is 𝑥′ =
𝑦−𝑎

𝑏
.

y’ : Estimated value of y. The formula is 𝑦′ = 𝑎𝑥 + 𝑏.

Where : 𝑆𝑥𝑥 = ∑ 𝑥2 −
(∑ 𝑥)2

𝑛
, 𝑆𝑦𝑦 = ∑ 𝑦2 −

(∑ 𝑦)2

𝑛
, 𝑆𝑥𝑦 = ∑ 𝑥𝑦 −

∑ 𝑥∙∑ 𝑦

𝑛

For x’ and y’, the computer will prompt for a value. Press .BREAK. after the value is

displayed to return to the bivariate calculation menu.

Example:

The following table contains the average temperature (in °C) for the month of April and

the number of flowering cherry trees on the same day. Perform a linear regression

analysis and calculate the slope, intercept, and correlation coefficient of this dataset. Also

estimate how many flowering cherry trees do you expect to see at a temperature of 9.1°C

and what would you expect the temperature to be if there are 10 flowering cherry trees.

Day 2 3 4 5 6 7 8 9

Temperature (x) 6.2 7.0 6.8 8.7 7.9 6.5 6.1 8.2

Cherry Blooms (y) 13 9 1 5 7 12 15 7

SHARP PC-G850V(S) USERS GUIDE: Statistics Mode

 31

Keystrokes Output

.SHIFT. + .MDR. (Enter STAT mode)

..2.. (Select bivariable statistics)

..1.. (Select Data Entry mode) 1:x=_

..6..2.. ..1.. ..3.. 1:x=6.2

 y=13

2:x=_

..7..0.. ..9.. 2:x=7.0

 y=9

3:x=_

..6..8.. ..1.. 3:x=6.8

 y=1

4:x=_

..8..7.. ..5.. 4:x=8.7

 y=5

5:x=_

..7..9.. ..7.. 5:x=7.9

 y=7

6:x=_

..6..5.. ..1.. ..2.. 6:x=6.5

 y=12

7:x=_

..6..1.. ..1.. ..5.. 7:x=6.1

 y=15

8:x=_

..8..2.. ..7.. 8:x=8.2

 y=7

9:x=_

.BREAK> (Exit data entry)

..3.. (Enter Bivariable cacluations)

 (show 2
nd

 calculation menu)

..5.. a= 34.44951017

..6.. b= -3.425-18839

..7.. r= -9.691068372E-01

..9.. X=_

..9..1.. Y= 3.281838734

..8.. Y=_

..1.. ..0.. X= 7.13850386

.SHIFT. + .MDR. (Exit STAT mode)

SHARP PC-G850V(S) USERS GUIDE: Statistics

 32

4.4. Calculation Storage

Results of statistical calculations are stored in fixed variables U-Z (see section 5.2.2 Fixed

Variables). The following table shows what calculations are stored in each variable. When

you exit STAT mode, these values are retained. This allows access of the results statistical

calculations in RUN mode. Be aware if you return to STAT mode, the contents of these

variables are cleared and the values will have to be re-entered for further calculations.

Variable U V W X Y Z

Univariate – – – ∑x2 ∑x n

Bivariate ∑y2 ∑y ∑xy ∑x2 ∑x n

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 33

5. PROGRAM OPERATION

5.1. Constants

5.1.1. String Constants

The computer is able to process letters and special symbols in many ways besides

numerically. These letters, numbers and special symbols are called characters.

In BASIC, a collection of characters is called a string. In order for the computer to

understand the difference between a string and other parts of the program, e.g. If you want to

recognize commands or variable names, you must enclose the string in quotes ("). To use

quotation marks as characters, use "CHR$ &H22".

Here are some examples of string constants:

"HELLO"

"Goodbye"

"SHARP COMPUTER"

The following examples are not accepted as string constants:

"COMPUTER quotes are missing at the end.

"VALUE OF "A" IS" quotes may not be used within a string.

5.1.2. Hexadecimal

The hexadecimal system is based on the number 16 instead of the number 10. To write

hexadecimal digits, use the digits 0 to 9, and six additional "digits" A, B, C, D, E and F.

These correspond to the numbers 10, 11, 12, 13, 14, and 15. To use a hexadecimal number,

place an ampersand (&) and "H" in front of the number:

&HA = 10

&H10 = 16

&H100 = 256

&HFFFF = 65535

5.2. Variables

Computers are made up of a number of very small memory units, called bytes. Each byte can

be thought of as a single character. For example, the word "byte" requires four bytes of

memory because it contains four letters. To find out how many bytes are available to use,

simply enter the FRE command in RUN mode. The number displayed indicates how many

bytes are free for programming.

This method works well for strings, but is inefficient for storing numbers. For this reason,

numbers are stored in coded form. This allows the computer to store very long numbers in 8

bytes. The largest number that can be stored is +9.999999999E+99. The smallest number is

1E–99, a fairly large number range. However, if the result of the calculation exceeds these

limits, the computer issues an error message.

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 34

Example:

R = 556

For string variables, the principle is the same. The computer recognizes the difference

between string vs. numeric variables by the addition of a $ at the end of the variable name.

For example, the word "BYTE" can be stored in the variable B$. Note the $ sign after B.

This tells the computer that the contents of the variable B$ are alphanumeric or string data.

More explicitly:

B$ = "BYTE"

5.2.1. Types of Variables

The variables that the computer uses are divided as follows:

Numeric variables: Fixed numeric variables (A to Z)

Simple numeric variables (AB, C1, etc.)

Numeric array variables

String variables: Fixed character variables (A$ to Z$)

Simple string variables (BB$, C2$, etc.)

String array variables

5.2.2. Fixed Variables

Fixed variables, are variables with pre-allocated memory. In other words, no matter how

much memory the program uses, you will always have at least 26 variables available to store

data. Each fixed variable is seven bytes long. There are two types of fixed variables: numeric

and string variables (alphanumeric characters). For a specific fixed variable, both variable

types share the same memory area. Once a variable has been declared a specific type

(numeric vs. string), it cannot be used as the other type.

Example:

A = 123

A$

The following message is displayed:

ERROR 91

This means that numeric data has been allocated to a memory area called "A" and then the

computer has been instructed to use this information as a string. The computer is confused

and gives an error message. Press .CLS./.CA. to clear the error message. Now the following is

entered:

A$ = "ABC"

A

Again the computer is confused and gives the error message ERROR 91. The variable A

corresponds in memory to the same area as the variable A$, furthermore B corresponds to the

same memory area as B$ and so on for all letters of the alphabet.

Each fixed character variable can contain up to 7 characters and symbols.

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 35

5.2.3. Simple Variables

Simple variable names are specified by alphanumeric characters, e.g. AB or C8$. Unlike

fixed variables, the simple variables do not have a declared storage area in memory. The area

for simple variables is automatically allocated (within the program and data area) when the

simple variable is first used. Separate memory areas are provided for simple numeric and

simple string variables, even if they have the same name, e.g. AB and AB$ can be used

simultaneously.

While alphanumeric characters are used to name simple variables, the first character must

always be a capital letter. Two or more characters can be used to specify a variable name, but

the computer only reads the first two.

Note: Computer-resident names for functions and BASIC commands, e.g. Pl, IF,

TO, ON, SIN and others, cannot be used for variable names.

 Each simple character variable can contain up to 16 characters and

symbols. Each fixed character variable can contain up to 7 characters and

symbols.

5.2.4. Array Variables

In some cases, it is useful to process numbers in organized groups, e.g. a table of football

results or a tax table. In BASIC, these groups are called arrays. An array can be one-

dimensional, e.g. a list, or two-dimensional, e.g. a table.

To define an array, use the DIM command (short for dimension). Arrays must always be

defined before use (unlike the single-valued variables we used so far). The format for

dimensioning numeric arrays is:

DIM array-name(size)

where:

array-name is the name of the array according to the above-mentioned naming rules

for numeric or string variables.

size is the number of storage locations in the array and should be a number in the range

of 0 to 255. When you specify a number, you get one more location than you specified.

Examples of allowed commands for numeric or string sizing:

DIM X(5) → X(0), X(1), X(2), X(3), X(4), X(5)

DIM AA(24)

DIM Q5(0)

The first command creates an array X with 6 storage locations. The second command creates

an array AA with 25 storage locations, the third is an array with one storage location, which is

illogical (at least for numbers), because one could just as well define a numeric variable.

It is important to know that an array-variable X and a variable X are separate in the computer.

The first X denotes a series of numeric memory locations, the second a single and different

memory location.

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 36

Now that you know how to create arrays, you might be wondering how do you refer to each

storage location? Since the entire group has only one name, the way we refer to a single

storage location (called "element") is to follow the group name with a number in parenthesis.

This number is called "subscript". For example, to store the number 8 at the fifth position in

our (previously defined) array X, we would write:

X(4) = 8

If you are puzzled by the use of the number 4, remember that the numbering of array

elements starts with zero and continues until the number of elements declared in the DIM

statement.

The real power of arrays is the ability use an expression or a variable as an subscript.

The definition of a string array uses a slightly different form of the DIM statement:

DIM string-variable-name(size)[*length]

where:

string-variable name is the name for the string array that follows the

aforementioned rules for variable names.

Size is the number of storage locations and should be a number in the range of 0 to 255.

When you specify a number, you get one more location than you specified.

*Length is optional. If used, it will set the length of each string in the array. The length

must be specified by a number from 1 to 255. If no entry is given, the default setting of

16 characters is used for the string.

Examples of legal string array definitions:

DIM X$(4)

DIM NM$(10)*10

DIM IN$(1)*255

DIM R$(0)*26

The first example creates an array of five strings of 16 characters each. In the second

example, the DIM statement creates an array NM that contains 11 strings of 10 characters

each. This assignment is unusual as the length of the string is shorter than the default of 16.

The third example is a two-element array with a string length of 255 characters and in the last

example a single element string with 26 characters.

The computer can also handle "two-dimensional" arrays. A one-dimensional array lists a

sequence of data in a single column. A two-dimensional array corresponds to a table with

rows and columns. Two-dimensional arrays are determined by the following statement:

DIM numeric-array-name(rows,columns)

or

DIM string-array-name(rows,columns)[*length]

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 37

where:

Rows is the number of lines in the array. It must be a number in the range of 0 to 255.

Assigning a number to rows will provide one row more than specified.

Columns is the number of columns in the array. It must be a number in the range of 0 to

255. Assigning a number to rows will provide one row more than specified.

The following table illustrates the storage locations that result from the DIM T(2,3)

instruction and the indexes associated with each storage location (two numbers in this

example):

 Column 0 Column 1 Column 2 Column 3

Line 0 T (0,0) T (0,1) T (0,2) T (0,3)

Line 1 T (1.0) T (1,1) T (1,2) T (1,3)

Line 2 T (2,0) T (2,1) T (2,2) T (2,3)

Note: Two-dimensional arrays take up a lot of space. For example, an array with

25 rows and 35 columns require 875 storage locations.

The following table shows the number of bytes needed to define each variable and the

number of bytes required for each individual program instruction.

Variable type
Number of bytes used

Variable Name Array Element

Numeric variable

Numeric array variable
7 bytes 8 bytes

String variable 7 bytes 16 bytes

String array variable 7 bytes Assigned number

For example: for DIM Z$(2,3)*10, 12 variables are provided with a storage space of 10

characters each. 127 bytes are required: 7 bytes (variable name) + 10 bytes (number of

characters) x 12.

5.3. Program and Data Files

Program and data files are fundamental in the use of your computer. Part of the computer's

internal memory can be used as a RAM disk. Programs stored on the RAM disk must be

loaded into the program data area (user area) before execution (See BASIC COMMAND

LEXICON for instructions on the commands SAVE, LOAD, KILL and FILES). Programs

can save data files to the RAM disk. Files to be stored on the RAM disc must be created in

TEXT mode under Rfile before they are used. (See TEXT mode under Rfile).

Element Line number Command & Function ENTER and others

Number of bytes used 3 bytes 2 bytes 1 byte

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 38

5.3.1. File Names

Before saving a file to the RAM disk, the file must have a name. This name is used to

identify the file to load into computer memory or to open with the OPEN command. The file

name is arbitrary and can consist of up to 8 of the following characters:

A…Z, a…z, 0…9, 1, $, %, 8, ', (,), {, }, ", @

5.3.2. File Name Extensions

A file extension is an additional way to identify file types (such as BASIC program files, data

files, or text files). The extension consists of three characters at the end of a file name which

is separated from it by a period. The extension is specified when a file is saved.

BASIC programs automatically receive the .BAS extension if they are saved with the SAVE

command. When reloaded into memory using the LOAD command, the .BAS extension does

not need to be specified.

When the FILES or LFILES commands are used to list a directory of the RAM disk files,

BASIC programs will appear with the .BAS extension, unless some other extension was

specified by the user when the file was saved.

5.4. Expressions

An expression is a combination of variables, constants, and operators that can be evaluated

into a single value. The calculation examples you entered before were examples of

expressions. Expressions are an integral part of BASIC programs. For example, an

expression may be a formula that computes the result of an equation, or a test to determine

the relationship between two sizes, or a means to format a series of strings.

5.4.1. Numeric Operators

The computer has five numeric operators. These are the arithmetic operators that you used

when exploring the use of the computer as a calculator:

+ Addition

– Subtraction

* Multiplication

/ Division

^ Exponentiation

A numeric expression is constructed in the same way that you entered compound calculator

operations. Numeric expressions can contain any meaningful combination of numeric

constants, numeric variables, and the numeric operators:

(A*B)^2

A(2,3)+A(3,4)+5.0–C

(A/B)*(C+D)

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 39

5.4.2. String Expressions

String expressions are similar to numeric expressions, except there is only a single string

operator: concatenation (+). This is the same symbol used for addition. When used with a

pair of strings, the + appends the second string to the end of the first string, creating a longer

string. Be careful in making complex string concatenations and other string operations

because the maximum work space for string calculations is 255 characters.

Note: String quantities and numeric quantities cannot be defined in the same

expression, unless you use one of the functions that converts string values

to numeric values, or vice versa:

 "15" +10 is not allowed. "15" + "10" is "1510", not "25".

5.4.3. Relational Expressions

A relational expression compares two expressions and indicates whether the established

condition is true or false. The relational operators are:

 > greater than

 >= greater than or equal to

 = equal

 <> unequal

 <= less than or equal to

 < less than

The following are valid relational expressions:

A < B

C(1,2) >= 5

D(3) <> 8

If A were equal to 10, B equal to 12, C(1,2) equal to 6, and D(3) equal to 9, all of these

expressions would be true.

Character strings can also be compared using relational expressions. The two strings are

compared character by character according to their ASCII value starting at the first character

(see Appendix H). If one string is shorter than the other, a 0 or NULL will be used for any

missing positions. All the following examples are true.

"ABCDEF" = "ABCDEF"

"ABCDEF" <> "ABCDE"

"ABCDEF" > "ABCDE"

Relational expressions are evaluated as true or false. The computer represents true with -1,

false with a 0.

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 40

5.4.4. Logical Expressions

Logical operations use the Boolean algebra functions AND, OR, XOR, and NOT to build

connections between relational expressions. The logical operations in a single expression are

evaluated after arithmetic and relational operations.

In this way, logical operators can be used to make program decisions from multiple

conditions using the IF…THEN statement.

Example:

IF A<=32 AND B>=90 THEN 150

This statement causes the execution to jump to line 150 if the value of the numerical variable

A is less than or equal to 32 and, at the same time, the value of the numerical variable B is

greater than or equal to 90.

IF X<>13 OR Y=0 THEN 50

This statement causes the execution to jump to line 50, unless the variable X has the value

13, or the variable Y is not equal to 0.

In a logical operation involving two numbers in the range -32768 to +32767, the two

numbers are converted to 16-bit binary integers (in two's complement form), and the logical

connection is then evaluated for each corresponding bit of the two numbers.

The results returned by the logical operators for these bit evaluations, are listed below:

AND OR XOR NOT

X Y X AND Y X Y X OR Y X Y X XOR Y X NOT X

1 1 1 1 1 1 1 1 0 1 0

1 0 0 1 0 1 1 0 1 0 1

0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 41

After each bit pair has returned the corresponding result (a 1 or 0) according to the above

tables, the resulting 16-bit binary number is converted back to a decimal vale. This number is

the results of the logical operation.

Example:

41 AND 27 → 41 = 101001
AND

equals 27 = 011011

9 ← 001001

41 OR 27 → 41 = 101001
OR

equals 27 = 011011

59 ← 111011

41 XOR 27 → 41 = 101001
AND

equals 27 = 011011

50 ← 110010

NOT 3 → 3 = 0000000000000011
NOT

equals ________________

-4 (two’s complement form) ← 1111111111111100

5.4.5. Parenthesis and Operator Precedence

When working on complex expressions, the computer follows a predefined set of priorities

that determine the sequence in which the operators are evaluated. This can be quite

significant:

5 + 2 * 3 could be

5 + 2 = 7 or 2 * 3 = 6

7 * 3 = 21 6 + 5 = 11

The exact rules of “operator precedence” are on page 19.

To avoid having to remember all the rules and to make your programs more precise, always

use parentheses to specify the sequence of evaluation. The above example is clarified by

writing either:

(5 + 2) * 3 or 5 + (2 * 3)

SHARP PC-G850V(S) USERS GUIDE: Program Operation

 42

SHARP PC-G850V(S) USERS GUIDE: Programming in BASIC

 43

6. PROGRAMMING IN BASIC

In the previous chapter, we examined some of the concepts and terms of the BASIC

programming language. In this section we now want to use these elements to create

programs. However, this is not a manual on how to program in BASIC. This chapter will

familiarize you with the use of BASIC on your computer.

6.1. Programs

A program consists of a series of instructions to the computer. Remember that the computer

is only a machine. It will perform the exact operations that you specify. You, the

programmer, are responsible for issuing the correct instructions.

6.1.1. BASIC Statements

The computer interprets instructions according to a predetermined format. This format is

called statement. You must always enter the BASIC statements in the same pattern.

Statements must start with a line number:

Example:

10: INPUT A

20: PRINT A*A

30: END

6.1.2. Line Numbers

Each line of a program must have a unique line number – any integer between 1 and 65279.

Line numbers are the reference for the computer. They tell the computer the order in which

to run a program. You do not need to enter lines in sequential order (although if you are a

beginning programmer, it is probably less confusing for you to do so). The computer always

begins execution with the lowest line number and moves sequentially through the lines in

ascending order.

You can use the AUTO command to automatically insert line numbers. Each time you press

the key, a new line number, with the correct increment, will automatically be inserted.

See the BASIC COMMAND Glossary for a full description of this useful function.

It is wise to allow increments of several numbers in your line numbering. (10, 20, 30, ... 10,

30, 50, etc.). This enables you to insert additional lines, if necessary. If you use the same line

number, the older line with that number is deleted when you enter the new one.

6.1.3. Labeled Programs

Often you will want to store several different programs in memory at the same time.

(Remember that each must have unique line numbers.) Normally, to start a program with a

RUN or GOTO command, you will normally need to remember the beginning line number of

each program. However, there is an easier way. You can label each program with

alphanumeric characters and run the program.

SHARP PC-G850V(S) USERS GUIDE: Programming In BASIC

 44

Label the first line of each program you want to reference. The label consists of a letter and

up to 19 alphanumeric characters with a * in front or in quotes, followed by a colon.

Example:

10: *A: PRINT "FIRST"

20: END

80: "B": PRINT "SECOND"

90: END

Although both *Label and "Label" forms may be used, *label is recommended because it

executes more quickly and more visible in a program listing.

6.2. BASIC Commands

All BASIC statements must contain commands. These commands tell the computer what

action to perform. A command is contained within a program, and as such is not acted upon

immediately.

Some instructions require or allow an operand:

Example:

10: DATA "HELLO"

20: READ B$

30: PRINT B$

40: END

Operands provide information to the computer telling it what data the command will act

upon. Some commands require operands, while with other commands, they are optional.

Certain commands do not allow operands. (See the BASIC COMMAND GLOSSARY for

BASIC commands and their uses.)

Note: Commands, functions and variables entered in lower case characters will

be converted to uppercase characters.

6.2.1. Direct Commands

Direct commands are instructions to the computer that are entered outside of a program.

They instruct the computer to perform some immediate action or set modes that affect how

your programs are executed.

Direct commands have immediate effect – as soon as you complete entering direct

commands (by pressing the key), the command will be executed. Direct commands are

not preceded by a line number.

RUN

NEW

RADIAN

SHARP PC-G850V(S) USERS GUIDE: Programming in BASIC

 45

6.2.2. Modes (Operating Modes)

When you used the computer as a calculator, you were working in RUN mode. RUN mode is

also needed to execute the program you have entered. Use PRO mode if you want to enter or

edit programs.

6.3. Beginning to Program

To enter program statements into the computer, the computer must first be placed in PRO

(program) mode using the .BASIC. key. The following display will appear:

>

Enter the NEW command.

NEW

>

The NEW command clears the memory of all existing programs and data. The prompt appears

after you press the key, indicating that the computer is awaiting input.

6.3.1. Entering and Running a Program

Make sure the computer is in PRO mode and enter the following program:

10PRINT .SHIFT. + ..".. HELLO .SHIFT. + .."..

PROGRAM MODE

NEW

10:PRINT"HELLO"_

Notice that the computer automatically inserts the colon between the number and the

command when you press the key.

Check that the statement is in the correct format and then change the mode to RUN by

pressing the .BASIC. key.

.CLS. RUN

RUN

HELLO

>

SHARP PC-G850V(S) USERS GUIDE: Programming In BASIC

 46

Since this is the only line of the program, the computer will exit the program and return to

the BASIC prompt “>”.

6.3.2. Editing a Program

Suppose you want to change the message that your program was displaying. That is, you

wanted to edit your program. With a single line program, you could just retype the entry, but

as you develop more complex programs, editing becomes a very important component of

your programming. Let’s edit the program you have just written.

Switch to PRO mode. You need to recall your program in order to edit it. Use the up arrow

key to recall your program. If your program was completely executed, the key will

recall the last line of the program. If there was an error in the program, or if you used the

.BREAK. key to stop execution, the key will recall the line in which the error or break

occurred. To make changes in your program, use the key to move up in your program

(recall the previous line) and the key to move down in your program, display the next

line). If held down, the or key will scroll vertically (up or down) through your

program.

Remember that to move the cursor within the program line, you use the (right arrow) and

 (left arrow) keys. Using the key, position the cursor over the first character you wish

to change:

10:PRINT "HELLO"

10 PRINT "HELLO"

Notice that the cursor is now in the flashing block form, indicating that it is on top of an

existing character. Enter:

GOODBYE .SHIFT. + ..".. .SHIFT. + ..!..

10 PRINT "GOODBYE"!

SHARP PC-G850V(S) USERS GUIDE: Programming in BASIC

 47

Remember to press the key at the end of the line. Change to RUN mode.

RUN

RUN MODE

RUN

ERROR 10 IN 10

The error message indicates the type of error, and the line number in which the error

occurred. Press the .CLS. key to clear the error condition and return to PRO mode. You must

be in PRO mode to make changes in a program. Using (or), recall the line in which

the error occurred.

 (or)

10 PRINT "GOODBYE"!

The flashing cursor is positioned over the error. You learned that when entering string

constants in BASIC, all characters must be contained within quotation marks. Use the .DEL.

key to eliminate the “!”.

.DEL.

10 PRINT "GOODBYE"_

Now let’s put the ! in the correct location. When editing programs, .DEL. and .INS. are used

in exactly the same way as they are in editing calculations. Using , position the cursor on

top of the character that will be the first character following the insertion.

10 PRINT "GOODBYE"

Press the .INS. key. A  will indicate where the new data will be entered.

.INS.

10 PRINT "GOODBYE"

SHARP PC-G850V(S) USERS GUIDE: Programming In BASIC

 48

Enter the !. The display looks like this:

.SHIFT. + ..!..

10 PRINT "GOODBYE!"

Remember to press the key so the correction will be entered into the program.

Note: If you wish to delete an entire line from your program, just enter the line

number and the original line will be eliminated. The DELETE command

can be used to delete more than one line at a time.

6.3.3. Using Variables in Programming

Using variables in programming allows more sophisticated use of the computer’s abilities.

The values assigned to a variable can change during the execution of a program, taking on

the value entered or computed during the program. One way to assign a variable is to use the

INPUT command. In the following program, the value of A$ will change in response to the

data typed in answer to the inquiry “WORD?”.

Enter the following program:

10:INPUT ”WORD?”;A$

20:B=LEN(A$)

30:PRINT “THE WORD (”;A$;”) HAS”

40:PRINT “HAS “;B;” LETTERS”

50:END

The second new element in this program is the use of the END statement to signal the

completion of the program. END tells the computer that the program is completed. It is

always good programming practice to use and END statement.

As your program become more complex, you may wish to review them before you begin

execution. To look at your program, use the LIST command. LIST, which can only be used

in PRO mode, displays programs beginning with the lowest number. Try listing this

program:

LIST

10:INPUT ”WORD?”;A$

20:B=LEN(A$)

30:PRINT “THE WORD (”;A$

 ;”)”

40:PRINT “HAS “;B;” LETT

 ERS”

50:END

SHARP PC-G850V(S) USERS GUIDE: Programming in BASIC

 49

Use the and keys to move through your program until you have reviewed the entire

program. After checking your program, change to RUN mode and run it.

.CLS. RUN

RUN

WORD?

HELP

RUN

WORD?HELP

RUN

WORD?HELP

THE WORD (HELP)

HAS 4. LETTERS

This is the end of your program. Of course you may begin it again by entering RUN.

However, this program would be a bit more entertaining if it presented more than one

opportunity for input. We will now modify the program so it will keep running without

entering RUN after each answer.

Return to PRO mode and use the or keys (or LIST) to reach line 50, or enter:

LIST50

50:END

You may enter 50 to delete the entire line or use the key to position the cursor over the E in

END. Change line 50 so that it reads:

50:GOTO 10

Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same operation). Since

you put no limit on the loop, it will keep going forever (an “infinite” loop). To stop this

program, press the .BREAK. key.

When you have stopped a program using the .BREAK. key, you can restart it using the CONT

command. The program will restart on the line that was being executed when the .BREAK.

key was pressed.

SHARP PC-G850V(S) USERS GUIDE: Programming In BASIC

 50

6.3.4. More Complex Programming

The following program computes N factorial (N!). The program begins with 1 and computes

N! up to the limit that you enter. Enter this program:

100:F=1: WAIT 118

110:INPUT”LIMIT?”;L

120 FOR N=1 TO L

130:F=F*N

140:PRINT N,F

150:NEXT N

160:END

Several new features are contained in this program. The WAIT command in 100 controls the

time that displays are held before the program continues. The numbers and their factorials are

displayed as they are computed. The time they appear on the display is set by the WAIT

statement to approximately 2 seconds.

Notice that there are two statements in line 100 separated by a colon (:). You may put as

many statements as you wish on one line (separating each by a colon) up to a maximum of

254 characters including the key. Multiple-statement lines can make a program hard to

read and modify, so it is good programming practice to use them only where the statements

are very simple or there is some special reason to want the statements on one line.

In this program, we have used the FOR command in line 120 and the NEXT command in line

150 to create a loop. In the previous example, you created an “infinite” loop that kept

repeating the statements inside the loop until you pressed the .BREAK. key. With this

FOR…NEXT loop, the computer adds 1 to N each time execution reaches the NEXT command.

It then tests to see if N is larger than the limit L. If N is less than or equal to L, execution

returns to the top of the loop and the statements are executed again. If N is greater than L,

execution continues at line 160 and the program stops.

You may use an fixed numeric variable or simple numeric variable in a FOR…NEXT loop.

You do not have to start counting at 1 and can increment by any amount at each step. See the

BASIC COMMAND GLOSSARY for details.

We have labeled this program with line numbers starting with 100. Labeling programs with

different line numbers allows you to have several programs in memory at one time. To RUN

this program instead of the one at line 10, change to RUN mode and enter:

.CLS.
RUN100

You could also give the program a name using a label and start the program with RUN

*LABEL.

If more than six lines must be displayed, the first lines will scroll up off the display and

cannot be recalled. Use the WAIT command in the program to display data more slowly, or

use the printer. The WAIT command applies to every PRINT command. Break long PRINT

commands into a number of shorter commands if the display scrolls too quickly.

SHARP PC-G850V(S) USERS GUIDE: Programming in BASIC

 51

6.4. Debugging

After entering a new BASIC program, it will often not work the first time. Even if you are

entering a program that you know is correct, such as those provided in this manual, it is

common to make at least one typing error. It may also contain at least one logical error as

well.

Here are some general hints on how to find and correct your errors.

You run the program and receive an error message:

1. Switch back to PRO mode and use the cursor keys or key to review the line

with the error on display. The cursor is at the location where the error occurred.

2. If you cannot fine an obvious syntax error, the problem may be with the values that

are being used. For example, CHR$(A) generates a space if A is 1. Check the values

of the variables you are using in either RUN or PRO mode by entering the name of

the variable and pressing the key.

You run the program with RUN and don’t get an error message, but the program doesn’t do

what you expect:

1. Check the program line by line using LIST and the and keys see if you

entered the program correctly. It is surprising how many errors can be corrected when

you take another look at the program.

2. Think about each line as you go through the program as if you were the computer.

Take simple values and try to apply the operation in each line to see if you get the

result you expected.

3. Insert one or more extra PRINT statements in the program to display key values and

key locations. Use these to isolate the parts of the program that are working correctly

and the location of the error. This approach is also useful for determining which parts

of a program have executed. You can also use STOP to temporarily halt execution at

critical points so that several variables can be examined.

4. Use TRON (TRace ON) and TROFF (TRace OFF), either as direct commands or

within the program to trace the flow of the program through individual lines. Stop to

examine the contents of critical variables at crucial points. This is a very slow way to

find a problem, but it is sometimes the only way.

6.4.1. Trace Mode

No matter how careful you are, eventually you will create a program that does not do what

you expect it to do. To isolate the problem, BASIC has a special method of executing

programs known as "Trace" mode.

TRON (TRace ON) starts Trace mode. The TRON instruction can be used as a direct

command (in RUN mode) or can be embedded within a program. Used as a direct command,

TRON informs the computer that tracing will be required during the execution of all

subsequent programs. The programs to be traced are then started in the usual fashion, using

the GOTO or RUN command.

SHARP PC-G850V(S) USERS GUIDE: Programming In BASIC

 52

If TRON is used within a program, it will initiate Trace mode only when the line it is

executed. If, for some reason, the line is never reached, Trace mode will remain inactive.

6.4.2. Debugging Procedures

1. Set the computer to RUN mode.

2. Enter TRON to specify trace mode.

3. Enter RUN to run the program. After executing each line, the computer stops

execution and displays the current line number.

4. Use the key to examine the current line. If the key is held down, the program

continues execution line by line. Releasing the key stops program execution. To

examine the contents of the last executed line, press and hold the key. When the

 key is released, the BASIC command prompt ">" appears. To resume execution,

press the key.

5. If execution of the program is interrupted during data entry with the INPUT

statement, press to continue program execution.

6. Continue the trace procedure and check if the program is executing properly by

confirming program execution order and variable contents after each line is executed.

If the program is not executing properly, correct the logic.

7. After debugging, enter TROFF to exit trace mode.

Example:

10 INPUT "A =";A,"B =";B

20 C = A*2

30 D = B*3

40 PRINT "C =";C;"D =";D

50 END

Run the program.

RUN mode

TRON >

RUN A =_

8 B =_

9 10:

 20:

 30:

 C = 16. D = 27.

 40:

If the execution is interrupted by the .BREAK. key, review the variables manually and check

that the values are as expected. Pressing the key will execute one statement at a time and

entering CONT will execute the statements continuously.

Note:

 If a result or other information is displayed at the location specified by LOCATE,

the line number appears on the line after this. (See BASIC COMMAND

GLOSSARY for instructions on the LOCATE command)

SHARP PC-G850V(S) USERS GUIDE: Programming in BASIC

 53

 If a variable is accessed manually or a manual calculation is performed after

LOCATE was assigned, it assignment is lost.

 Trace mode remains active until TROFF is entered, the .SHIFT. + .CA. keys are

pressed, or power is interrupted.

 When executing a comment line in trace mode, no line number is displayed. In

this case, the number of the last executed line remains on the display.

To troubleshoot by interrupting a running program, do the following:

1. Press the .BREAK. key while running the program

2. Enter the STOP command at the appropriate location.

The computer indicates that the program has stopped and execution is interrupted.

Afterwards, manually check the contents of the variables. Press the key to execute the

instructions line by line, CONT for continuous execution.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 55

7. TEXT MODE

In TEXT mode (text editor) you can write and edit programs (BASIC, C, assembler or CASL)

in ASCII format. In the same way, data files can be created, edited or deleted. Programs as

well as data can be stored on the RAM disk or sent/received via the serial I/O interface.

BASIC instructions for the computer are stored in a 2-byte format called "intermediate code".

Since this code differs depending on the hardware or BASIC interpreter used, it cannot be

used for communication between personal computers or other devices. ASCII code is

commonly used for communication between personal computers because representation of

alphanumeric characters and primitive symbols is the same, regardless of the hardware used.

With TEXT mode, you can write, edit and save programs in ASCII. Programs can also be

converted from intermediate code (BASIC) to ASCII and vice versa. This section describes

the functions of TEXT mode.

When you press the .TEXT. key, you will see a screen

like the one on the right.

 *** TEXT EDITOR ***

 Edit Del Print

 Sio File Basic Rfile

TEXT mode can be exited at any time by switching to another mode (RUN, PRO, ASMBL,

CASL, C). Data already entered is not lost and can be further edited by pressing .TEXT. + ..E..

(for Edit).

To get to the main menu from any submenu of TEXT mode, press the .TEXT. key. To go up

one menu level, press the .BREAK. key.

7.1. Functions in TEXT mode

In TEXT mode, the following functions are available:

Mode Operation
Edit Creating and editing programs or files

Del Delete programs or files in the editor

Print Send a program listing or data to the printer

Sio Serial I/O port
Save Send program or data via the serial interface
Load Load program or data from the serial interface
Format Configure the serial interface

File Program file operations on the RAM Disk
Save Store a program
Load Load a program
Kill Delete a program
Files Retrieve/display all programs on the RAM disk

Basic Convert file between BASIC and TEXT formats

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 56

Basic←text Conversion from TEXT to BASIC
Text←basic Conversion from BASIC to TEXT

Rfile Data file operations on the RAM disk
Init Create data file
Save Save data file
Load Load data file
Kill Delete data file
Files Retrieve/display all data files on the RAM disk

7.1.1. Editing Programs and Files

Select the edit function from the main menu, press ..E...

In the edit function, the prompt in the command line

is "<" (instead of ">" in BASIC).

TEXT EDITOR

<

As with a BASIC program, each line of a TEXT program begins with a line number.

However, the computer does not automatically add a colon after the line number (:), as with

BASIC programs. Also, a space is not automatically inserted between commands. Each line

appears exactly as it is typed.

Note: - Line numbers are automatically sorted in ascending order.

 - The range of possible line numbers for a program is from 1 to 65279. If

this range is exceeded or no line number is entered, an error message

(LINE NO ERROR) is displayed. Press .CLS. / .CA. to clear the error

message.

To return to the main menu press .BREAK..

Note: A TEXT line cannot begin with a number directly after the line number. If

the line should necessarily begin with a number, an apostrophe (') must be

inserted between the line number and the number.

50 '100 FORMAT (17X, A)

 apostrophe

 Line Number

(Example program) Enter the following program:

10INPUT A

20B=A*A

30PRINT A,B

40END

10INPUT .SPACE. A 10INPUT A

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 57

20B =A*A

30PRINT .SPACE. A,B

40END

20B=A*A

30PRINT A,B

40END

7.2. TEXT Editor

A TEXT program is edited just like a BASIC program. (See the explanations for

programming in BASIC)

The TEXT mode edit commands correspond to BASIC commands. (For details of the

commands, see the explanations in the BASIC COMMAND GLOSSARY)

Commands:

A Auto numbering (see also the AUTO command on page 177)

L List the lines (see also the LIST command on page 210)

R Renumber (see also RENUM command on page 226)

D Delete lines (see also DELETE command on page 188)

C Copy lines (see also LCOPY command on page 205)

S Search for string

E Find and replace string

If the R command is executed in a TEXT program that was converted by a BASIC program,

only the line numbers at the beginning of a line are renumbered, while the line numbers

within GOTO, THEN, GOSUB, or RESTORE statements are not. In this case, the program does

not run when it is converted back to BASIC.

A Auto

Format: A [[start-line-number][,interval]]

Description: After starting A, the first line number appears in the display with a trailing

cursor. The desired content can now be entered. Pressing the key,

generates the next line number and so on.

L List

Format: L

L line number

L label

Description: Lists the program from the beginning or from the specified line number or

labels.

R Renumber

Format: R [oldline[,newline][,interval]]

Description: Re-number all rows or specified rows with specified interval.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 58

D Delete

Format: D start line number[,[endline number]]

Description: Deletes the specified line or all lines from the specified start line up to and

including the specified end line number. The remaining syntax variants

correspond to the DELETE command.

C Copy

Format: C startline,endline,destination

Description: Copies the lines startline … endline to destination.

Caution: Jump addresses are not changed in BASIC commands

S Search

Format: S [0|1,] string

Description: Searches for a string in the text file. If the string is found, the cursor is placed

on the first character of the matching string. Press to move the cursor to

the next matching string. .CLS. ends the search. The search string may have a

maximum length of 16 characters. Specifying 0 or 1 determines the search

direction:

1: Search forwards from the beginning of the file.

0: Search backwards from the end of the file.

If this parameter is not specified, the search will start from the beginning of

the file (1).

When searching for a " (double quotation mark), use ¥" as a string for ". For

example: S "¥"".

E Replace

Format: S [0|1,] search string, replacement string

Description: Finds and replaces a string in the editor. If the string is found, the cursor is

placed on the first digit of the matching string. Press to move the cursor to

replace the characters and jump to the next matched string. .SPACE. does not

replace the string and the cursor is moved to the next matching string. .CLS.

ends the search.

Strings may have a maximum length of 16 characters. Specifying 0 or 1

determines the search direction:

1: Search forwards from the beginning of the file.

0: Search backwards from the end of the file.

When searching for a " (double quotation mark), use ¥” as a string for ". For

example: E "¥""

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 59

7.2.1. The .TAB. Key

In EDIT mode, pressing the .TAB. key moves the cursor to the next column. When the.TAB.

key is first pressed, the cursor moves to column 8. At the next press, the cursor moves to

column 14 (6 digits after the first tab position). Each subsequent press of the .TAB. key

moves the cursor seven places forward (to 21, 28, etc.…).

7.3. Delete TEXT Memory (Del)

Select the delete function from the TEXT menu, press ..D...

 *** TEXT EDITOR ***

TEXT DELETE OK? (Y)

If the ..Y.. key is pressed, the entire TEXT memory area is completely deleted, including the

TEXT program, and the main menu is displayed.

If any key other than ..Y.. is pressed, the computer returns to the main menu without deleting

anything.

Note: If no text is stored in the TEXT memory, the computer will not respond to

the ..D.. key and returns to the main menu.

7.4. Print TEXT Program (Print)

Connect the CE-126P printer to the computer and turn on the computer and the printer.

Display the TEXT main menu and press ..P.. to print the stored TEXT program.

 *** TEXT EDITOR ***

 --- PRINTING ---

After printing, the computer displays the main menu.

Note: To cancel printing, press .BREAK.. If the printer is not turned on or is not

connected to the computer, the computer will not respond to ..P.. when the

main menu is displayed.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 60

7.5. Serial Input/Output (SIO)

Pressing the ..S.. key in the TEXT main menu will display the serial input / output menu

(SIO menu). Select the corresponding function Save (send), Load (receive) or Format

from the SIO menu by entering the first letter of the function (S, L or F).

 << SIO >>

 Save Load Format

7.5.1. Set I/O Parameters (Format)

Serial communication parameters can be set with this menu. The communication parameters

must match the device that this computer will communicate with. To display a help menu

from the SIO menu, press ..F...

 << SIO >>

 Select ←,→,↑,↓ key
 Set ↲ key

 --- Push any key ---

Press any key or wait until the computer

displays the communication settings.

 →baud rate =1200

 data bit =8

 stop bit =1

 parity =none

 end of line =CR LF

 end of file =1A

→ indicates the chosen parameter. You can move → to a different setting to change with the

 or keys. There are a total of seven settings that can be set. With the key, you can

scroll through all the settings on the display.

The and keys change values of the setting indicated by →. However, the setting for

the "end of file" must be entered manually. After entering the changes, press to

save the changes. If the new settings are not saved, the computer will use the previously set

parameters.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 61

Communication Parameters

baud rate : 300, 600, 1200, 2400, 4800, 9600

Sets the baud rate. The baud rate is the speed that data is transmitted,

the higher rate, the faster the speed. Allowable baud rates are 300,

600, 1200, 2400, 4800 and 9600 bps (bits per second).

data bit : 7 or 8

Specifies the number of bits needed to represent a character. It can be

set to either 7 or 8 bits.

stop bit : 1 or 2

Specifies the length of the stop bit at the end of character.

parity :

none, even or odd

Specifies the type of data check (parity check).

none : no parity.

even : even parity.

odd : odd parity.

end of line : CR, LF or CR + LF

Specifies the code for the end of each program line.

CR : carriage return.

LF : line feed.

CR + LF : both CR and LF.

end of file : 00 to FF (two-digit hexadecimal number)

Specifies the code to indicate the end of a program or other file.

line number : yes or no

Specifies whether a TEXT program is sent with or without line

numbers.

yes : the program is sent with line numbers.

no : the program is sent without line numbers.

Line number also determines whether a line number (in increments of

10) should automatically be added to each program line upon receipt.

yes : no line numbers are added. "yes" is selected if the program

already contains line numbers.

no : line numbers are automatically added.

If the received file does not contain line numbers, even though "yes"

was set, an error message (LINE NO, ERROR) is displayed.

flow : RS/CS, Xon/Xoff, or none

Specifies how information exchanged through the serial port is

controlled.

RS / CS : flow control is controlled by the RS/CS signals.

Xon/Xoff : flow control is through the Xon/Xoff protocol

none : transmission is carried out without any flow control.

The settings apply to all subsequent FOPEN(“stdaux1”), or OPEN "COM1" commands.

Once the settings have been changed and saved, these new parameters will apply until the

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 62

RESET button is pressed to clear the memory, the battery is replaced, or the settings are

changed again.

7.5.2. Send Program (Save)

Pressing the ..S.. key in the SIO menu will send a program or data stored in TEXT memory

to the serial I/O port.

 << SIO >>

 --- SENDING ---

After sending is complete, the computer returns to the SIO menu.

Note:

1) To cancel the transmission, press the .BREAK. key. The computer returns to the

SIO menu.

2) If there is no program or data stored in TEXT memory, the computer will not

respond to the ..S.. key.

7.5.3. Receive Program (Load)

Pressing the ..L.. key in the SlO menu will load data from the serial I/O port to TEXT

memory.

 << SIO >>

 --- RECEIVING ---

After receiving is complete, the computer returns to the SIO menu.

Note:

1. To cancel the reception, press the .BREAK. key. The computer goes back to the

SIO menu.

2. If the program was not received correctly or if a parity error occurred, an error

message will appear (l/O DEVlCE ERROR). To clear the error message, press

.CLS / CA..

7.5.4. Printing

Pressing the ..L.. key in the main menu will allow printing via the parallel interface

(Centronics protocol).

For more information on using the parallel interface, see also INP and OUT commands.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 63

7.6. Program File Management (File)

Pressing the ..F.. key in the main menu will display the ram disk file menu.

 << PROGRAM FILE >>

 Save Load Kill Files

From this menu, the corresponding function "Save, Load, Delete, or View Files" is selected

by entering the first letter of the function (S, L, K or F).

7.6.1. Save TEXT Program (Save)

Pressing the ..S.. key in the program file menu prompts for a name for the TEXT file. Enter

the file name and press . The computer now saves the contents of TEXT memory in this

file.

Saving a file with the file name "TEST".

..S..

 << PROGRAM FILE >>

→Save Load Kill Files

FILE NAME=?

..T.. ..E.. ..S.. ..T..

 << PROGRAM FILE >>

→Save Load Kill Files

FILE NAME=?TEST

The computer saves the file "TEST" and then returns to the program file menu.

Note:

 You must enter a file name. If the key is pressed without entering a

name, ILLEGAL FILE NAME error is displayed. To clear the error, press

.CLS..

 A file name can consist of up to eight characters and an extension of up to

three characters. If no extension is entered, the computer automatically

assigns the extension .TXT.

 If there is no TEXT program is stored in TEXT memory, saving is

aborted.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 64

7.6.2. Load TEXT Program (Load)

Pressing the ..L.. key in the program file menu displays a list of stored files. "LOAD →"

points to the first file name (if no program has been saved, the computer will not respond to

the ..L.. key).

Example of a list of files

LOAD → ABC .TXT 456

 PRO .TXT 1234

 .BAS 1567

 TEST .TXT 789

Use the and keys to move "LOAD →" to the name of the file to be loaded; then press

. The computer loads the contents of the selected file into the TEXT area and then returns

to the file menu.

Note: Only programs and files created in TEXT mode can be loaded. Trying to

load a program that was saved using the BASIC SAVE command results in

a FILE MODE ERROR. To clear the error, press .CLS..

7.6.3. Delete Program File (Kill)

This function deletes a file. Pressing the ..K.. key in the program file menu prompts for the

name of the file to be deleted.

 << PROGRAM FILE >>

Save Load →Kill Files

FILE NAME=?

Enter the name of the file to be deleted and press . The computer then asks for

confirmation.

FILE DELETE OK? (Y)

Pressing the ..Y.. key confirms the deletion. Any other key will cancel the deletion and the

program file menu will be displayed. If the file name does not contain an extension, the

suffix .TXT is added by default.

If the specified file does not exist, the computer issues a FILE NOT FOUND error.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 65

7.6.4. List File Names (Files)

Pressing the ..F.. key in the program file menu displays a list of all stored files. A "→" points

to the first file name on the list. (If no files are stored, the computer does not respond to the

..F.. key).

Example of a list of files.

LOAD → ABC .TXT 456

 PRO .TXT 1234

 .BAS 1567

 TEST .TXT 789

The list can be scrolled by pressing the and keys.

To load a program marked with →, press .SHIFT. + ..M.. (or .2ndF. + ..M..).

7.6.5. About TEXT files

The size of the text file is the total number of bytes for each line. The number of bytes in

each line is calculated from the line number (3 bytes), the linefeed (1 byte) and the number of

characters in the text of the line.

Example:

10_INPUT_A

results in 3 + 8 + 1 = 12 bytes for this line.

When converting to BASIC code, the program length becomes shorter because the BASIC

keywords require fewer bytes.

7.7. BASIC Converter (Basic)

This function converts a BASIC program in intermediate code into a TEXT file in ASCII

code or vice versa. This feature is useful for editing BASIC programs written for the

G850V(S) on a personal computer.

Pressing ..B.. in the main menu will show the BASIC converter menu.

 << BASIC CONVERTER >>

 Basic→text Text←basic

From this menu, conversion from TEXT to BASIC or from BASIC to TEXT can be selected.

Enter the first letter of the format you want to convert to.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 66

7.7.1. Conversion of TEXT and BASIC Programs

Pressing the ..B.. key in the BASIC converter menu converts the TEXT program in TEXT

memory into a BASIC program and saves it to program memory.

Pressing the ..T.. key in the BASIC converter menu converts the BASIC program in program

memory into a TEXT program and saves it to TEXT memory.

Example:

Convert a TEXT program into BASIC.
..B..

 << BASIC CONVERTER >>

 --- CONVERTING ---

After conversion, the computer returns to the main menu. (Converting a short program takes

very little time to convert.)

If there is a BASIC program loaded while a TEXT program is being converted, or vice versa,

the computer asks for confirmation on whether the existing program should be deleted before

the conversion.

Basic→text Text←basic

BASIC DELETE OK? (Y)

When you press ..Y.., the computer deletes the existing BASIC program and begins the

conversion. Pressing any other key will cancel the conversion and the computer will return to

the main menu.

In general, the computer keeps the original program after it has been converted to another

format. However, if there is not enough memory available after a program has been

converted, the computer asks for confirmation on whether the original program should be

deleted.

 --- CONVERTING ---

TEXT DELETE OK? (Y)

Pressing the ..Y.. key will clear the original program during the process of conversion. At the

end of the conversion, the original program is deleted. Pressing any other key will cancel the

conversion and the computer will return to the main menu.

7.7.2. Out of Memory when Using the TEXT/BASIC Converter

If during a BASIC conversion the computer detects that there is not enough memory to hold

both versions, the source version will be deleted line by line during the conversion. If the

target program takes too much memory, it may cause the conversion to abort. As a result,

part of the program is in source format and the rest is in target format and is therefore no

longer usable. If you anticipate such a situation (i.e. in the case of low memory), you should

first save the source program via the serial interface or print it out for emergencies.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 67

7.8. Data File Management (RFILE)

With this function, data files are created, deleted, loaded into the TEXT editor or saved by

the editor.

When the ..R.. key is pressed while the main menu is displayed, the computer shows the data

file menu (RFILE).

 << RAM DATA FILE >>

 Init Save Load Kill

 Files

Enter the first letter of the function (I, S, K, L, or F) to select the corresponding function (File

Create (Init), Save, Load, Delete (Kill) or View (Files)).

7.8.1. Create File (Init)

Pressing the ..I.. key in the data file menu will prompt for the name of the file to be created.

Example:

To create the file TEST.
TEST.DAT

→Init Save Load Kill

 Files

FILE NAME=TEST.DAT

→Init Save Load Kill

 Files

FILE SIZE=?

The size of the file must be specified in bytes. The size must be chosen so that all the

necessary data fits into the file.

Example:

Create a 1024 byte file.
1024

→Init Save Load Kill

 Files

FILE NAME=1024

If the specified file has already been created, the computer asks whether the file should be

reinitialized with the prompt FILE INITIALZE OK? (Y).

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 68

Pressing the ..Y.. key will reinitialize the file and all previous data is lost. Any other key

aborts the re-initialization.

Note:

1. If a file extension is not included in the file name, the extension .DAT is

automatically appended.

2. The file name can have a maximum length of 8 characters.

3. One file occupies the specified number of bytes in memory plus 34 additional bytes

4. If there is not enough space left in the memory to create the file, the computer

displays MEMORY OVER

7.8.2. Load Data File (load)

When you press the ..L.. key in the data file menu, the computer displays a list of stored files;

where ""LOAD →" points to the first file name (if no files have been saved, the computer

will not respond to the ..L.. key).

Here is an example of a list of saved files.

LOAD → TEST .DAT 1024

 ABC .DAT 512

 SAMPLE .DAT 2048

Use the and keys to move "LOAD →" to the name of the file to be loaded; then press

. The computer loads the contents of the selected file into the TEXT area and then returns

to the program file menu.

7.8.3. Delete Data File (Kill)

This function deletes a specific file.

When you press ..K.. in the data file menu, the computer asks for the name of the file to be

deleted.

file menu (RFILE).

 << RAM DATA FILE >>

 Init Save Load Kill

 Files

 FILE NAME=?

Enter the name of the file to be deleted and press . The computer then asks for

confirmation that the file should be deleted.

FILE DELETE OK? (Y)

Pressing ..Y.. confirms the deletion. Any other key will cancel the deletion and the file menu

will be displayed. If no file name extension is specified, the suffix .DAT is added by default.

If the specified file does not exist, the computer displays FILE NOT FOUND.

SHARP PC-G850V(S) USERS GUIDE: TEXT mode

 69

7.8.4. List Data Files (Files)

Pressing ..F.. in the program file menu will display a list of all stored files. → points to the

first file name of the list. (If no files are stored, the computer does not respond to the ..F..

key.)

LOAD → TEST .DAT 1024

 ABC .DAT 512

 SAMPLE .DAT 2048

The hidden parts of the list can be scrolled by pressing the and keys. To load a data

file marked with the →, press .SHIFT. + ..M.. (or .2ndF. + ..M..).

7.8.5. Save Data File (Save)

Pressing ..F.. while the data file menu displayed, prompts for the name of the file to be saved.

 Init →Save Load Kill

 Files

FILE NAME=?

Enter the file name of a previously created data file and press . The computer the saves

the file.

Example:

Saving a file with the filename "TEST".
TEST

 Init →Save Load Kill

 Files

FILE NAME=TEST.DAT

The computer then prompts FILE OVERWRITE OK? (Y). Pressing ..Y.. saves the file

"TEST.DAT" and then returns to the data file menu. Any other key aborts the SAVE

function.

If the file was not previously created with INIT, the computer issues the error message FILE

NOT FOUND and cancels the function.

Note:

 If the file to be saved is larger than the size specified in the Init function, the

computer aborts the action and displays the error message MEMORY OVER.

 After selecting a function from the file menu, it is essential to enter a file name. If

the key is pressed without entering a name, an ILLEGAL FILE NAME error

will be displayed. To clear the error message, press .CLS..

 A file name can consist of up to eight characters and an extension of up to three

characters. If no extension is entered, the computer automatically assigns the

extension ".DAT".

 If no data is stored in the TEXT area, saving cannot be performed.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 71

8. THE C PROGRAMMING LANGUAGE

This chapter describes the differences between the C language on large computers (such as

UNIX) and on the SHARP PC-G850. This chapter does not teach you how to program in C.

Numerous books are available to learn how to program in C.

8.1. Properties of the C Programming Language

C is a very compact language. On one hand, C is a higher programming language, on the

other hand, it is possible to use detailed processing notations that are very close to machine

language.

While other higher programming languages (such as BASIC, FORTRAN, etc.) restrict access

to the underlying hardware with PEEK and POKE, the C language makes it possible to write

programs which directly access the hardware and memory, much like an assembly program.

Programming in C can be compared to assembly language, however, it is much more

efficient.

With its structured programming, C is easy to read and easy to understand. Thus, it is very

powerful for program development. In addition, there are a variety of data types for

processing data and numeric functions. Therefore, there is a wide range of applications for C,

be it professional, private or scientific.

C programs are very compact. In addition, programs are very efficient due to the use of

pointers.

Programs written in C are highly portable despite hardware-related programming. C

programs can usually be run on other computer systems with few changes.

The C language is very powerful. This also has the disadvantage that programs can be written

obscurely, as there are often several methods to solve a task.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 72

8.2. The C Compiler

Since the computer does not understand the C statements directly, the C program must be

compiled before execution. This usually requires the following steps:

Start Programming

Mode: .TEXT. → ..E..

Create program in the TEXT editor

Error in Compiling?

Mode: .SHIFT. + .TEXT.

Select the C compiler

Mode: ..C..

Create an executable program

Mode: ..G..

Execute compiled program

Runtime error?

Error-free run?

Finished

NO

YES

YES

YES

NO

NO

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 73

8.2.1. Call the Text Editor:

.TEXT. → ..E..

TEXT EDITOR

<

8.2.2. Enter the C Source Program:

10 main ()

20 {

30 printf (“Hello World ¥n”);

40 }

Switch to CAPS mode to enter the commands. Similar to BASIC, each line must be preceded

by a line number (without the following colon). By contrast, the C compiler doesn’t do

anything with the line numbers. They are internally ignored during compilation. They are

used only for editing.

The editor functions can be found in the chapter on TEXT mode.

8.2.3. Compile the Source Program

Call the C compiler menu:

.SHIFT. → .TEXT.

 *** C ***

 Compile Trace Go Stdout

The following commands are available:

Compile : Compile the program in the TEXT Editor

Trace : Run the Program in Trace Mode (Step by Step)

Go : Run the Program

Stdout : Switch the standard output to the printer

The respective command is selected by entering the first letter.

8.2.4. Compile

Press the ..C.. key. The message “compiling” appears briefly. If the program compiles

properly, the message “complete!” appears shortly afterwards

 *** C ***

 Compile Trace Go Stdout

complete!

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 74

If an error message appears instead, the program must be corrected with the editor (.TEXT. →

..E..) and recompiled.

If the error MEMORY FULL appears, there is insufficient free memory to create the

executable program.

8.2.5. Running the Program

Execute the program by pressing the key ..G.. in the C menu.

Hello World

*EXIT (40)

 “• EXIT” indicates the number of the line where the program finished execution. To return

to C menu, press the .CLS. or .BREAK. key.

Below are the descriptions of the runtime errors.

8.3. Trace

In order to locate errors in a program, it may be helpful to execute the program step by step

and observe what the program does in detail and examine the contents of the variables. The

TRACE function can be used in the C compiler menu for this purpose. The trace function is

explained using this example.

10 main ()

20 {

30 int i, gokei = 0;

40 for (i = 1; i <51; i ++) {

50 gokei += i;

60 printf (“ 1 + ... +% d =% d¥n”, i, gokei);

70 }

80 }

8.3.1. Start TRACE Mode

Trace mode is started by pressing the ..T.. button in the C menu.

?10 main()

Each command is shown in the display and executed by pressing . Each subsequent

command is run by pressing . Press the .BREAK. button to enter pause mode.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 75

Functions in Pause Mode:

 : Exit the pause mode and continue the program.

..C.. : Exit the pause mode and continue the program.

..A.. : Cancel the trace mode and return to the compiler menu.

..T.. : Continue Trace

..N.. : Resume normal compilation of the program (without further tracing).

..D.. : Enter variable mode

In variable mode, enter the name of the variable to display its contents.

.BREAK.

..D.. i

1+...+1 = 1

 40 for(i-1;i<51;i++) {

Break>D

var>i

int : 2(0x0002)

var>_

In this example, the variable i currently has the value 2. Pressing .BREAK. will exit variable

mode

8.4. Redirecting Screen Output to the Printer

If the CE-126P printer (sold separately) is connected and ready to use, press ..S.. on the C

compiler menu screen. This will change the display from stdout (screen output) to stdprn

(printer output).

Press the ..S.. key again to switch to screen output. If the program explicitly uses stdprn, the

output will be directed to the printer, regardless of what is specified in the compiler menu.

stdout: output on the screen

stdprn: output on the printer

The following C commands depend on the setting in this menu:

putc

fputc

fputs

fprintf

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 76

8.5. Functional Diagram of the C Compiler

Compile

Trace

Go

Stdout

Stdprn

Compiler

Error while

compiling

Program

execution

Normal

termination

Trace modes

Debug

Mode

breakpt()

.BREAK.

Abnormal

termination

Trace Mode

 .BREAK.

breakpt()

abort()

exit()

abort()

exit()

.SHIFT. +
.TEXT.

..C..

..D.. ..T..

..G..

..T..

..C..

..N..

..A..

 .BREAK.

 .BREAK.

Change of output

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 77

8.6. C Programming Basics

This section only deals with the specific features of the C compiler in the SHARP PC-G850.

8.6.1. Formatting Options for Output (i.e. printf)

command output

%d Integer decimal number

%x Integer hexadecimal number

%o Integer octal number

%f Floating point

%s String

%c Single sign

8.6.2. Variable Types

Type Subtype Range Size

Integer char -128 to +127 8-bit

 unsigned char 0 to 255 8-bit

 int -32768 to +32767 16-bit

 unsigned int 0 to 65535 16-bit

 short -32768 to +32767 16-bit

 unsigned short 0 to 65535 16-bit

 long -2147483648 to +2147483647 32-bit

 Unsigned long 0 to 4294967295 32-bit

Real float ± 1x10
-99

 to ± 9,999x10
+99

 32-bit

 Double ± 1 x 10
-99

 to ± 9.999999999 x 10
+99

 64-bit

 long double ± 1 x 10
-99

 to ± 9.999999999 x 10
+99

 64-bit

Unsigned: Unsigned works without a sign. Thus, the full number of bits is available for the

number.

Variable Names

Variable names may consist of lower case, capital letters and numbers (no Kana characters)

and must always begin with a letter. Special characters are not allowed.

A variable name has a maximum length of 31 characters. Extra characters are ignored.

A variable cannot have the same name as a keyword.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 78

8.6.3. Operators

Comparison Operators

Expression Comparison

a==b True if a equals b
a!=b True if a is not equal to b
a<b True if a is less than b
a>b True if a is larger than b
a<=b True if a is less than or equal to b
a>=b True if a is greater than or equal to b

Arithmetic Operators

Operator Operation Example

+ addition a + b

– subtraction a – b

* multiplication a * b

/ division a / b

% modulo a % b

Assignment Operators

Operator Example Definition Arithmetic operation

= a = b Replace a with b

+= a += b Add a to the contents of b a = a + b

–= a –= b Subtract b from the contents of a a = a – b

*= a *= b Multiply a by the contents of b a = a * b

/= a /= b Divide a by the content of b a = a / b

%= a %= b a is the remainder of the division of a by b a = a % b

Increment / Decrement Operators

Operator Example Definition Arithmetic operation

++ ++a Increment a by 1 then use a = a + 1
++ a++ Use a then increment by 1
-- --a Decrement a by 1 then use a = a – 1
-- a-- Use a then decrement by 1

Logical Operators

operator Example Definition

&& a&&b Logical AND of a and b (1 if neither a nor b is 0)
|| a||b Logical OR of a and b (1 if neither a nor b is 0)
! !a Logical NOT (if a <> 0, then 0, if a = 0 then 1)

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 79

Bitwise Operators

Operator Example Definition

& a&b Bitwise AND
| a|b Bitwise OR
^ a^b Bitwise XOR
~ ~a Bitwise NOT

Shift Operators

Operator Example Definition

<< a<<b shift a one bit to the left b times
>> a>>b Shift a one bit to the right b times

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Escape Control Characters

control character Hex value description

¥b 0x08 Backspace

¥n 0x0A Newline

¥r 0x0D Go to the beginning of the line

¥t 0x09 Tab (jump to the next tab stop)

¥¥ 0x5C The character ¥

¥’ 0x2C The character ‘

¥” 0x22 The character “

¥? 0x3F The character ?

¥ddd The characters as a 3-digit octal number

¥xhh The characters as a hexadecimal number.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 80

8.7. C SYNTAX

8.7.1. Compound Instructions

Statements surrounded by curly brackets are treated by the computer as a group or as a

standalone statement. The only difference is that there is no semicolon behind the closing

bracket at the end of the compound statement

{

 Instruction 1

 Instruction 2

 ⋮
 Instruction n

}

8.7.2. Conditional Jumps

If…else

Format:

1) if (expression)

 statement

If the expression is true, the statement will be

executed.

2) if (expression)

 statement1

 else

 statement2

If the expression is true, statement1 is executed,

otherwise, statement2 is executed

3) if (expression1)

 statement1

 else if (expression2)

 statement2

 else

 statement3

If expression1 is true, execute statement1.

If expression1 is false and expression2 is true, execute

statement2,

otherwise, statement3 is executed.

switch…case

Format:

switch (expression) {

case const-expression1: statement1

 [break;]

case const-expression2: statement2

 [break;]

 ⋮
case const-expression#: statement#

 [break;]

default: statement

}

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 81

8.7.3. Loops

for

Format: for (expression1, expression2, expression3)

statement

expression1: initialize loop.

expression2: after executing expression1, expression2 is checked and if true,

the statement is executed.

expression3: execute expression3 with every iteration of the loop. Execution

continues until expression2 is false.

while

Format: while (expression)

statement

statement is repeated as long as expression is true.

do-while

Format: do

 statement

while (expression)

statement is executed and then expression is checked. If true, the statement is

executed again.

8.7.4. Unconditional Jumps

goto

Format: goto label

 ⋮
label: instruction

The goto statement continues program execution at the specified label.

continue

The continue statement aborts the current loop and starts the next iteration of a while, do-

while, or for loop.

for (i = 0; i<100; i++) {

 ⋮
if (i%2 == 0)

continue;

printf (“%d\n"NN, i);

}

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 82

break

The break statement immediately aborts the next outer switch, while, do-while, or for

statement.

for (i = 0; i <100; i ++) {

 ⋮
 if (a[i] <0)

 break;

 ⋮
}

return

Return returns to the calling program. A return value can be passed (not null).

Example:

return (expression);

or

return;

8.8. Storage Classes

Storage classes are used to define storage areas for variables and to define the extent (area

from which the program can read / write).

storage class range of validity

auto short-term storage within a program

register
For frequent access. Variables for increasing the execution speed by

assigning values to a register (otherwise like auto).

static
Reserves an area during program execution. Value access and

corresponding actions throughout the program.

external File-external or function-external global variables.

8.9. Arrays

The C compiler supports the use of up to eight-dimensional arrays. Example for a two-

dimensional array:

char color[3][6] (3 rows by 6 columns of characters)

The same statement with assignment of values:

char color[3][6] = {“white”, “red”, “blue”};

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 83

8.10. Structures

Structures defines a new data type which unites components of different types. With the help

of struct, data structures can be generated.

The type declaration

struct struct-identifier {

 data-declaration

};

allows the declaration of variables of this type

struct-identifier var-identifier;

Example: Declaration of a data type for storing the personal data of a student.

// Structure

{

// new structure

struct Student {

 long long int ID;

 int skz;

 char surname[30], first name[20];

};

// create variables of type Student

Student arni, robbi;

// Data input

cout << endl << "First Name:";

cin >> arni.firstname;

 ⋮
robbi = arni; // copy record

cout << robbi.firstname << endl;

}

The assignment robbi = arni; copies the entire record from one variable to another.

Access to the component first name of the variable arni (of type Student) is made via

arni.name

The data are stored in the form

ID skz surname first name

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 84

8.11. Compiler Runtime Options

#include “file”

Inserts the contents of the file at the appropriate place in the source file before compilation.

Similarly, certain parts of the source code can be included or ignored during compilation,

depending on the results of conditional testing.

For example, with the #include command, header files can be inserted. This is usually not

necessary with this computer.

#define name [value]

This defines symbols, constants or macros for the program (for example, to perform tests, see

#ifdef and #ifndef).

Examples:

#define TEST

#define PI 3.141592

#define NULL 0

#define EOF -1

#define FILE int

Macros can also be defined:

#define SQR(x)((x)*(x))

#if ... #elif ... #else ... #endif

With #if, similar to #ifdef, a conditional expression can be initiated. Constant

expressions can be evaluated as well.

#if expression1

 statement1

 [#elif expression2

 statement2]

 [#else expression3

 statement3]

#endif

#ifdef name ... #endif

The #ifdef command can be used to check if a symbol has been defined. If the symbol is

defined, the code following the command will be passed to the compiler. An #ifdef

directive must be completed by a #endif directive.

#ifndef name ... #endif

The #ifndef command is the counterpart to #ifdef. It checks if a symbol is not defined.

If the symbol is defined, the code following the command will not be passed to the compiler.

An #ifndef command must be terminated by an #endif.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 85

8.12. Library Functions

This section explains the library functions of the C compiler. In this computer, the standard

input and output devices (stream) are defined as follows:

Input stream: stdin Keyboard

Output stream: stdout (or stdprn) Screen (or printer)

Serial stream: stdaux Half duplex over 11-pin

 stream: stdaux1 Full duplex over 11-pin

In addition, the following constants are defined by default:

#define NULL 0

#define EOF -1

#define FILE int

When redirecting to the printer with .SHIFT. (or .2ndF.) + (.PNP.), the input functions

return the following:

getch: 0xFF

all other input functions: EOF

The delimiters when the input is through the serial interface are:

Row separator: 0x0d, 0x0a or 0x0d + 0x0a

End of file: 0x1a

(The input from 0x0d + 0x0a is converted to 0x0a) You should normally use 0x0a as a

row separator.

The delimiters when the output is via the serial interface are:

Separator: null

(The output of 0x0a (row separation) is converted to 0x0d + 0x0a)

8.12.1. Standard I/O Functions

getc, getchar, fgetc

Format: int getc (FILE* stream);

int getchar (void);

int fgetc (FILE* stream);

Description: A character is read. If read by stdin, the character is not transmitted until

 is pressed.

getc: Reads a character from the given stream.

getchar: Reads a character from stdin.

fgetc: Reads a character from the specified stream.

Return Value: the read character

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 86

gets, fgets

Format: char* gets (char* s);

char* fgets (char* s, int n, FILE* stream);

Description: Characters are read and stored in the string s.

gets: Reads characters from stdin to . Before saving the string,

carriage returns / line feeds will be replaced by 0x00 (¥0).

fgets: Reads characters from the specified stream. The characters start

from the current position of the data stream to the first carriage

return / line feed character encountered, end of the file (EOF), or

until the number of read characters equals n-1. A null character

is appended to the end of the passed string.

Return value: Zero is returned when the end of the file (EOF) is reached.

scanf, fscanf, sscanf

Format: int scanf (const char* format [, address,…]);

int fscanf (FILE* stream, const char* format [,

 address,…]);

int sscanf (char* s, const char* format [,

 address,…]);

Description: The family of scanf() functions checks the input for a format as described

below. This format may contain conversion specifications. The results of

such conversions, if any, are stored at the locations pointed to by the pointer

arguments that adhere to the format.

Each pointer argument must have an appropriate type for the return value by

the associated conversion specification. If the number of conversion

specifications in format exceeds the number of pointer arguments, the results

are undefined. If the number of pointer arguments exceeds the number of

conversion specifications, then the excess pointer arguments are evaluated

but otherwise ignored.

scanf: Reads characters from stdin to .

fscanf: Reads characters from input to carriage return / line feed.

sscanf: The characters are read from the specified string s.

Return value: Number of assigned arguments. EOF will be returned when the end of the file

is reached.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 87

Format definition

The string format consists of a series of guidelines which describe how the sequence of input

characters is processed. If processing a directive fails, no further input is read and scanf()

returns.

1. Space / Carriage Return

The entry is read or, if no more characters are present, is read until it encounters a

character that is not a space (will not be read anyway). Execution of the function will

be terminated if a character is encountered that is not a space.

2. Normal character (other than space and %)

The next character is read. The execution of the function is terminated if it is not a

normal character, and the input character is not read.

Conversion Definitions

Symbol Expected format Conversion

%d String in binary integer format (decimal) int

%i String in binary integer format (decimal, octal or hexadecimal) int

%O String in binary integer format (octal) int

%u String with a whole decimal number without sign. unsigned int

%x String with a whole hexadecimal number int

%f String with a floating-point number float

%e String with a floating-point number float

%G String with a floating-point number float

%c String with a string (character number 1 or specified field width) char

%s String (at the end zero (¥0) is added)

%p String of 4 hex characters (e.g., 89ab) pointer

Format of the conversion statement
%[*] [fieldwidth] [I] Symbol

*: (Assignment prevented) It is possible to read into the input field, but it is not

possible to assign the conversion result to an argument.

fieldwidth: The maximum field width is defined by an unsigned integer.

I: Integer numbers are converted to long integer. Floating point numbers are

converted to double. Long floating point numbers are converted to long

double.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 88

putc, putchar, fputc

Format: int putc (int c, FILE* stream);

int putchar (int c);

int fputc (int c, FILE* stream);

Description: Outputs a single character.

putc: A character is written to the specified stream.

putchar: A character is written to stdout.

fputc: A character is written to the specified stream

Return value: the written character. If an error occurs while writing EOF is returned.

puts, fputs

Format: int puts (const char* s);

int fputs (const char* s, int n, FILE* stream);

Description: Characters are written from the string s.

puts: Writes a string to stdout. The end of the string null character is

replaced by carriage return/line feed.

Fputs: Writes a string to the specified stream starting at the current

position of the output flow. The end of the string null character is

not written.

Return value: the last written character. If an error occurs while writing EOF is returned.

printf, fprintf, sprintf

Format: int printf (const char* format [, arg,…]);

int fprintf (FILE* stream, const char* format [,

 arg,…]);

int sprintf (char* s, const char* format [, arg,

 …]);

Description: The family of printf() functions converts the “argument” of the format

definition and outputs it to a stream, writes it to stdout, or returns the

result as a string. The format string is a character string of length greater than

0 and can be composed of normal characters, ESC sequences, and conversion

definitions. Normal characters and ESC sequences are output in order of

appearance. Conversion definitions, on the other hand, are carried out by

sequential extraction, conversion, and output of the arguments. If there are

more arguments than definitions, the additional arguments are ignored. If

there are too few arguments, the results are undefined.

printf: Write characters to stdout.

fprintf: Write characters to the specified stream from the current position.

sprintf: Write characters to the specified string s.

Return value: Number of characters output. EOF will be returned if an error occurs.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 89

Format definition

The string format consists of a series of guidelines which describe how the sequence of

output characters is generated.

Symbol Expected format Argument

%d Display as signed decimal int

%i Display as signed decimal int

%O Display as unsigned octal int

%u Display as unsigned decimal int

%x Display as unsigned hexadecimal (abcdef) int

%X Display as unsigned hexadecimal (ABCDEF) int

%f
Display decimal in the form [-] ddd.ddd, where ddd is a single-

digit decimal value or longer.

double

%e
Display decimal in the form [-] d.ddde ± dd, where d is a one-

digit decimal value, ddd is one or more digits.

double

%E
Display decimal in the form [-] d.dddE ± dd, where d is a one-

digit decimal value, ddd is one or more digits.

double

%g Converts f or e in a shortened form to Double %G double

%G Converts f or E in a shortened form to Double %c double

%c Conversion to an unsigned character int

%s
Characters of the string are output until zero (¥0, is not output)

or the specified number of characters is reached.

string (char*)

%p Output as a pointer argument pointer

Format of the conversion statement
%[flag] [fieldwidth] [.precision] [I] Symbol

flag

1. : left-justified output

+ : sign is always output

: for a % conversion, a 0 is prefixed. For a %x and %X conversion, a 0x (or 0X)

is prefixed.

0 : fill result with leading zeros (for %d, %i, %O, %u, %x, %X)

(omitted) : right-justified output

fieldwidth

n : specifies the number of digits to be output. Spaces are used if there are fewer

characters than spaces.

0n : set field to length n. If the result of the conversion is shorter than n, the result

is padded with zeroes.

(omitted) : length is defined by the conversion result.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 90

.precision

n : %d, %O, %u, %x, %f - defines the smallest number of digits to output

(default is 1).

%e, %E, %f - defines number of places after the decimal point (default is 6).

%g, %G - defines number of characters to output (default: all significant

characters).

I : Defines the output as a long argument for %d, %i, %o, %u, %x, %X

fflush

Format: int fflush (FILE* stream);

Description: Writes the contents of the buffer to a file in the output stream. For an input

stream, the contents of the buffer memory are deleted. This feature does not

close the stream. The buffer is automatically flushed when it is full.

Return value: null. If an error occurs while writing, EOF is returned.

clearerr

Format: void clearerr (FILE* stream);

Description: This function clears a data stream EOF error condition

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 91

8.12.2. Character Functions

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit

Format: int isalnum (int c);

int isalpha (int c);

int iscntrl (int c);

int isdigit (int c);

int isgraph (int c);

int islower (int c);

int isprint (int c);

int ispunct (int c);

int isspace (int c);

int isupper (int c);

int isxdigit (int c);

Description: Characterization of a character

isalnum : check for letters or digits

isalpha : check for letters

iscntrl : check for control characters

isdigit : check for digits

isgraph : check for any printable character except space

islower : check for lowercase letters

isprint : check for any printable characters, including space

ispunct : check for any printable character that is not a space or an

alphanumeric character

isspace : check for dial tone (spaces, tabs, line breaks and so on, 0x09 ~

0x0d, 0x20)

isupper : check for capital letters

isxdigit : check for hexadecimal character (0-F, 0-f)

Return value: true (value not equal to zero) or false (zero)

tolower, toupper

Format: int tolower (int c);

int toupper (int c);

Description: tolower : converts the character to lowercase

toupper : converts the character to capital letters

Return value: the converted character

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 92

8.12.3. String Functions

strcat

Format: char* strcat (char* s1, const char* s2);

Description: Append string s2 to string s1.

Return value: Pointer to string s1

strchr

Format: char* strchr (const char* s, int c);

Description: Searches a string for the first occurrence of a particular character.

Return value: returns a pointer to the first occurrence of the character c in the string s or

null if the string does not contain this character.

strcmp

Format: int strcmp (const char* s1, const char* s2);

Description: Compares two strings. Starting with the first character, the two strings are

compared character-by-character until two corresponding characters are

unequal or the end of the strings are reached.

Return value: returns a value

 <0 if s1 is less than s2

 0 if s1 is equal to s2

 0> if s1 is greater than s2

strcpy

Format: char* strcpy (char* s1, const char* s2);

Description: Copies one string to another. strcpy copies the contents of string s2 to

string s1. The final null character of s2 is copied as the last character.

Return value: Pointer to string s1

strlen

Format: int strlen (const char* string);

Description: Determines the length of a string

Return value: Returns the number of characters in the string. The final null character is

not counted.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 93

8.12.4. Memory Functions

calloc

Format: void* calloc (unsigned n, unsigned size);

Description: Allocates memory to a group of n elements, where each element is size

size.

Return value: Returns a pointer to the reserved memory area. If memory allocation fails

(for example, if the RAM size is exceeded), NULL is returned.

malloc

Format: void* malloc (unsigned size);

Description: Allocates memory of the size size.

Return value: Returns a pointer to the reserved memory area. If memory allocation fails

(for example, if the RAM size is exceeded), NULL is returned.

free

Format: void* free (void* ptr);

Description: Releases allocated memory reserved by calloc or malloc. The argument

ptr must be a pointer to a memory area previously allocated by calloc or

malloc.

Return value: none

8.12.5. Mathematical Functions

abs

Format: int abs (int x);

Description: The absolute value of integer x

Return value: absolute number (0-32767).

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 94

asin, acos, atan

Format: double asin (double x);

double acos (double x);

double atan (double x);

Description: These functions return a value equal to their respective inverse trigonometric

function. It can be specified in DEG, RAD or GRAD. The calculation range

for asin and acos is between -1 and 1

Return value: the respective value of the result, NULL in case of an error.

Function

Value Range

DEG RAD GRAD

asin -90° to 90° -π/2 to π/2 -100 to 100

acos 0° to 180° 0 to π 0 to 200

atan -90° to 90° -π/2 to π/2 -100 to 200

asinh, acosh, atanh

Format: double asinh (double x);

double acosh (double x);

double atanh (double x);

Description: These functions return a value equal to their respective inverse hyperbolic

function.

Return value: the respective value of the result.

exp

Format: double exp (double x);

Description: Calculates e
x

Return value: the expected value of the result

log, log10

Format: double log (double x);

double log10 (double x);

Description: log(x) calculates the natural logarithm of x.

log10(x) calculates the common logarithm of x.

Return value: the result.

pow

Format: double pow (double x, double y);

Description: Raise x to the power of y.

Return value: the result.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 95

sin, cos, tan

Format: double sin (double x);

double cos (double x);

double tan (double x);

Description: These functions return a value equal to their respective trigonometric

function. The indication can be made in DEG, RAD or GRAD.

Return value: the respective value for the result.

sinh, cosh, tanh

Format: double sinh (double x);

double cosh (double x);

double tanh (double x);

Description: These functions return a value equal to their respective hyperbolic function.

Return value: the respective value for the result.

sqrt

Format: double sqrt (double x);

Description: Calculates the square root of x

Return value: the result.

8.13. Hardware Interface Functions

This section describes the hardware-specific I/O functions.

8.13.1. Mini I/O Functions

miniget

Format: int miniget (void);

Description: Reads a byte from the mini I/O port

Bit 2: Xin, Bit 1: Din, Bit: Ack

Return value: the byte read

miniput

Format: void miniput (char byte);

Description: Writes a byte to the mini I/O port

Bit 2: Busy, Bit 1: Dout, Bit0: Xout

Return value: None

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 96

8.13.2. 8-bit PIO Control via the 11-pin Interface

fclose

Format: int fclose (FILE* stream);

Description: close the stream

Return value: if successful, NULL is returned. In case of an error EOF will be returned.

fopen

Format: FILE* fopen (char* path, char* type);

Description: Opens a stream to the device specified by path with the mode specified by

type. For 8-bit PIO, path is “pio” and the mode can be set as follows:

r+ : input

w+ : output

a+ : input and output.

Return value: with normal execution, the pointer to the FILE structure is returned. In case

of error, NULL is returned.

pioget

Format: int pioget (void);

Description: reads in a byte from the PIO port.

Return value: the byte read.

pioput

Format: void pioput (char byte);

Description: writes a byte to the PIO port.

Return value: none

pioset

Format: void pioset (char byte);

Description: set the input and output mode of the PIO port. 1 sets the input mode and 0

sets the output mode

Return value: none

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 97

8.13.3. SIO (RS-232C) Control via the 11-pin Interface

fclose

Format: int fclose (FILE* stream);

Description: Close the stream. In the output mode, the EOF character is written, which

was determined by the entry in TEXT mode under SIO with the end-of-file

parameter.

Return value: if successful, NULL is returned. In case of an error, EOF will be returned

fopen

Format: FILE* fopen (char* path, char* type);

Description: Opens a stream to the device specified by path with the mode specified under

type. For the serial interface, path is stdaux for half-duplex communication

and stdaux1 for full-duplex communication. The mode can be specified as

follows:

r+ : input

w+ : output

a+ : input and output.

Return value: with normal execution, the pointer to the FILE structure is returned. In case

of error, NULL is returned.

8.13.4. Buffer / Communications Controller

feof

Format: int feof (FILE* stream);

Description: Checks if the stream has reached the end of the file (EOF).

Return value: When the end of the file is reached, the value of -1 is returned. If the end of

the file has not yet been reached, NULL is returned.

8.13.5. I/O port functions

inport

Format: unsigned char inport(unsigned charport);

Description: Reads a byte from the specified I/O port address (0x20-0x3F)

Return value: the read byte

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 98

outport

Format: void outport(unsigned charport, unsigned char

byte);

Description: Writes a byte to the specified I/O port address (0x20-0x3F)

Return value: none

8.13.6. Memory Functions / Program Call

call

Format: unsigned call(unsigned adr, void* arg_HL);

Description: Calls a machine language program starting from the address adr. The value

of the arg_HL argument is passed to the HL register.

Return value: Contents of the HL register

peek

Format: unsigned char peek(unsigned adr);

Description: Reads a byte from the address adr.

Return value: Content of memory address adr

poke

Format: void poke(unsigned adr, unsigned char byte);

Description: Writes a byte to the address adr.

Return value: none

8.13.7. Datafile Functions

fclose

Format: int fclose(FILE* stream);

Description: Close the file stream. If file mode “w” or “a” was specified, a 0x1A is

written on closing the file.

Return value: if successful, NULL is returned. In case of an error, EOF will be returned

feof

Format: int feof(FILE* stream);

Description: Checks if the stream has reached the end of the file (EOF).

Return value: When the end of the file is reached, a value of 1 is returned. If the end of the

file has not yet been reached, a 0 is returned.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 99

flof

Format: unsigned long flof(FILE* stream);

Description: Determines the number of remaining unused bytes in the file.

Return value: the number of remaining unused bytes.

fopen

Format: FILE* fopen(char* path, char* type);

Description: Opens a stream to the file specified by path with the mode specified under

type. The path definition for a data file corresponding to the file name is

defined in TEXT mode. The mode is specified as follows:

r : input

w : output

a : input and output.

Return value: with normal execution, the pointer to the FILE structure is returned. In case

of error, NULL is returned.

8.13.8. Graphic Functions

The graphic functions described here correspond to the BASIC functions. For more detailed

information, please use the descriptions of the corresponding BASIC commands.

circle

Format: int circle (int x, int y, int r, double s-angle,

 double e-angle, double ratio, int reverse,

 unsigned short fill);

Description: draws a circle

x, y : coordinate of the center

r : radius

s-angle : start angle

e-angle : end angle

ratio : ratio for the ellipse

reverse : 0-set point

 : 1-delete point

 : 2-invert point

fill : fill pattern (See the description of the BASIC command)

Return value: if successful, NULL is returned. In case of an error, -1 is returned

gcursor

Format: int gcursor (int x, int y);

Description: Positions the graphic cursor at point x, y.

Return value: if successful, NULL is returned. In case of an error, -1 is returned

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 100

gprint

Format: void gprint (char* image);

Description: Draws graphic pattern on the display.

Return value: none

line

Format: int line (int x, int y, int x2, int y2, int

 reverse, unsigned short mask, int rectangle);

Description: Draws a line or a rectangle.

x,y : coordinates of first point (corner)

x2,y2 : coordinates of second point (opposite corner)

reverse : 0-Set point

: 1-Delete point

: 2-Invert point

mask : Line style (See the description of the Basic command):

rectangle : 0-draws a line

: 1-draws a rectangle

: 2-draws a filled rectangle

Return value: if successful, NULL is returned. In case of an error, -1 is returned

paint

Format: int paint (int x, int y, unsigned short kind);

Description: Fills the area with the pattern starting at the coordinate x,y.

kind: fill pattern (See the description of the BASIC command)

Return value: if successful, NULL is returned. In case of an error, -1 is returned

point

Format: int point (int x, int y);

Description: Provides information about the state of the display point at x,y.

Return value: If the point is dark, i.e. set, then 1 is returned. If the item is not set, the value

0 is returned. If the point is outside the screen, -1 is returned.

preset

Format: int preset (int x, int y);

Description: Clears the display point.

Return value: if successful, NULL is returned. In case of an error, -1 is returned

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 101

pset

Format: int pset (int x, int y, int reverse);

Description: Sets the display point.

reverse: 0 sets the point

1 inverts the point

Return value: if successful, NULL is returned. In case of an error, -1 is returned

8.14. Other Functions

abort, exit

Format: void abort (void);

void exit (int status);

Description: Exits / terminates the program.

abort : aborts the program. A B O R T will be displayed on screen.

exit : normal program termination with return code

Return value: none

angle

Format: void angle (unsigned n);

Description: Sets the mode for the trigonometric functions.

n = 0 : DEG

n = 1 : RAD

n = 2 : GRAD

Return value: none

breakpt

Format: void breakpt (void);

Description: Interrupts program execution and enters BREAK mode.

Return value: none

clrscr

Format: void clrscr (void);

Description: Clears the screen

Return value: none

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 102

getch

Format: int getch (void);

Description: Waits for a character from the keyboard. Does not require .

Return value: returns the read character

gotoxy

Format: void gotoxy (unsigned x, unsigned y);

Description: Sets the text cursor to the specified coordinate on the screen. (0,0) is the

upper left corner.

Return value: none

kbhit

Format: int kbhit (void);

Description: Reads a character from the keyboard without waiting.

Return value: returns the read key. If no key is pressed, 0 is returned.

8.15. Error Messages

8.15.1. Compiler Error Messages

Error message Description

zero dimension An array size of NULL in a context where this is illegal.

array of function is illegal Array of function is not allowed

cannot find include file Include file cannot be found

case in not switch case statement is not inside a switch statement

constant expected
- Element count of the array is not an integer

- Term of a case label is not a constant expression

default not in switch Default statement is not within a switch statement

define buffer full Too many #define statements

different s / u Different struct/union

division by 0 Division by 0

duplicate #define <name> Macro double defined

duplicate case More than one case statement in the switch statement.

duplicate default More than one default statement in the switch statement.

duplicate label: <name> Label <name> was defined more than once.

empty character constant Constant has no content

float overflow Float point constant outside of range

float underflow Float point constant outside of range

function illegally s / u Function in struct/union area not allowed

function returns illegal type Type of return value is not allowed in this function

if nest too deep Too many nested #if/#ifdef statements

if nesting error #if/#ifdef/#endif syntax error

if-less elif Matching #if/#ifdef to #elif not found

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 103

Error message Description

if-less else Matching #if/#ifdef to #else not found

if-less endif Matching #if / #ifdef to #endif not found

illegal #line Wrong #define syntax

illegal break
Break statement within do, for, while, or switch loop not

allowed

illegal character Illegal character in source code

illegal class Defined class cannot be used

illegal continue
Continue statement within do, for, or while loop not

allowed

illegal digit in octal Illegal digit in an octal number (8 or 9).

illegal function Call function that does not match the type

illegal if Incorrect expression in #if/#ifdef

illegal include Incorrect #include statement syntax

illegal indirection Invalid operand for unary operator *

illegal initialization
The right side of the initialization is not a constant

expression

illegal main Argument declared in the function main()

illegal operand of

<operator>
Operand of <operator> is wrong type

illegal operand of U+ Operand of unary + operator is wrong type

illegal operand of U- Operand of unary - operator is wrong type

illegal operand of ARG Function arguments are wrong type

illegal operand of RET Expression of return statement is wrong type

illegal s / u struct / union used incorrectly.

illegal size Size of the structure / union is too large

illegal switch expression Invalid expression in switch command

illegal type Invalid type cast has occurred

illegal void Use of type void is incorrect

include nest too deep #include nesting is too deep

macro recursion Macro is recursive

memory full Memory is full

missing argument: <name> No argument <name> in the function call

missing declarator No declaration

missing function: <name> Function <name> was not declared

missing label
-No label in goto statement

-Undefined label in goto statement

missing main Main () not defined

missing member
-undefined members in struct / union

-unused members in struct/union.

missing member in s / u Missing member in struct/union.

missing name in prototype No argument name in prototype definition

missing type Type not defined.

missing type in prototype Syntax error in prototype

newline in character

constant
Line break in character constant.

SHARP PC-G850V(S) USERS GUIDE: The C programming language

 104

Error message Description

newline in string constant Line break in string constant

prototype mismatch Expression of the function call does not match the prototype

redeclaration: <name> <name> was already defined

reserved: <name> <name> is reserved

syntax error Program violated the syntax rules

token buffer full Macro expansion is too complex

too complicated declarator Definition is too complex

too complicated declaration Definition is too complex

too complicated initialize Initialization is too complex

too deep statement Nesting too deep

too long initializer Initialization string constant too long

too long macro Macro text too long

too many #defines Number of #defines greater than limit.

too many case Number of case statements greater than limit.

too many characters in

character constant
Number of characters in the constant greater than limit.

too many characters in

string constant

Number of characters in the string constant greater than

limit.

too many initializers Declared too many initialization expressions

too many label Number of goto labels greater than limit

too many prototypes Number of prototype definitions greater than limit

unacceptable operand of & Operand of & operator invalid

unexpected EOF The source program ends in the middle of the syntax

unknown size The size is indefinite.

void function
Returns a value in the return statement even though it is a

void function

zero or negative subscript Negative or zero number of elements in array

8.15.2. Run-Time Error Messages

Error message Description

NO MEMORY Memory overflow
BAD POINTER Pointer points outside the permitted range
DIVISION BY 0 Division by 0
UNKNOWN ERROR Incorrect pointers destroyed the areas of the C program
BAD FUNCTION Incorrect pointer value in function call.
BAD STREAM Input/output data stream incorrect
ARITHMETIC ERROR Calculation error (i.e. floating-point interruptions)
FRAME ERROR Functional frame destroyed
I / O ERROR OPEN Serial interface opened too often
I / O ERROR Mini I/O unopened

SHARP PC-G850V(S) USERS GUIDE: CASL

 105

9. CASL

9.1. The CASL assembler

The CASL assembler system was developed to teach assembly language and to understand

the internal processes of a computer. The system consists of two parts, the CASL assembler

and the COMET virtual machine. When developing the COMET system, great care was

taken to ensure that all states of the system could be monitored and tracked. Unfortunately,

this system has not established itself beyond the borders of Japan and the Philippines. In

order to pass the exam for the Japanese Information Technology Standards Examination

(JITSE) in Japan, a test in CASL / COMET had to be taken (in 2013, probably not more!?!).

The extension to CASL II and COMET II from 2001 does not support this computer.

This manual explains the CASL II / COMET II specification, which focuses on handling the

Sharp PC-G850

9.2. CASL mode Functions

The CASL mode consists of three functions:

assembler: Use the TEXT editor to write and save CASL program. The program can

then be assembled and executed in CASL mode.

If the CE-126P printer is connected, the output can be redirected to the

printer.

monitor: Used to monitor the program and the contents of the registers and change

them. Likewise, they can change the data ranges defined with the DS

command.

simulated

execution:

The program is executed in a simulated environment. The program can be

executed normally or in trace mode. The execution of the program can be

stopped at defined breakpoints.

SHARP PC-G850V(S) USERS GUIDE: CASL

 106

9.3. CASL Programming Procedure

Flowchart of the procedure for CASL programming.

Start programming

Create program with the TEXT editor.

Produce object code with the CASL assembler.

Monitor program memory and registers.

Run program in Simulator

OK?

R
ep

ea
t

as
 n

ec
es

sa
ry

End

No

Yes

SHARP PC-G850V(S) USERS GUIDE: CASL

 107

G
R
0
:
#
X
X
X
X

X
X
X
X

G
R
1
:
#
X
X
X
X

X
X
X
X

G
R
2
:
#
X
X
X
X

X
X
X
X

G
R
3
:
#
X
X
X
X

X
X
X
X

B
R
4
:
#
X
X
X
X

X
X
X
X

P
C

:
#
X
X
X
X

X
X
X
X

R
eg

is
te

r

 O
b
je

ct

<
<
O
B
J
E
C
T
>
>

 A
D
D
R
E
S
S
=
#
X
X
X
X

A
ss

em
b
le

 M
o
n
it

o
r

 G
o

T
ra

ce

N
o
rm

al

M
em

o
ry

M
o
n
it

o
r/

E
d
it

o
r E
x
ec

u
ti

o
n

in
 T

ra
ce

F
R

:
#
X
X
X
X

X

B
P

:
#
X
X
X
X

X
X
X
X

B
C

:
#
X
X
X
X

X
X
X
X

<
<
S
I
M
U
L
A
T
I
O
N
>
>

 S
T
A
R
T

A
D
D
R
E
S
S
=
#
X
X
X
X

P
ro

g
ra

m

E
x
ec

u
ti

o
n

E
rr

o
r?

N
o
te

:

E
d
it

 t
h
e

so
u
rc

e
p
ro

g
ra

m
 w

it
h
 t

h
e

T
E

X
T

 e
d
it

o
r

(E
n
te

r
T

E
X

T
 t

h
en

 p
re

ss
 .

.E
..
)

.B
R

E
A

K
.

 .
B

R
E

A
K

.

.C
L

S
.

 .
.A

..

 .
.M

..

 .
.G

..

.S
H

IF
T

.
+

.A

S
M

B
L

.
th

en
 p

re
ss

..
C

..

 .
.R

..

 .
.O

..

#
X
X
X
X

#
X
X
X
X

..
T

..

..
N

..

.B
R

E
A

K
.

 f
o
r

ev
er

y

st
o
p

.B
R

E
A

K
.

E
X

IT

SHARP PC-G850V(S) USERS GUIDE: CASL

 108

9.4. Entering / Editing the Source Program

The CASL source program is created and modified in TEXT mode using the editor.

.TEXT. ..E..

TEXT EDITOR

<

Detailed information on how to use TEXT mode can be found in chapter "TEXT mode".

9.4.1. Line Format

Structure of the source program:

32776 BGN ADD 0, DAT, 1 ;SAMPLE

 Line number Label Command Operands Comment

Individual operands are separated by either spaces or tabs.

Line number : A number between 1 and 65279. If a number outside this range is specified,

the message <LINE NO. ERROR> is displayed.

Label : The label consists of up to 6 alphanumeric characters. All subsequent

characters are ignored. The label must start with a letter

Command : The command to be executed.

Operands : GR register, address operands or XR. Each operand must be separated by a

comma. XR can be omitted.

Comment : Comments must begin with a semicolon (;) and are used to insert notes in the

program.

Including comments, a line may have a maximum length of 254 characters.

Example program:

This program generates the output “CARDS”

10L1 START L2

20L2 OUT DSP, N

30 EXIT

40N DC 9

50DSP DC #E8

60 DC #39

70 DC ‘CARDS’

80 DC #EA

90 DC #EB

100 END

SHARP PC-G850V(S) USERS GUIDE: CASL

 109

10L1 .TAB. START .TAB. L2

20L2 .TAB. OUT .TAB. DSP, N

30 .TAB. EXIT

40N .TAB. DC .TAB. 9

50DSP .TAB. DC .TAB. #E8

60 .TAB. DC .TAB. #39

70 .TAB. DC .TAB. ‘CARDS’

80 .TAB. DC .TAB. #EA

90 .TAB. DC .TAB. #EB

100 .TAB. END

L2 is start of the program

Output N characters with DSP

Return from program execution

“”

“”

“CARDS”

“”

“”

Program end

9.5. The CASL Assembler

After the source code has been created in the text editor, all further steps are carried out in

CASL mode.

.SHIFT. + .ASMBL. after that, press ..C.. to enter

CASL mode.

 *** CASL ***

 Assemble Monitor Go

Press ..A.. to assemble source code.

 *** CASL ***

 Assemble Monitor Go

complete!

”Assembling” will show in the bottom line of the screen. If the assembler has executed

successfully, the message “complete!” appears. If an error occurs during assembly, the

process is terminated and an error message is displayed.

The finished object program is stored starting from address 1000.

SHARP PC-G850V(S) USERS GUIDE: CASL

 110

9.5.1. CASL Assembler Log

During the assembly run, a log is generated in the following format:

ADD : OBJECT : LINE NO.

 : 10

1000:7000 100B: 20

1002:7000 100A: 20

1004:8000 0002: 20

1006:1244 0002: 20

1008:6400 0004: 30

100A:0009 : 40

100B:00E8 : 50

100C:00E9 : 60

100D:0043 : 70

100E:0041 : 70

100F:0052 : 70

1010:0044 : 70

1011:0053 : 70

1012:00EA : 80

1013:00EB : 90

 : 100

 —1— –——2——– –——3——– 1) Address (16 bit)

LABEL :ADDRESS— 2) Object (16 bit)

L1 1000 3) Line number of source program

L2 1000 4 4) Label
N 100A

DSP 100B —

Note: The output of the protocol can also be redirected to a connected printer CE-126P. (for

example, by .SHIFT. + .PNP.)

SHARP PC-G850V(S) USERS GUIDE: CASL

 111

9.5.2. CASL Assembler Error Messages

If the assembler detects errors during execution, these error messages are displayed. Pressing

.CLS. clears the error message on the screen. Afterwards you can correct the program with

the text editor.

Type Error Message Description

Opcode error
OP CODE ERROR (line number)

Incorrect command code in

specified line.

OP CODE ERROR (0) No source program

Operand error OPERAND ERROR (line number)
Incorrect operand at the specified

line number.

Label error LABEL ERROR (line number)
Incorrect label at the specified

line number

Memory error MEMORY ERROR (0)
- insufficient memory.

- insufficient stack space.

General error OTHER ERROR

No START or END command

was found or the source program

has another syntax error

9.6. Simulation

Press ..G.. in the CASL menu to execute the program.

..G..

 << SIMULATION >>

START ADDRESS=#1000

The start address is displayed. This can be changed. If nothing else is entered and is

pressed, the program will use address #1000.

You can enter the desired address in either decimal or hexadecimal form (preceded by a #

sign).

The following display then appears:

 << SIMULATION >>

START ADDRESS=#1000

 Normal Trace

Press ..N.. or ..T...

SHARP PC-G850V(S) USERS GUIDE: CASL

 112

9.6.1. Normal Execution

Press ..N.. to start the program.

..N..

CARDS

 

 *** CASL ***

 Assemble Monitor Go

_

Running programs can be aborted at any time with the .BREAK. key, e.g. To check or change

registers or memory contents. The program can then be continued by pressing ..G.. in the

CASL menu (Go).

9.6.2. Trace Mode

Press the ..T.. key. The registers (GR0-GR4), the program counter (PC), the flag register (FR)

and the current command are displayed. Each time the button is pressed, the next

command is executed.

..T..

1000: GR0:0000 GR4:1B0B

 GR1:0000 PC :1002

 GR2:0000 FR :0000

 GR3:0000 <PUSH>

 

1002: GR0:0000 GR4:1B0A

 GR1:0000 PC :1004

 GR2:0000 FR :0000

 GR3:0000 <PUSH>_

If the output is redirected by .SHIFT. + .PNP., the trace output is directed to the printer as

follows:

ADD :GR0 GR1 GR2 GR3

1000:0000 0000 0000 0000

1002:0000 0000 0000 0000

1004:0000 0000 0000 0000

CARDS

0002:0000 0000 0000 0000

1006:0000 0000 0000 0000

1008:0000 0000 0000 0000

SHARP PC-G850V(S) USERS GUIDE: CASL

 113

9.6.3. Trace Error Messages

Error Message Description

OBJECT ERROR No object program found

* MEM *

* ERR *

JMP addresses an area outside the address space.

The available memory has been exceeded

* OPR *

* ERR *
The output of OUT has more than 97 characters

9.7. Monitor

The monitor function is used to check the contents of the registers of the COMET virtual

machine. Likewise, you can change the object program or registers. You can also work with

breakpoints. The monitor function can be accessed by pressing ..M.. in the main CASL menu.

..M..

 << MONITOR >>

 REGISTER OBJECT

Now you can select:

R : View and change the registers

O : View and change the object program and memory

9.7.1. Display Register Contents

Press ..R.. to display the register contents.

..R..

GR0 #0000 0

GR1:#0000 0

GR2:#0000 0

GR3:#0000 0

GR4:#1BOB 6923

PC :#1000 4096

Use the cursor keys () or to scroll the display. The current register is indicated by

a missing colon.

 ⋮

GR3:#0000 0

GR4:#1BOB 6923

PC :#1000 4096

FR :#0000 0

BP :#FFFF 65535

BC #0000 0

SHARP PC-G850V(S) USERS GUIDE: CASL

 114

register name description

GR0-GR4 General register Universal register. GR4 is used as a stack pointer

PC Program counter Points to the next command to be executed

FR Flag register Result of executing a command (positive, zero, negative)

BP Break pointer Used to control the execution of the simulation.

BC Break counter

9.7.2. Set Registers

The contents of the selected register (where the colon is off) can be set with values as

follows:

Decimal : Enter a decimal number from -32768-65535

Example: 123 Output: #007B 123

Hexadecimal : Enter a hexadecimal number from 0-FFFF

Example: #007B Output: #007B 123

Label : Label enclosed in double quotes

Example: "L1" Output: #100A 4106 (L1 points to # 100A)

Character : Characters enclosed in quotes

Example: 'A' Output: #0041 65

Pressing .CLS. aborts the entry without changing the original value.

Note: The contents of register FR use only 2 bits (values 0,1 and 2) all other bits

are ignored.

Contents of the registers after reset / start of the assembler:

GR0-GR3 : 0

GR4 : upper address + 1 of the object area

PC : Start address of the program (address of the label of the start instruction)

FR : 0

BP : FFFF (Hex)/65535 (decimal), No breakpoint set

BC : 0

Note: GR4 can normally be used freely. The address of the object area can be

changed in the monitor or in the program.

9.7.3. Display Object Code

Press .O. in the CASL menu to display object code.

..O..

 << OBJECT >>

ADDRESS=#1000

SHARP PC-G850V(S) USERS GUIDE: CASL

 115

Confirm the start address with or change this address beforehand.

 ⋮

 1000:7000 PUSH #100B

1001:100B

1002:7000 PUSH #100A

1003:100A

1004:0000 CALL #0002

1005:0002

 1006 1244 LEA 4, #0002, 4

Note: If no program was previously loaded into the CASL assembler, the error

<OBJECT ERROR> is displayed.

Use the cursor keys () or to scroll the display. The current address is indicated by

a missing colon.

The content of the selected address (where the colon is off) can be set with values as follows:

Decimal : Enter a decimal number from -32768-65535

Example: 123 Output: #007B 123

Hexadecimal : Enter a hexadecimal number from 0-FFFF

Example: #007B Output: #007B 123

Label : Label enclosed in double quotes

Example: "L1" Output: #100A 4106 (L1 points to # 100A)

Character : Characters enclosed in quotes

Example: 'A' Output: #0041 65

Pressing .CLS. aborts the entry without changing the original value.

SHARP PC-G850V(S) USERS GUIDE: CASL

 116

9.8. Sample CASL Program

Here is an example program that adds 5 numbers:

This program adds the numbers in line 130-170 to DAT (line 120).

10EXAM START

20BGN LEA GR0, 0 Write 0 to register 0

30 LEA GR1, 0 Write 0 to register 1

40 JMP AGN1 unconditional jump to AGN1

50AGN ADD GR0, DAT, GR1 Add the contents of DAT to register 0 (with

shift GR1)

60 LEA GR1,1, GR1 Increase value of register 1 by 1

70AGN1 CPA GR1, N0 Compares the numbers in GR1 and N

80 JMI AGN On negative result (i.e. N > GR1), jump to AGN

90 ST GR0, TTL Stores the number in register 0 after TTL

100 EXIT End of program / return jump

110N DC 5

120TTL DS 1 Define storage space
130DAT DC #000C

140 DC #07F3

150 DC #0231

160 DC #0009

170 DC #000F

180 END End of program

9.8.1. Operation Example:

Input Output

 *** CASL ***

 Assemble Monitor Go

..M.. << MONITOR >>

 Register Object

..O.. << OBJECT >>

ADDRESS=#1000

 ⋮

1000 1200 LEA 0, #0000

1001:0000

1002:1212 LEA 1, #0000

1003:0000

1004:6400 JMP #100A

1006:2001 ADD 0, #1014, 1

1007:1014

1008:1211 LEA 1, #0001, 1

1009:0001

100A:4010 CPA 1, #1012

100B:1012

SHARP PC-G850V(S) USERS GUIDE: CASL

 117

 ⋮

100C:6100 JMI #!006

100D:1006

100E:1100 ST 0, #1013

100F:1013

1010:6400 JMP #0004

1011:0004

1012:0005 *

1013:0000

1014:000C *

1015:07f3

1016:0231 *****

1017:0009

1018:000F *

1019:0000

.ON. << MONITOR >>

 Register Object

Input Output

 *** CASL ***

 Assemble Monitor Go

..M.. << MONITOR >>

 Register Object

..R..

 ⋮

GR0:#0000 0

GR1:#0000 0

GR2:#0000 0

GR3:#0000 0

GR4:#1AA5 6821

PC :#1000 4096

 ⋮

BP #FFFF 65535

#100C BP #FFFF #100C

 BP #100C 4108

 BC #0000 0

2 BC #0002 2

.BREAK. .BREAK. *** CASL ***

 Assemble Monitor Go

..G.. << SIMULATION >>

START ADDRESS-#1000

 Normal Trace

..N.. 100C: GR0:000C GR4:1AA5

SHARP PC-G850V(S) USERS GUIDE: CASL

 118

* * GR1:0001 PC :100C

STP GR2:0000 FR :0002

* * GR3:0000 <JMI>

 100C: GR0:07FF GR4:1AA5

* * GR1:0002 PC :100C

STP GR2:0000 FR :0002

* * GR3:0000 <JMI>

.BREAK. .BREAK. *** CASL ***

 Assemble Monitor Go

..M.. ..R..

 ⋮

GR0:#07FF 2047

GR1:#0002 2

GR2:#0000 0

GR3:#0000 0

GR4:#1AA5 6821

PC :#100C 4108

 ⋮

BC #0000 0

4 BC #0004 4

.BREAK. .BREAK. *** CASL ***

 Assemble Monitor Go

..G.. << SIMULATION >>

START ADDRESS-#100C

 Normal Trace

..N.. 100C: GR0:0A48 GR4:1AA5

* * GR1:0005 PC :100C

STP GR2:0000 FR :0001

* * GR3:0000 <JMI>

.BREAK. .BREAK. *** CASL ***

 Assemble Monitor Go

SHARP PC-G850V(S) USERS GUIDE: CASL

 119

9.8.2. Trace Example

Input Output Opcode

.BREAK. .BREAK. *** CASL ***

 Assemble Monitor Go

..G.. << SIMULATION >>

START ADDRESS-#100C

 Normal Trace

..T.. 1000:GR0:0000 GR4:1AA5

 GR1:0000 PC :1002

 GR2:0000 FR :0001

 GR3:0000 <LEA>

LEA GR0, 0

 1002:GR0:0000 GR4:1AA5

 GR1:0000 PC :1004

 GR2:0000 FR :0001

 GR3:0000 <LEA>

LEA GR1, 0

 1004:GR0:0000 GR4:1AA5

 GR1:0000 PC :100A

 GR2:0000 FR :0001

 GR3:0000 <JMP>

JMP AGN1

 100A:GR0:0000 GR4:1AA5

 GR1:0000 PC :100C

 GR2:0000 FR :0002

 GR3:0000 <CPA>

CPA GR1, N

 100C:GR0:0000 GR4:1AA5

 GR1:0000 PC :1006

 GR2:0000 FR :0002

 GR3:0000 <JMI>

JMI AGN

 1006:GR0:000C GR4:1AA5

 GR1:0000 PC :1008

 GR2:0000 FR :0000

 GR3:0000 <ADD>

ADD GR0, DAT, GR1

 1008:GR0:000C GR4:1AA5

 GR1:0001 PC :100A

 GR2:0000 FR :0000

 GR3:0000 <LEA>

LEA GR1, 1, GR1

 ⋮
 ⋮
 ⋮
 ⋮

100A:GR0:000C GR4:1AA5

 GR1:0001 PC :100C

 GR2:0000 FR :0002

 GR3:0000 <CPA>

 ⋮
1004:GR0:0A48 GR4:1AA5

 GR1:0005 PC :100C

 GR2:0000 FR :0001

CPA GR1, N

SHARP PC-G850V(S) USERS GUIDE: CASL

 120

 GR3:0000 <CPA>

 100C:GR0:0A48 GR4:1AA5

 GR1:0005 PC :100E

 GR2:0000 FR :0001

 GR3:0000 <JMI>

JMI AGN

 100E:GR0:0A48 GR4:1AA5

 GR1:0005 PC :1010

 GR2:0000 FR :0001

 GR3:0000 <ST>

ST GR0, TTL

 1010:GR0:0A48 GR4:1AA5

 GR1:0005 PC :1004

 GR2:0000 FR :0001

 GR3:0000 <JMP>

EXIT

 *** CASL ***

 Assemble Monitor Go

9.9. COMET Specification

Based on the COMET / CASL specification, the Japanese Ministry of Economy, Trade and

Industry in 2001, drafted the following specification of COMET II and CASL II:

1. START

Defines the start of a program. By default this is the address #1000.

2. DC

Defines a memory area with a decimal value of -32768-65535 (hex # 0000- # FFFF)

or a string.

3. IN (CALL # 0000)

Entering characters from the screen: The input request is a question mark (‘?’). The

entry is completed by ENTER. The first operand is the address where the input

should be written. The number of read characters is written to the address of the

second operand. By pressing the key, the input is ignored and the number 65636

(#FFFF) is passed.

4. OUT (CALL #0002)

Output a string: This command corresponds to the Basic command PRINT. The first

operand is the address where the characters are to be output. The second operand

specifies the address in which the number of characters to be output is stored.

5. WRITE CALL (#0006)

Outputs the contents of the registers on the screen. Press to continue the program.

6. END

Defines the end of the program.

SHARP PC-G850V(S) USERS GUIDE: CASL

 121

9.10. COMET Architecture

Technical information of the COMET architecture is listed below for a better understanding

of the CASL assembler.

Word length: 16 bits? (Each memory address has a length of 16 bits, as opposed to the

length of 8 bits of a normal computer)

Architecture: Von Neumann

Numbers: 16-bit binary numbers. Negative numbers are represented by the two's

complement.

Register: GR0-GR4 (16bit): General Register. GR1-GR4 are also used as index

registers. However, register GR4 is mainly used as the stack pointer (SP). The

stack starts at the top free address of the comet machine and grows down with

each new entry.

PC (16bit): Program Counter. This register contains the address of the next

instruction to be executed.

FR (2bit): Flag Register. This register contains the result of comparison

operations 00 = larger (positive), 01 = equal (NULL), 10 = smaller (negative)

Stack: The stack starts at the top free address of the Comet Machine and grows down

with each new entry. Register GR4 points to the most recently stored value. If

no value is stored, GR4 points to the last address + 1. If we enter a value with

PUSH, the address in GR4 decreases by 1. POP, on the other hand, increases

the address again by 1.

SHARP PC-G850V(S) USERS GUIDE: CASL

 122

9.11. Command Summary

Commands have a length of 2 16-bit words

Word 1 Word 2

OP

GR XR adr

Syntax

Description Command Operand

0 0

1 0 LD GR, adr, XR load

1 1 ST GR, adr, XR store

1 2 LEA GR, adr, XR load effective address

2 0 ADD GR, adr, XR add arithmetic

2 1 SUB GR, adr, XR subtract arithmetic

3 0 AND GR, adr, XR and

3 1 OR GR, adr, XR or

3 2 EOR GR, adr, XR exclusive or

4 0 CPA GR, adr, XR compare arithmetic

4 1 CPL GR, adr, XR compare logical

5 0 SLA GR, adr, XR shift left arithmetic

5 1 SRA GR, adr, XR shift right arithmetic

5 2 SLL GR, adr, XR shift left logical

5 3 SRL GR, adr, XR shift right logical

6 0 0 JPZ adr, XR jump on plus or zero

6 1 0 JMI adr, XR jump on minus

6 2 0 JNZ adr, XR jump on non-zero

6 3 0 JZE adr, XR jump on zero

6 4 0 JMP adr, XR unconditional jump

7 0 0 PUSH adr, XR push effective address

7 1 0 0000 POP GR pop up

8 0 0 CALL adr, XR call subroutine

8 1 0 0 0000 RET return from subroutine

9
⋮
F

not used

SHARP PC-G850V(S) USERS GUIDE: CASL

 123

9.11.1. Registers and Abbreviations

There are 23 CASL commands defined for this computer. This section describes the registers

and defines the abbreviations used in the command descriptions:

GR : GR0-4, the general purpose registers

XR : XR0-4, the optional index registers. (There are no special XR registers,

these correspond to the GR registers).

SP : The stack pointer. This is represented by register GR4.

adr : A 16-bit number that corresponds to a label or number to be processed.

The number ranges from -32758 – 65535 decimal or #0000 – #FFFF

hexadecimal.

Valid address : An address adr which returns the address value and index XR.

[] : Optional parameter

9.11.2. Commands

LD

Format: LD GR, adr [, XR]

Description: The contents of address adr is written to the specified register GR0-GR4.

ST

Format: ST GR, adr [, XR]

Description: The contents of register adr is written to the specified memory address.

LEA

Format: LEA GR, adr [, XR]

Description: The value of adr is written to the register.

Example: LEA GR1, 100 Load the value 100 to register GR1

LEA GR1, 10, GR1 Increase value in register GR1 by 10

LEA GR1, 0, GR2 Copy contents of GR1 to GR1

ADD

Format: ADD GR, adr [, XR]

Description: The register GR is added to the value in address adr.

SUB

Format: SUB GR, adr [, XR]

Description: The register GR is subtracted by the value in address adr.

SHARP PC-G850V(S) USERS GUIDE: CASL

 124

AND, OR, EOR

Format: AND GR, adr [, XR]

OR GR, adr [, XR]

EOR GR, adr [, XR]

Description: The content in address adr are bitwise (16 bit) compared using logical AND,

OR, or XOR with the contents of GR.

CPA

Format: CPA GR, adr [, XR]

Description: The content at address adr is compared to the contents of register GR. CPA

compares arithmetically and interprets the values as numbers (-32768 –

32767). CPL compares logically and interprets the content bitwise

(GR) > value FR = 00 (0)

(GR) = value FR = 01 (1)

(GR) < value FR = 10 (2)

JPZ, JMI, JNZ, JZE

Format: JPZ adr [, XR]

JMI adr [, XR]

JNZ adr [, XR]

JZE adr [, XR]

Description: Branches the program to the specified address when the condition is met.

JPZ : jump to address if comparison is positive or zero (FR = 00 or 01)

JMI : Jump to address if comparison is negative (FR = 10 [2])

JNZ : jump to address if comparison not zero (FR = 00 or 10)

JZE : jump to address if comparison is zero (FR = 01 [1])

JMP

Format: JMP adr [, XR]

Description: Branches the program to the specified address adr.

SLA, SRA

Format: SLA GR, adr [, XR]

SRA GR, adr [, XR]

Description: Arithmetic bitwise shift. The content of the register is shifted bitwise to the

left or right by the number of bits indicated by adr (plus the optional content

of XR), The sign (bit 15) always remains. In the case of negative numbers, a 1

instead of a 0 is inserted during the right shift. The FR register is set according

to the result.

SHARP PC-G850V(S) USERS GUIDE: CASL

 125

SSL, SLR

Format: SLL GR, adr [, XR]

SRL GR, adr [, XR]

Description: Logical bitwise shift. The content of the register is shifted bitwise to the left or

right by the number of bits indicated by adr (plus the optional content of XR).

PUSH

Format: PUSH adr [, XR]

Description: Writes the contents of the address adr in the stack. The stack address (SP) in

register GR4 is set to this new TOP stack address.

POP

Format: POP GR

Description: Writes the contents of the TOP address of the stack to the specified register.

The TOP stack address (SP) in register GR4 is set to the previous stack

address.

CALL

Format: CALL adr [, XR]

Description: Calls a subroutine at the specified address adr. The return address (address

after CALL) is placed on the stack.

RET

Format: RET

Description: Returns from a subprogram back to the calling program (CALL). The return

address is taken from the stack.

9.11.3. Assembler Syntax

Label command operand Description

[Label] START [Start Label] Indicates the beginning of the program

 END End of the program

[Label] DC constant Defines numbers or strings

[Label] DS Number of words Defines a memory area

[Label] IN String length Reads characters from the screen

[Label] OUT String length Writes characters to the screen

[Label] EXIT Program return

[Label] WRITE Output registers to the screen

SHARP PC-G850V(S) USERS GUIDE: CASL

 126

START

Format: START [label]

Description: Indicates start of a CASL program. Optionally, a label can be specified where

program execution should be started. Otherwise, the command following the

START statement is executed.

END

Format: END

Description: Sets the end of the CASL program.

DC

Format: DC n

DC #h

DC 'string'

DC label

Description: Define constant. Parameters for the various constant types are listed below:

n : Defines a number constant (decimal). The value of the

constant must be between -32768 and 65535.

#h : Defines a number constant (hexadecimal). The value of the

constant must be between #0000 and #FFFF.

'string' : Defines a string. Each byte is stored in the right half of an

address (16 bits). From the character code table, the characters

32 – 38 (&H20 – &H26), 40 – 95 (&H28 – &H5F), 97 – 122

(&H61 – &H7A), 166 – 223 (&HA6 – &HDF) can be used.

No length is stored within the string. The program has to

know how long the string is.

label : Defines a constant containing the address of the given label.

DS

Format: DS [n]

Description: Defines a memory area containing n words. If the number is 0, only the label

for the next following address is defined.

Special note: if n is assigned #0000 during program execution, the

execution of the program is interrupted. * STP * will appear

in the register display. This can be used to stop the program

in one place to check or change registers and memory. The

command counter is incremented by 2, so that at the next

start, the program can be continued. However, it should be

noted that two words with #0000 (for example, with 2x ÍDC

0Í) must be defined in the program because the program

counter is always increased by two.

SHARP PC-G850V(S) USERS GUIDE: CASL

 127

9.11.4. Macro Commands

IN

Format: IN adr, length

Description: Enter characters from the keyboard. The input prompt is a question mark ('?').

The entry is completed by pressing . The first operand is the address where

the input should be written. The address of the second operand contains the

number of characters read. Pressing will skip the next entry and pass the

number 65536 (#FFFF).

OUT

Format: OUT adr, length

Description: Output a string. This command corresponds to the BASIC command PRINT.

The first operand is the address where the characters are to be output. The

second operand specifies the address where the number of characters to be

output must be stored. The program is interrupted after the output and may be

resumed by pressing .

EXIT

Format: EXIT

Description: Ends the execution of the program.

WRITE

Format: WRITE

Description: Returns the contents of the registers on the screen. Press to continue the

program.

9.11.5. Sample Program

10 START

20 IN A, C Read characters in A

25 OUT NL, N Output of 9x'P' as separation

30 OUT A, B Output of the first 2 characters of A

40 EXIT end program execution

50A DS 20 Input buffer with 20 words (characters)

60B DC 2 Output length 2

70C DS 1 Storage of the number of read characters

80N DC 9 Output length for 9x'P'

90NL DC 'PPPPPPPPP' String with 9x'P'

100 END End of source program

SHARP PC-G850V(S) USERS GUIDE: CASL

 128

Listing of the sample program in memory:

IN A,C 7000 101A PUSH A

 7000 102F PUSH C

 8000 0000 CALL #0000

 1244 0002 LEA GR4,2,GR4

OUT NL,N 7000 1031 PUSH NL

 7000 1030 PUSH N

 8000 0002 CALL #0002

 1244 0002 LEA GR4,2,GR4

OUT A,B 7000 101A PUSH A

 7000 102E PUSH B

 8000 0002 CALL #0002

 1244 0002 LEA GR4,2,GR4

EXIT 6400 0004 JMP #0004

A DS 20 101A.. 102D #0000 (20x)

B DC 2 102E #0002

C DS 1 102F #0000

N DC 9 1030 #0009

NL DC ‘PP… 1031.. 1039 #0050 (9x)

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 129

10. MACHINE LANGUAGE MONITOR

With this computer, you can write programs in both machine language and BASIC. The

computer has a machine language monitor (hereafter referred to as "the monitor") to assist

with programming in machine language. The monitor allows you to enter or issue a specific

sequence of commands or execute machine language programs. This section describes the

functions of the machine language monitor commands for this computer.

The computer's CPU is a Z80 microprocessor (CMOS Z80A), which is commonly used in

most 8-bit computers. There are numerous books available about the Z80 processor, which

provide information about the machine language instruction set of the Z80 and other

important information. This chapter describes the behavior of the machine language monitor

commands, how to create a source program, and how to run it.

10.1. Using the Monitor

Monitor mode is selected by entering MON in BASIC mode (RUN or PRO). The following

display appears.

MACHINE LANGUAGE MONITOR

*

The asterisk (*) on the display is the command prompt waiting for input. All commands are

entered here. All necessary addresses or further data can be entered here after the command.

At the end of each line, the entry must be executed by pressing .

Example:

 Command

 Separator

*D0100, 01FF
Command prompt Data (Address)

Notes:

1. If memory protection is enabled with a password, the computer cannot be set to

monitor mode.

2. All addresses and data must be in hexadecimal.

3. To separate more than one address or to separate data parts, a comma (,) is used.

4. If hexadecimal is not used or another symbol is entered other than the comma, an

error occurs (SYNTAX ERROR).

5. The monitor mode can be excited by selecting a different mode or by turning the

computer off and on again.

6. Since machine language is very complicated, it often comes down to program bugs.

When running a machine-language program, BASIC programs, data, or other parts of

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 130

the computer memory may be destroyed. For this reason, it is recommended that you

back up all BASIC programs, data, or other information to a PC before running a

machine language program.

7. When using the monitor, accessing anything other than the machine language area

(assigned with the USER command) may result in the destruction of BASIC or TEXT

programs, destroy data, or cause malfunctions. Be sure to use only the intended

machine code area.

10.2. Monitor Commands

USER Set User Memory

Format: (1) USER01FF

(2) USER

(3) USER00FF

Description: Allocate memory for the monitor and display the addresses of this area.

Comments: Format (1): memory address range of 0100H (start address) to 01FF (end

address) is assigned for machine code. The first address is

automatically set to 0100H.

Assigned memory
*USER01FF

FREE:0100-01FF

*

 Format (2): displays the address range assigned for machine code. If no area

has been assigned for machine code, "FREE:NOT RESERVED"

is displayed.

*USER

FREE:0100-01FF

*

 Format (3): deletes existing machine code assignment from memory and

displays the message "FREE:NOT RESERVED".

An error message (MEMORY ERROR) is displayed when an invalid address

range for machine code assignment is entered.

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 131

S Update Memory

Format: (1) S0100

(2) S

Description: Update memory address.

Comments: Format (1): The contents of address 0100H (first address) is displayed and

prompts for a new entry.

*S0100

0100:01-

Existing content at address

To change the memory contents, enter one byte (two digit

hexadecimal) and then press . The computer will now show

the contents of the following memory address and will ask for

input.

If you not want to change the memory content at the current

address, press without entering any data. The computer then

displays the contents of the following memory address and asks

for input

A maximum of two hexadecimal digits can be entered. To delete

an entry before pressing press or .CLS..

Press to retrieve the contents of the previous address and

to retrieve the contents of the next address.

Format (2): Display the contents of the address immediately after the last

address specified by the S command.

Press .BREAK. to return to the command line.

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 132

D Display Memory

Format: (1) D0100

(2) D

(3) D0100, 01FF

Function: Display memory address.

Description: Format (1): Displays the first 16 bytes from the address range 0100H (first

address) to 010FH. (The output is printed in the printer mode.)

Example:

First address of
 16-byte block

Checksum

 0100 : 3E 01 18 04 >...

 (1D) 3A 0F 01 3C :..<

 32 0f 01 C9 2.."

 31 00 00 00 1...

ASCII code is displayed here. Hex

values 00H-1FH are displayed as (.)

The address range of the memory displayed is set to XXX0H-

XXXFH. If the address specified is within a 16-byte block, the

entire block which contains the address is displayed. For example,

if you specify the address 0104H, the contents of the 16-byte

block, in this case 0100H-010FH, is displayed.

Press to display the previous 16-byte block and to display

the next 16-byte block.

Format (2): displays the contents of the block that is directly next to the last

block displayed with the D command.

Format (3): When executed in PRINTER mode, the computer prints the

contents of the areas, 0100H (first address) – 01FFH (last

address), in 16-byte increments to the printer. When the output is

finished, the command line is displayed.

The printer mode is toggled with the P command (see later) or

with .SHIFT. + .PNP..

If the computer is not in PRINTER mode, the computer will

display the contents of the 16-byte blocks on the screen,

beginning with the address 0100H (the first address). The

computer does not take into account the last address specified

during display.

To return to the command line, press .BREAK..

Checksum: Checksum refers to the sum of the values of a specific record.

This sum is calculated and assigned to a record when that record

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 133

is written or displayed. The computer calculates the sum of the

contents of a 16-byte block output with the D command and

displays the least significant byte of the sum as the result of the

checksum. For example, if you manually enter a machine code

program that is copied from a printed program, you can check for

errors in each 16-byte block by comparing the checksum results

with the values of the original program. However, if the program

contains more than one error, the checksum may erroneously

match that of the original program.

E Edit Memory

Format: (1) E start-address

(2) E

Function: Edit memory area.

Description: Format (1): memory editing will start at the specified address.

Format (2): continues editing with the subsequent memory block from the last

edit.

The command S can also be used to change memory contents. The difference

is using the editor is more convenient. The editable range is 0000H – 07FFFH.

Use the cursor keys to move in the memory area.

The data is entered in hexadecimal notation 0-F. In addition to the keyboard,

the keypad can be used as follows:

7 8 9 /

(F)

4 5 6 *

(E)

1 2 3 –

(D)

0 .

(A)

=

(B)

+

(C)

Use the .TAB. key to toggle between hexadecimal input (left) and ASCII input

(right). Kana mode is not possible during editing.

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 134

P Toggle Printer

Format: P

Function: Enable or disable printer mode.

Description: The printer mode is toggled each time P is pressed (when printer mode is

activated, PRINT appears in the lower right corner of the display.)

Printer mode can also be toggled by pressing .SHIFT. + .PNP..

Note: The P command will not be executed if no printer is

connected or a connected printer is not turned on.

G GOSUB

Format: G address

Function: Execute a machine code program at a specific address.

Description: The G command corresponds to the GOSUB command in BASIC. A machine

code program at the specified address will be run. Execution is complete when

a RET command (return instruction) occurs. After the return instruction, the

computer displays the command line.

Note: A program a return instruction (RET command) must be

inserted, otherwise the program will not run correctly.

Out of control programs

A “runaway” program cannot run properly because it is out of control.

Resetting the system is the only way to interrupt such a program. In most

cases, an out of control program destroys the memory contents, including

machine code programs, BASIC programs, and other data.

A machine code program can get out of control even if it contains a single

bug. For this reason, it is recommended that you save or print all BASIC

programs and other information on a PC before running a machine language

program.

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 135

R Receive data via the serial interface

Format: (1) R

(2) R <address>

Function: Receive data via the serial I / O port (SIO).

Description: The R command is used to transmit / receive data in Intel hex format over

SIO. This command is for receiving machine code from a personal computer

or other device.

Format (1): loads data into an address specified by the data.

Format (2): loads data starting at the specified address (e.g., 0100H).

After completion, the address range where the data was loaded is displayed.

To stop receiving data, press and hold the .BREAK. key until the command

prompt is displayed.

The settings for the serial interface are set in TEXT mode.

W Send data via the serial interface

Format: W start-address, end-address

Function: Send data via the serial I / O port (SIO).

Description: The W command sends data in Intel Hex format from the memory area

specified (for example, W0100h, 01FF) to the serial I / O port. This command

is for sending machine codes to a personal computer or other device.

To stop sending data, press and hold the .BREAK. key until the command

prompt is displayed.

If a printer is connected to the peripheral interface male (11-pin) connector

and the W command is executed, both the computer and the printer may

malfunction. In this case, turn off the printer, and then press and hold the

.BREAK. key until the command prompt is displayed.

BP Set Breakpoint

Format: (1) BP address [, number]

(2) BP

(3) BP 0

Function: Insert a breakpoint at a specific address.

Description: Format (1): inserts a breakpoint at the specified address. Up to 4 breakpoints

can be inserted at different addresses. The possible address range

is from 0000H to 7FFFH.

With number, you can specify how many times execution occurs

at the specified address before the program stops. A value of 0-

255 can be specified. Specifying 0 clears the breakpoint. If a

SHARP PC-G850V(S) USERS GUIDE: Machine Language Monitor

 136

number is not specified, the value is set to 1, meaning that

execution is stopped when the breakpoint is reached for the first

time.

When attempting to enter a fifth breakpoint, the first breakpoint is

deleted. Therefore, there can never be more than four breakpoints

in a program.

A breakpoint should be inserted at an instruction address (OP

code). If the breakpoint is inserted at an operand address, the

program cannot read the breakpoint and will not run properly.

Format (2): displays the address of the breakpoint. If no breakpoint has been

inserted, only the command prompt (*) appears on the following

line.

Format (3): all existing breakpoints are deleted.

A breakpoint becomes inactive after execution, so if there is a breakpoint

within a program loop, it will only be activated at the first or n
th

 (according to

number) execution of the loop. It can be reactivated with the G command.

The computer maintains breakpoints that were set when the monitor was last

used. If the computer is set to Monitor mode from another mode, these

breakpoints can be re-enabled with the G command.

Note: The contents of an address that contains a breakpoint are

temporarily replaced with "F7H" while the program is

running. If the RESET switch is pressed before activating the

breakpoint, the contents will remain "F7H". In this case,

replace "F7H" with the original contents.

10.3. Error Messages in Monitor Mode

Following is a list of error messages that are displayed during monitor mode. To clear the

error message, press .CLS..

Error message Description

SYNTAX ERROR Invalid command syntax

MEMORY ERROR
An attempt was made to assign a machine code area outside the

allowable range.

I/O DEVICE ERROR
Error in the data transfer or error of the checksum during an I / O

operation
OTHER ERROR Other mistakes.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 137

11. ASSEMBLER

The following is a list of specialized vocabulary frequently used when dealing with machine

language programs.

Assemble,

translate:

Translate assembly language source code into a machine language.

A translated machine code program is called "object program" or

"object" for short.

Assembler: Translation program for translating a source program into an

object program.

To generate: Create an object from a mnemonic code.

Assembling by hand: Manual translation of a source program without an assembler.

Machine language: A computer language that is interpreted directly by a machine and

whose commands are executed. Displayed as hexadecimal code

(internally processed as binary code)

Mnemonic Code: Icons designed to help the programmer keep the machine code

instructions. For example, the abbreviation "ADD" for an

additional command (additional command). A language whose

mnemonic statements have a specific match with the machine

code is called "assembly language".

Patch: A fully assembled program that is ready to load into a computer.

The term generally refers to a machine code program that has been

translated by a source program. Sometimes referred to simply as

an "object". ("Object" can either refer to an individual machine

code resulting from a translation, or it can refer to a whole

machine language program.)

Pseudo-instruction: A sequence of assembler control commands that are not translated

into a machine code program. Such a sequence is used to

determine an address, store a machine code program or generate

data.

Source program: A program written in a mnemonic code (assembly language). A

machine code program is a translation of a source program.

11.1. Programming with the Assembler

An assembler program is translated into object code (the machine code program). However,

error conditions can occur during program execution. If the machine program contains one or

more bugs, the following error states may occur:

 The program is stuck in an infinite loop and stops responding to keypresses. To

interrupt the endless loop, press the .RESET. button.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 138

 The program will display random or nonsensical characters or show other issues. In

some cases, the program may be stopped using the .BREAK. button, but in other

cases, the .RESET. button must be pressed.

 Parts or the whole program will be destroyed or lost. In this case, there is a memory

error. It can also lead to the destruction of source programs (TEXT), BASIC programs

or all data on the computer, including the machine code program.

These problems can occur individually or simultaneously. If any of these problems occur and

you cannot determine what is happening, press the .RESET. key to clear all memory.

Problems (1) and (2) are called "runaway programs". A brief guide to programming the Z80

processor can be found in APPENDIX L: Z80 PROGRAMMING .

11.1.1. Example Program

The following program loads the hexadecimal numbers 20H – 9FH to memory addresses

0400H – 477FH (the H at the end indicates that it is a hexadecimal notation):

10 ORG 0100H

20START: LD A, 20H

30 LD HL, 0400H

40LBL: LD (HL), A

50 INC A

60 INC HL

70 CP 0A0H

80 JP NZ, LBL

90 RET

100 END

Note: One or more spaces can be inserted with the .SPACE. or .TAB. key.

Description of the example program:

10: (Load the object starting at address 0100H).

20: Load 20H into the register A.

30: Load 0400H into the register pair HL.

40: Load content in register A into an address specified by register pair HL

50: Increase the value of register A by one and load the result into register A.

60: Increase the value of register pair HL by one and load the result in HL.

70: Compare the contents of register A with the value A0H (A0H-content of A).

80: If the result of the last operation is not zero (content of A ≠ A0H), jump to the label

LBL (the label is translated into address 0105H).

90: Return from the subroutine.

100: (end of source program).

Lines 10 and 100 of this source program are called pseudo-instructions. They are used to

control the assembler and are not converted into machine codes (objects).

Note: After entering all the lines of this example program, double check for

errors. Before assembling the source program, a memory block must be

SHARP PC-G850V(S) USERS GUIDE: Assembler

 139

assigned to store the machine code, otherwise it is not possible to

assemble the source program.

11.1.2. Assign Machine Code Area

To assign a machine code area, the USER command is used in monitor mode.

First, monitor mode is selected.
.BASIC. MON

MACHINE LANGUAGE MONITOR

*

Next, memory is allocated for machine code with the USER command. In this example, a

block of memory from 0100H to 04FFH is allocated.

USER 04FF

MACHINE LANGUAGE MONITOR

*

The computer displays the assigned machine

code area (user area).

MACHINE LANGUAGE MONITOR

*USER04FF

FREE:0100-04FF

*

11.1.3. Assemble Source Program

The source program of this example can be converted into machine code.

Select the assembler function .SHIFT. + .ASMBL.

(The size of the work area may be different than

that shown in this example.)

 ***** ASSEMBLER *****

 user area=0100H-04FFH

 work area=29221bytes

< ASM Display Print >

Press ..A.. to start assembling.

 ***** ASSWMBLER *****

 --- assembling ---

When the assembly is complete, a screen similar

to the one shown on the right appears.

object:0100H-010DH

size :000EH(14)bytes

label : 2

error : 0 complete !

SHARP PC-G850V(S) USERS GUIDE: Assembler

 140

If an error occurs during the assembly, the

computer displays the corresponding error

message and the line number at which the error

occurred. In this case, go back to the editor and

correct the source program.

 ***** ASSEMBLER *****

*FORMAT ERROR (1)

0105 **** 40

 LBL: LD HL),A

11.1.4. Check Generated Object Program

The generated object program is checked with the monitor. The program is stored from

0100H to 010DH.

Enter MONITOR mode. Press .CLS. (or .BASIC.

MON).

MACHINE LANGUAGE MONITOR

*

Display the object program with the D

command: D0100 . The computer displays the

mapped dump of the object program.

0100 : 3E 20 21 00 > !.

(88) 04 77 3C 23 .w<#

 FE A0 C2 05 . Ã.

 01 C9 00 00 .È..

Note: Prior memory contents can be seen starting

at 010DH (C9). (88) is the checksum.

11.1.5. Run Object (Machine Code) Program

Now the generated object program can be run. The monitor command G (GOSUB) is used.

Display the command prompt for MONITOR

mode.
.BREAK.

*

Use the G command to run the object program:
G0100

After execution, the command line of the

monitor is displayed.

*G0100

*

The result of the program execution is checked:
D0400

0400 : 20 21 22 23 !" #

(78) 24 25 26 27 $%&'

 28 29 2A 2B ()*+

 2C 2D 2E 2F ,-./

0410 : 30 31 32 33 0123

 34 35 36 37 4567

SHARP PC-G850V(S) USERS GUIDE: Assembler

 141

The hexadecimal numbers 20H to 9FH were

written to the address range 0400H to 047FH

0410 : 30 31 32 33 0123

(78) 34 35 36 37 4567

 38 39 3A 3B 89:;

 3C 3D 3E 3F <=>?

0420 : 40 41 42 43 @ABC

 44 45 46 47 DEFG

11.2. Coding / Editing a Source Program

The assembler translates (assembles) the source program stored in the TEXT area into a

machine code program. The assembled machine code program is sequentially loaded into a

memory area starting at the specified address.

This section describes the conventions and rules (input formats, etc.) used when creating a

source program.

11.2.1. Source Program Format

Each line of a source program usually contains a single statement. A program generally

consists of a few lines. Assembly language source code begins with an ORG statement and

ends with an END statement (the ORG and END statements can be omitted).

Example:

10 ORG 0100H

 ⋮
100 END

The ORG instruction is used to specify the first address of the memory area in which the

generated machine code program is to be stored. This means that the lines of the machine

code program are stored in order, starting from the address determined by the ORG

instruction. If no address is determined, the computer uses 0100H as the first address. The

END statement indicates the end of the source program. The computer stops assembling when

it reaches this statement.

These instructions serve to control the assembler; they are not converted into a machine code.

11.2.2. Line Format (Instructions)

Each line of the source program consists of a line number, a label, a command, an operand, a

comment, or a pseudo-command.

32776 LABEL: ADD HL, 30;SAMPLE

 Line number Label Command Operands Comment

A colon (:) Commands are Comments are separated

must appear separated from from operators by

after the label operators by a semicolon

 a space

SHARP PC-G850V(S) USERS GUIDE: Assembler

 142

One line can consist of up to 254 characters, including the comment. Small and capital letters

are processed like capital letters, except when they are used in operands or comments.

 Line Number

If a line number outside the allowable range of 1 to 65279 is entered, the error

message "LINE NO, ERROR" will be displayed.

 Label:

A label can be inserted directly after the line number (there must be no empty space

between the line number and the label, otherwise an error will occur). Labels can

consist of up to six characters. If there are more than six characters, an error occurs.

The following characters can be used for labels:

 Letters: A to Z (a to z are read like A to Z).

 Numbers: 0 to 9

 Symbols: [,], @, ?, and _

The first character of a label must be a letter or a symbol (a number cannot be

distinguished from the line number).

A label using the same characters or pairs of characters as the following registers or

condition codes cannot be used:

1. Single register: A, B, C, D, E, H, L, I, R

2. Register pairs: AF, BC, DE, HL, IX, IY, SP

3. Condition code: NZ, Z, NC, C, PO, PE, P, M?

A label must be followed by a colon (:), otherwise an error will occur. An exception

is the definition of a value for a label with the pseudo-command EQU; in this case, no

colon must follow the label.

If no label is required, one or more spaces must be inserted between the line number

and the following command word. To insert spaces, use the .SPACE. or .TAB. key.

 Commands (OP code)

A Z80 command can be entered as a mnemonic symbol. Other pseudo-instructions

can also be inserted here. A command is part of a statement called statement code or

OP code.

The command entered must be separated from the following operand by one or more

spaces. To insert spaces, use the .SPACE. or .TAB. key.

 Operand field

Operands are registers, addresses or constants used in executing instructions. Each

operand can consist of up to 32 characters and are separated by commas (,). The

following types of constants can be used as operands:

SHARP PC-G850V(S) USERS GUIDE: Assembler

 143

Numeric constants

Binary, decimal or hexadecimal numbers:

Binary : Represented as a sequence of 1 and 0, with a "B" at the end.

Examples: 10111100B, 100000B

Decimal : Shown as base 0 to 9. Examples: 188, 32

Hexadecimal : Represented by decimal numbers 0 to 9 and the capital letters A to

F; with an "H" in the end. If a hexadecimal number begins with a

letter, it must begin with a "0" to distinguish it from a command.

Examples: 0BCH, 20H

String constants

Character strings for operands must be in single quotes (') be included. ASCII

representations of characters are used as constants in operands. For example:

(Specification) (string) (constants)
 'A' A 41H

 'FROM' FROM 41H,42H

 'B''C' B'C 42H,27H,43H

 '''D' 'D 24H,44H

 'E''' E' 45H,27H

 '''' ' 27H

 '' (ZERO) 00H

Label constants

If a constant is defined for a label with the EQU command, this label can be used

as a constant in an operand. Expressions (including arithmetic operators) can be

used as operands. The following characters and arithmetic operators can be used

in operands, however, no operator takes precedence over another.

Signs: positive (+), negative (-)

Operators: *, /, +, -

The computer performs internal operations with 16-bit data. A capacity overrun is

ignored (no error occurs). The object is generated with an 8-bit or 16-bit result.

For statements with expressions, the computer does not check for the correctness

of the expression.

Examples: LD A, 4142H -> Read as LD A, 42H

DB 1234H -> Read as DB 34H?

 Comments

Each line of a source program can be followed by a comment, separated by a

semicolon (;). The part of the line from a semicolon to the end of the line is

considered a comment and not translated into machine code (object),

SHARP PC-G850V(S) USERS GUIDE: Assembler

 144

11.2.3. Deleting a Source Program

Display the main menu in TEXT mode and press ..D.. to select the delete function. The

computer asks for security whether the content of the TEXT area should be deleted. (If no

program is stored in the TEXT area, the computer does not respond to pressing ..D...)

TEXT DELETE OK? (Y)

To delete all information in the TEXT area, press the ..Y.. key. The computer returns to the

main menu of the TEXT mode. Pressing a button other than ..Y.. returns the computer to the

TEXT mode main menu without erasing anything.

11.2.4. Entering a Source Program

Display the main menu in TEXT mode. Press ..E.. to select the edit function.

Pressing or will scroll the contents of the TEXT area, for example, a source program.

If nothing is saved, the display does not change. A new program cannot be loaded into the

TEXT area until the existing content has been completely deleted. Press .BREAK. to return to

the main menu, select the Delete function, and clear the contents of the TEXT area.

Follow the steps described in the above section to delete a source program.

1. Enter the line number

2. If no label is required, one or more spaces can be inserted by pressing .TAB. or

.SPACE.. The cursor moves back to the input field for commands.

A label is entered immediately after the line number, without a space. The label must

end with a colon (:). After the colon, one or more blanks can be inserted as desired.

3. Enter a command. If an operand follows the instruction, it must be separated from the

instruction by one or more spaces (press .TAB. or .SPACE.).

4. Enter the operands. Operands are separated by commas (,).

5. If you want to annotate this line, a semicolon (;) must be entered before the comment.

6. After entering the entire line, press to save the line. The cursor disappears after

 is pressed.

To enter additional lines, the above steps are repeated.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 145

11.3. Assembler Functions

This section describes in detail how to assemble a source program entered in TEXT mode.

This assumes the example program is already loaded in the computer.

11.3.1. Assembler Menu

In order to assemble a source program, the assembler has to be activated.

.SHIFT. + .ASMBL.

The assembler menu shown to the

right appears.

 ***** ASSEMBLER *****

 user area=0100H-04FFH

 work area=29221bytes

< ASM Display Print >

User (machine code) area: address 0100h–04FFH

Rough work area: 29221 bytes

..A..: Assemble program

..D..: Display assembled program

..P..: Print assembled program

The menu shows the assigned machine code area on the second line. To assign the machine

code area, the USER command is used in MONITOR mode. If no machine code area has been

assigned or the area is too small to save the object, an error message (NOT RESERVED or

USER AREA OVER) is displayed during assembly. In this case, use .BASIC. MON to

select the monitor mode and assign or enlarge the machine code area with the USER

command.

The third line of the assembler menu specifies the size of the existing work area in bytes.

This shows the byte count of the free area in memory. The value corresponds to the number

obtained with the FRE command from BASIC.

The workspace required for the conversion process is automatically assigned in free space. If

the workspace cannot be assigned, a WORK AREA OVER error message will be displayed. In

this case, increase the free space by deleting existing BASIC programs or other data, or

reduce the machine code area.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 146

Note: An error occurs if there are less

than 307 bytes of free space

while the computer is in

ASMBL mode. If a source

program contains labels, the

assembler provides a label

workspace with the necessary

size. An error occurs if the

assembler cannot assign this

necessary area.

 Memory Map
0100H

Object code

User space

(Machine code)

 Program storage

(RAMDISK)

 Source code

Text space

 BASIC programs

 Workspace

Free space

 Variables

11.3.2. Assembling

Successful Assembly

To start assembling, press ..A.. while the

assembler menu is displayed.

 ***** ASSEMBLER *****

 --- assembling ---

During operation, "--assembling--" is

displayed. At the completion of the process,

"complete !" is displayed as well as the

object area, size of the object code, the number

of labels, and the number of errors.

object:0100H-010DH

size :000EH(14)bytes

label : 2

error : 0 complete !

Press .CLS. to return to monitor mode. In MONITOR mode, you can check the assembled

object program with the D command or have it executed with the G command.

Unsuccessful Assembly

If an error is found in the source program during assembly, the assembler ends the process

and displays a corresponding error message and the line number where the error was found.

To continue assembling, press .

For example, assume that the example program contains an error in lines 50 and 80:

50 INB A "INC A" is correct.

 ⋮
80 JP NZ, KBL "JP NZ, LBL" is correct.

Press the ..A.. key while the assembler menu is displayed to assemble the program with the

specified errors.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 147

When the first error is found, the error message

shown on the right is displayed

 ***** ASSEMBLER *****

*OPECODE ERROR

0106 **** 50

 INB A

Address Command Operand

 Object (see note) Line number

Error message indicates an OP code error.

Note: When the assembler cannot generate correct

object code because of an error in the source

program, a series of asterisk will be displayed

after the corresponding address.

Press to continue assembling. Now the error

message for the second error is shown in line 80.

***** ASSEMBLER *****

*UNDEFINED SYMBOL

0109 **** 80

 JP NZ,KB

 Error message (an undefined symbol is used for a

label)

Press again. The last screen of the assembler

appears, but this time without the message

"complete !".

object:0100H-010CH

size :000DH(13)bytes

label : 2

error : 2

At the last screen, press .CLS. to return to the assembler menu.

Notes: The assembler ignores the statement from line 50 and assumes that the

label of line 80 specifies the address 0000H. At this point the example

program is assembled.

If an error is found in the source program, the generated object code also

has errors. When executing the object program, the program may become

out of control or destroy the memory contents. The source program must

be corrected and reassembled, so that the object program can run without

error.

Displaying the Object Code

With the display option, the object program can be checked before the source program is

compiled. The assembler log contains the machine code program to be generated, its

addresses and further object information.

Pressing ..D.. while the assembler menu is displayed displays the first line of the assembler

log. Pressing will display subsequent lines for review. Load the above sample program if

it is not already loaded and check its assembled object code.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 148

Press ..D.. in ASSEMBLER mode.

 **** ASSEMBLE LIST ****

0100 10

 ORG 0100H

0100 3E20 20

 .Address. .Object. .Line number.

…………Source program…………

If the object field is empty, no object is generated.

If there are more than 8 digits of machine code,

the remaining digits are shown on the following

line.

Press several times to see the subsequent lines

of the assembler log.

 **** ASSEMBLE LIST ****

0100 10

 ORG 0100H

0100 3E20 20

 START:LD A,20H

0102 210004 30

 LD HL,04

 00H

0105 77

 LBL: LD (HL),

 A

0106 3C 50

 INC A

0107 23 60

 INC HL

0108 FEA0 70

 CP 010H

010A C20501 80

 JP NZ,LB

 L

010D C9 90

 RET

010E 100

 END

 **** SYMBOL TABLE ****

START :0100 LBL :0105

object:0100H-010DH

size :000EH(14)bytes

label : 2

error : 0 complete !

The values assigned to the labels are in hexadecimal.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 149

Notes: Press .CLS. to return to the assembler menu.

You can check the assembler log with the display option. However, the object

code of the source program cannot be loaded into the machine code area. To load

the object code, the source program must successfully assembled.

Printing the Assembler Log

The assembler log can be printed out with the print command in the assembler menu.

Connect the optional CE-126P printer to the computer, switch on the printer and press ..P..

while the assembler menu is displayed.

Notes: If the printer option is selected without the CE-126P printer connected or

turned on, an error message will appear (* PRINTER ERROR). In this

case clear the message with .CLS. and check the printer.

The assembler log is printed, regardless of whether PRINT is displayed in

the lower right side of the display.

After printing, the assembler shows the final assembler screen. Press .CLS.

to return to the assembler menu.

The log will be printed identically to how it is shown on the display.

To cancel the printout, press and hold the .BREAK. button until the printer

stops. The display will show "--break--". Press .CLS. to go back to the

assembler menu.

Sending the Assembler Log to the Serial Interface (SIO)

The assembler log can also be sent to the serial interface by entering ..L.. in the assembler

menu. The operation is identical to the Print operation (see above).

Note: In contrast to the other assembler menu commands, the L command is not

listed on the screen.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 150

11.4. Assembler Pseudo-Instructions

Pseudo-instructions are used to control the assembler itself and are not converted into

machine code. This computer knows the following pseudo-commands:

 ORG: Specifies the first address of the machine code area.

 DEFB/DB/DEFM/DM, DEFS/DS, and DEFW/DW: define data within the operand.

 EQU: define label values.

 END: indicates the end of the assembly program.

The following describes some of the conventions and rules used in the explanation of the

pseudo instructions.

Expression : Expressions can be numbers, formulas, labels, or "strings."

Formulas : Formulas can be numbers, labels, or any arithmetic expressions that use

numbers or labels.

{} : When multiple elements are combined by a curly brace, only one of these

elements can be selected.

[] : An element within square brackets denotes an optional instruction.

[] ... : Ellipses after square brackets indicate that the element is optional and can be

repeated.

ORG Beginning

Format: ORG expression

Description: Specifies the first address of the machine code area. The expression determines

the first address of an area in which the generated machine code is stored. The

machine code program is sequentially loaded into memory starting at the

address determined by this expression.

If the source program does not contain an ORG statement, the assembler takes

the statement 'ORG 100H'; This makes 100H the first address from which the

machine code is stored.

Example: ORG 0400H This instruction stores machine code starting at

address 0400H.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 151

DEFB / DB / DEFM / DM Define Byte / Message

Format: [Label:] {

DEFB
DB

DEFM
 DM

} expression [, expression]…

Description: This instruction returns the least significant byte of a given number or

expression converted to machine code.

Example: DEFB 1234H; translates 1234H to the machine code "34H".

DB 1234; translates 1234 into machine code "D2H".

A string in an operand must be enclosed in quotes (“). It can consist of up to 32

characters. Individual characters of an operand string are translated in the

corresponding ASCII codes.

Example: DEFM 'DATA'; translates the individual characters of the

sequence 'DATA' into the machine code 44H, 41H, 54H and 41H.

Individual operands are separated by commas (,).

Example: DB 32w4+5,'X2'; 85H, 58H and 32H are generated in machine

code.

Sample Source program Machine code

Program: 10 ORG 0100H

20 LD HL, DATA 21 0C 01

30 LD DE, 300H 11 00 03

40 LD BC, 5 01 05 00

50 LDIR ED B0

60 RET C9

70DATA: DB 'ABCDEFGH' 41 42 43 44 45 46 47 48

80 END

The individual characters of the operand string in line 70 are translated into

their corresponding ASCII codes. In the example program, five bytes of data

are located in an area whose first address is specified by the label DATA; they

are copied to an area starting with address 300H. This means that the data 41H,

42H, 43H, 44H and 45H are copied to the address 300H to 304H.

DEFW / DW Define Word

Format: [Label:] {
DEFW

DW
} expression [, expression]…

Description: translates the two least significant bytes of a number or string expression (two

characters or less) into machine code. Machine code bytes are ordered least

significant, most significant.

Example: DW 1234H; translates 1234H to machine codes 34H and 12H (in

order of least-significant and highest-value bytes).

DEFW 34H; 34H translates into machine codes 34H and 00H.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 152

A string in an operand must be enclosed in quotation marks ('). You can define

up to two characters for a string.

Example: DEFW 'DA'; translates the string 'DA' into 41H and 44H.

DW 'Z'; translates the string 'Z' into machine code 5AH and

00H.

Individual operands are separated by commas (,).

Example: DW 'AB','CD',5678H; translated into 42H, 41H, 44H, 43H,

78H and 56H.

DEFS / DS Define Memory

Format: [Label:] {
DEFS

DS
} expression [, expression]…

Description: Generates the number of NULL codes (00H) specified in the operand. 00H is a

"no operation code" (NOP) that instructs the computer to do nothing.

Example: DS 12; Generates 12 bytes with value 00H

Sample Source program Machine code

Program: 10 ORG 0100H

20 LD HL, DATA 21 0C 01

30 LD DE, 300H 11 00 03

40 LD BC, 5 01 05 00

50 LDIR ED B0

60 RET C9

65 DS 4 00 00 00 00

70DATA: DB 'ABCDEFGH' 41 42 43 44 45 46 47 48

75nxt00: DS 500H-NXT00 (Inserts 00H at all subsequent

 addresses up to 04FFH.)
80 END

This example program is just like the above, but contains additional lines 65 and

75. Line 65 allocates a memory area for later use. With line 75, NULL codes

(00H) are inserted to delete unnecessary memory contents.

EQU Equal

Format: [Label:] EQU expression

Description: Assign value that is specified by the operand to label.

The label is assigned a value specified by the expression. Expressions may be a

number or a string of one or two bytes. The colon (:) after the label is omitted.

Example: START EQU 1000H; assign the value 1000H to the label

START. The label can then be used as a

constant of value 1000H

 OK EQU 'Y'; Assign the value 59H to the label OK.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 153

END End

Format: END

Description: Indicates the end of a source program.

The end of a source program is determined by the END statement. The

assembler terminates the conversion process at this point. Information

following this instruction will no longer be assembled. If there is no END

statement at the end of a source program, the assembler assembles until the end

of the TEXT area.

11.5. Error Messages

This section contains a list of error messages that may be displayed during assembly, as well

as explanations of these messages. To clear the error message, press .CLS.. If assembly is

aborted when an error occurs in the source program, the button can be pressed to resume

assembly. The error message is also cleared when the computer is set to a different operating

mode.

Error type Description (cause)

OPECODE ERROR Invalid OP code (command code),

FORMAT ERROR (1) Invalid separator for operators

FORMAT ERROR (2) Invalid code (ASCII code 01H-1FH or similar) or

characters in an operand (such codes or characters

cannot normally be entered).

FORMAT ERROR (3) Invalid number of operands

FORMAT ERROR (4) Invalid characters were used in a label.

FORMAT ERROR (5) A label has more than six characters

FORMAT ERROR (6) The string in the operand is not enclosed in quotes.

FORMAT ERROR (7) The number of characters in an instruction or a single

operand exceeds 32? (E.g., the value of the address or

the like in an operand has too many leading zeros.)

QUESTIONABLE OPERAND (1) Invalid operand.

QUESTIONABLE OPERAND (2) Invalid condition (NZ, Z, NC or similar)

QUESTIONABLE OPERAND (3) The value of the operand exceeds the permissible

limit.

QUESTIONABLE OPERAND (4) The string in the operand exceeds the permissible

length of 32 characters.

QUESTIONABLE OPERAND (5) Divide by zero.

QUESTIONABLE OPERAND (6) Other invalid values ??or expressions.

UNDEFINED SYMBOL An undefined symbol (label) was used.

MULTI DEFINE SYMBOL The same symbol (label) has been defined more than

once.

FILE NOT EXIST The program to be assembled is not in the TEXT area.

SHARP PC-G850V(S) USERS GUIDE: Assembler

 154

Error type Description (cause)

USER AREA OVER

The object could not be loaded into the machine code

area. (The first address of the object area specified

with the ORG instruction is outside the machine code

area or the object has exceeded the capacity of the

machine code area during loading,)

WORK AREA OVER

The size of the free area is too small for the necessary

workspace to assemble (if the computer is in

assembler mode or assembles).

PRINTER ERROR

The printer is not ready to start or does not work.

(The printer is not connected, turned off or

inoperable due to a discharged battery.)

SHARP PC-G850V(S) USERS GUIDE: PIC

 155

12. PIC

The SHARP PC-G850V(S) has an interface for PIC devices (Peripheral Interface Controller).

This allows these controllers to be programmed with the Pocket Computer.

The following devices are supported (as of 2001):

 program memory number of pins

PIC16F627 1K words 18

PIC16F83 512 words 18

PIC16F84 1K words 18

PIC16F84A 1K words 18

PIC mode consists of two functions:

Assembler : programs are created in TEXT mode and then assembled.

Loader : transfer the object program into the PIC module

12.1. Defining the Machine Language Area

Make sure that enough memory is reserved in the machine language area.

For the PIC interface, the system requires more than 1K words. Therefore, at least 3KByte

should be defined. Use the USER command to define a free area of 3K in the machine

language monitor:

.BASIC. MON
USER0CFF

(The memory block 0100H-0CFFH is now

reserved)

MACHINE LANGUAGE MONITOR

*USER0CFF

FREE:0100-0CFF

*

12.2. Creating / Editing a Source Program

The source program is created or edited in the same way as Z80 or CASL assembler

programs. The assembler programs must be written to conform with the MPLAB

specification.

As with the other assembler languages, only one command per line may be written. A

command line consists of a line number, label, command/opcode, operand, and comment.

<line number>[label] Opcode operand [; comment]

Example: 32767LABEL MOVLW 0x0F9 ; SAMPLE

At least one space or TAB must be before and after each command. A line, including the

comment, can be up to 254 characters long.

SHARP PC-G850V(S) USERS GUIDE: PIC

 156

 Line Numbers

Each line must contain a line number. If a line number outside the allowable range of

1 to 65279 is entered, the error message "LINE NO, ERROR" is displayed.

 Label

The optional label must begin immediately after the line number. The length of the

label is between 1 and 8 characters. Only alphanumeric characters (A-Z and 0-9) may

be used. The label must start with a letter.

 Opcode

The opcodes of the 35-bit 14-bit kernel are given here. These include the special

assembler commands. As a delimiter to the operand, at least one blank or TAB must

be entered.

 Operand

One or more operands (separated by commas). The following types of constants are

possible:

Numeric constants

Decimal : includes 0–9. Examples: 188, 32

Hexadecimal : starts with 0x. Includes 0–9, A, B, C, E, D, F. Example 0xBC,

0x20.

Character constant

Character constants must be enclosed in single quotes (') be included. For

example:

 Character Operand Numeric Value

 A 'A' 0x41

 NULL '' 0x00

Address constant

The operand is a label, e.g. an EQU statement.

 Comment

The optional comment must start with a semicolon. Until the end of the line, all

subsequent characters are treated as a comment. These characters are not assembled,

therefore do not belong to the object program.

SHARP PC-G850V(S) USERS GUIDE: PIC

 157

12.3. PIC Assembler

The source program must be entered or loaded in the TEXT editor. Then change to PIC

mode:

Press .SHIFT. + .ASMBL. and then ..P.. to enter PIC

Mode

 *** PIC ASSEMBLER ***

 Assembler Loader

To assemble the program press ..A...

 *** PIC ASSEMBLER ***

Assembler Loader

Complete! (***** words)

During assembly, “Assembling” appears in the lower left area. When the process

is complete, the message “Complete! (***** words)” appears, where ***** is the

size of the program in words.

12.3.1. PIC Assembler Directives

The assembler has commands to control the assembler itself and to declare definitions. These

commands are not part of the object program.

__CONFIG : Defining the configuration

ORG : Specify address for the beginning of the program

EQU : Define values

DW : Define data

__CONFIG Configuration

Format: __CONFIG expression

Function: Configure PIC

Description: Configuration bit for each PIC. The values to be specified can be found in the

documentation for the PIC module. According to MPASM specification, the

bits can be linked with “&” (ampersand). However, this does not work with

this computer.

Example: __CONFIG 0x3FA8

SHARP PC-G850V(S) USERS GUIDE: PIC

 158

ORG Set Start Address

Format: ORG address

Function: Define the start address of the program

Description: specifies the start address of the object program. If the ORG instruction is not

specified, a start address 0x0 (ORG 0) is assumed. A value from 0x0 to

0x1FFF can be specified, depending on the requirements of the PIC module

Example: ORG 0x0006

EQU Define a Constant

Format: label EQU expression

Function: Associates a label with a constant.

Description: The expression can be a numeric value or a character.

Example: START EQU 0x1000 Defines the constant 0x1000 for START

OK EQU "Y" Defines the value 0x59 for OK

DW Define a Word

Format: [label] DW expression

Function: Define a word (2 bytes).

Description: The expression can be a numeric value or a character. Note that this is a 14-bit

system and the values up to 0x3FFF are allowed.

Example: DW 0x1234

#INCLUDE Insert a File

Format: #INCLUDE "file"

Function: Inserts a file for the PIC modules into the source program during assembly.

This file contains standard definitions for the specific module.

Description: These files contain LABEL definitions of the MPASM specification for a

specific module. The file specified in the operand must be enclosed in double

quotes.

The following files can be used:

PIC modules: P16F627.INC, P16F83.INC, P16F84.INC, P16F84A.INC

14bit flash memory: PIC.INC

The labels defined by the #INCLUDE statement are not included as part of the

102 labels that can be defined by the user. Each program can contain only one

#INLCUDE statement. This should be at the beginning of the program.

SHARP PC-G850V(S) USERS GUIDE: PIC

 159

Labels in the MPASM specification that are longer than 8 characters are

limited to 8 characters on this computer.

MPASM label Label in Computer

OPTION_REC OPTION_R

NOT_T1SYNC NOT_T1SY

12.3.2. PIC Assembler Error Messages

Using the assembler may cause errors (see table). Press .CLS. to clear the error. You can the

correct the error (for example, in the TEXT Editor).

Error message Description

File not exist! No program included in the TEXT Editor

No USER AREA! No machine language area has been defined

Not __CONFIG data! There is no __CONFIG directive

Syntax error! (*****)

Wrong __CONFIG_Parameter

Wrong ORG parameter

The EQU command has no label

illegal memory address

No Space / TAB / CR after the operand

No Space / TAB / CR after the OPcode

Operands separated with space / TAB.

Wrong operand

Wrong OPcode

Wrong preprocessor command

Out of range! (*****) Address, content is outside the permitted range.

Undefined label! (*****) The specified label does not exist.

Undefined line! (*****)
The specified address is higher than that of the

allocated memory

Label too long! (*****) The label has more than 8 characters

Out of memory! (*****)
Address in the ORG command over 8K, the

program has run out of memory, too many labels.

Multi define! (*****)

Only one #INCLUDE command may be included in

the program.

There are 2 or more identical labels

Not include file! (*****) The specified include file is invalid.

SHARP PC-G850V(S) USERS GUIDE: PIC

 160

12.4. PIC Loader

The loader transfers the successfully assembled PIC program from the machine language

area to the PIC module.

Press .SHIFT. + .ASMBL. and then ..P.. to enter PIC

Mode

 *** PIC ASSEMBLER ***

 Assembler Loader

To load the program, press ..L...

 *** PIC ASSEMBLER ***

 Assembler Loader

Complete! (***** words)

During the transfer, “Loading” appears in the lower left area. When the process is

complete, the message “Complete! (***** words)” appears, where ***** is the

size of the program in words.

12.4.1. PIC Loader Error Messages

When using the loader, errors may occur (see table). Press CLS to clear the error. Then you

can correct the error (for example, in the TEXT Editor).

Error message Description

No USER AREA! No machine language area defined

Not PIC data! PIC data size is 0

Illegal PIC data!
PIC data is larger than the machine language area.

The word in the __CONFIG parameter is incorrect

Connection error! The connection to the PIC module could not be established.

Low battery! Weak battery was detected.

Verify error! Error while comparing / checking the transmitted program

Break! The transfer was aborted.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 161

13. BASIC COMMAND GLOSSARY

The following pages contain a listing of the BASIC commands that you can use on the

computer. Descriptions of the logical functions AND, OR, XOR, and NOT can be found in

Chapter 5: Logical Expressions.

For simplicity, the following conventions have been adopted:

expression, exp Indicates a numeric value, numerical variable, or a formula

including numeric values and numerical variables.

variable, var Indicates a numerical variable or string variable, including array

variables.

“string” indicates a character string enclosed in quotation marks.

string-variable Indicates a string variable or string array variable.

*label Indicates a *label (both *label and “label” forms may be used with

this computer)

d: Indicates a device name.

[] The parameter in square brackets is optional. The brackets

themselves are not part of the command entry.

() Used to enclosed parameter values in certain commands. They

should be entered as part of the command.

" " Used to enclose string parameter values in certain commands.

AB A or B can be selected

P Program execution is possible

D Direct input operation is possible

Abbr Most of the commands can be abbreviated. The shortest

abbreviation allowed is given in this manual.

 The following abbreviations are also valid:
 PR.

 PRI.
 PRIN.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 162

13.1. Scientific and Mathematical Functions

The computer has a wide range of built-in function for scientific, mathematical and statistical

calculations. All the functions listed below can be use as part of calculations when using the

computer in RUN mode in addition to use in BASIC programs.

For trigonometric functions, entries can be made in degrees, radian or gradian values as

appropriate:

DEGREE: Set the computer to degree entry mode (the status line on the display shows

DEG). This is the default mode.

RADIAN: Set the computer to radian entry mode (the status line on the display shows

RAD).

GRAD: Set the computer to gradian entry mode (the status line on the display

shows GRAD).

These three modes (DEG, RAD and GRAD) can also be set within a program. Once a mode is

set, all entries for trigonometric functions must be in the units set (degree, radian or gradian

values) until the mode is changed manually or from within a program. In the following

examples, values for the trigonometric functions are in degrees.

Most functions can also be entered by pressing the corresponding function key.

It is not possible to perform manual calculations directly in PRO mode.

ABS |𝒙|

Format: ABS expression

Function: Absolute value

Description: Returns the absolute value of the numeric argument. The absolute value is the

value of a number, regardless of its sign.

Example: ABS -10 10

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 163

ACS 𝐜𝐨𝐬−𝟏 𝒙

Format: ACS expression

See also: ASN, ATN, COS

Function: Inverse or arc cosine

Description: Returns the arc cosine of the expression.

The value of expression must be in the range of -1 ≤ expression ≤ 1. Since the

arc cosine function is the inverse of the cosine function, the returned value is

an angle. The result is dependent on the current angle mode (DEG, RAD, or

GRAD) and falls in the following ranges:

Degrees: 0° … 180°

Radians: 0 … π

Gradians: 0 … 200

The corresponding key is .COS
-1

..

Example: DEGREE

ACS -0.5 120

10:DEGREE

20:PRINT "arccos(0.5) =";ACS(.5);” degrees”

30:PRINT "arccos(0) =";ACS(0);" degrees"

40:END

>

RUN

arccos(0.5) = 60 degrees

arccos(0) = 90 degrees

>

AHC 𝐜𝐨𝐬𝐡−𝟏 𝒙

Format: AHC expression

See also: AHS, AHT, HCS

Function: Inverse hyperbolic cosine

Description: Returns the inverse hyperbolic cosine of expression.

Example: AHC 10 2.993222846

AHS 𝐬𝐢𝐧𝐡−𝟏 𝒙

Format: AHS expression

See also: AHC, AHT, HSN

Function: Inverse hyperbolic sine

Description: Returns the inverse hyperbolic sine of expression

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 164

Example: AHS 27.3 4.000369154

AHT 𝐭𝐚𝐧𝐡−𝟏 𝒙

Format: AHT(expression)

See also: AHS, AHC, HTN

Function: Inverse hyperbolic tangent

Description: Returns the inverse hyperbolic tangent of expression.

Example: AHT 0.7 0.867300527

ASN 𝐬𝐢𝐧−𝟏 𝒙

Format: ASN expression

See also: ACS, ATN, SIN

Function: Inverse or arc sine

Description: Returns the arc sine of expression.

The value of expression must be in the range of -1 ≤ expression ≤ 1. Since the

arc sine function is the inverse of the sine function, the returned value is an

angle. The result is dependent on the current angle mode (DEG RAD, or

GRAD) and falls in the following ranges:

Degrees: -90° … 90°

Radian: -π/2 … π/2

Gradians: -100 … 100

 The corresponding key is .SIN
-1

..

Example: DEGREE

ASN 0.5 30

10:DEGREE
20:PRINT "arcsin(0.5) =";ASN(.5);” degrees”

30:PRINT "arcsin(0) =";ASN(0);" degrees"

40:END

>

RUN

arccos(0.5) = 30 degrees

arccos(0) = 0 degrees

>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 165

ATN 𝐭𝐚𝐧−𝟏 𝒙

Format: ATN expression

See also: ACS, ASN, TAN

Function: Inverse or arc tangent

Description: Returns the arc tangent of expression.

There is no restriction on the value of expression. Since the arc tangent

function is the inverse of the tangent function, the returned value is an angle.

The result is dependent on the current angle mode (DEG, RAD, or GRAD) and

falls within the following ranges:

Degrees: -90° … 90°

Radian: -π/2 … π/2

Gradians: -100 … 100

 The corresponding key is .TAN
-1

..

Example: DEGREE

ATN 1 45

10: DEGREE

15: WAIT 100

20: GOSUB 100

30: FOR DX = 0 TO 100

40: X = DX * .1

50: F = ATN (X): Z = Z + 1

60: IF Z = 3 THEN GOSUB 100

70: PRINT ""; STR$ (X), F

80: NEXT DX

90: END

100: CLS: PRINT "ARGUMENT", "ARC-TANGENT"

110: Z = 0: RETURN

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 166

COS 𝐜𝐨𝐬 𝒙

Format: COS expression

See also: ACS, SIN, TAN

Function: Cosine

Description: Returns the cosine of the angle expression

The specified angle can be in degrees, radians, or gradians. To obtain the

correct value, the computer must be in the correct angle mode (DEG, RAD,

GRAD). The corresponding key is .COS.

Example: DEGREE

COS 120 -0.5

10:DEGREE

20:G$=CHR$ (&F8)

30:PRINT "cos(60";G$;") = ";COS(60)

40:PRINT "cos(90";G$;") = ";COS(90)

50:END

>RUN

cos(60°) = 0.5

cos(90°) = 0

>

CUB 𝒙𝟑

Format: CUB expression

See also: CUR

Function: Cube

Description: Returns the cube of expression.

Example: CUB 3 27

CUR √𝒙
𝟑

Format: CUR expression

See also: CUB

Function: Cube root

Description: Returns the cube root of expression.

Example: CUR 125 5

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 167

DEG dd°mm’ss” → ddd.dddd°

Format: DEG expression

See also: DMS, VDEG

Function: “degrees, minutes, seconds” (sexagesimal) to decimal conversion.

Description: Converts the angle argument in DMS (degrees, minutes, seconds) format to

the DEG (decimal degrees) format. The angle to be converted must be in the

form dd.mmssrr, where:

dd : degrees

mm : minutes

ss : seconds

rr : fractional seconds (00 ... 99)

The following ranges must be observed:

hh : 0 to …

mm : 00 to 59

ss : 00 to 59

rr : 00 to 99

The result is displayed with up to ten significant digits. The corresponding

function key is .→DEG..

Example: DEG 30.5230 (30°52'30") 30.875

10:X = DEG 50.3000

20:PRINT X

30:END

> RUN

50.5

>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 168

DMS ddd.dddd° → dd°mm’ss”

Format: DMS expression

See also: DEG, VDEG

Function: Decimal to "degrees, minutes, seconds" (sexagesimal) conversion

Description: Converts the angle expression in decimal degree format to "degrees, minutes,

seconds" format.

The result of the angle conversion is in the form dd°mm’ss.rr”, where:

dd : degrees

mm : minutes

ss : seconds

rr : fractional seconds (00 ... 99)

The corresponding function key is .→DMS..

Example: DMS 124.8055 124.48198 (124°48'19.8")

10:X = DMS 50.5

20: PRINT X

30: END

>RUN

50°30’

>

EXP 𝒆𝒙

Format: EXP expression

See also: LN, LOG, ^, TEN

Function: Exponential

Description: Returns the value of e (~2.718281828…the base of natural logarithms) raised

to the value of expression.

Expression can be a numeric constant, variable or a numeric expression. The

corresponding function key is .𝑒𝑥..

Example: EXP 1.2 3.320116923

>PRINT EXP (10)
220026.46579

>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 169

FACT 𝒏!

Format: FACT expression

Function: Factorial

Description: Returns the factorial of expression.

Example: FACT 7 5040

>PRINT FACT (7)

>RUN

5040

>

FIX

Format: FIX expression

See also: INT

Function: Integer

Description: Returns the integer portion of expression. If expression is negative, FIX

returns the first negative integer greater than or equal to expression.

Example: FIX -8.4 -8

HCS 𝐜𝐨𝐬𝐡 𝒙

Format: HCS expression

See also: AHC, HSN, HTN

Function: Hyperbolic cosine

Description: Returns the hyperbolic cosine of expression.

Example: HCS 3 10.067662

HSN 𝐬𝐢𝐧𝐡 𝒙

Format: HSN expression

See also: AHS, HCS, HTN

Function: Hyperbolic sine

Description: Returns the hyperbolic sine of expression.

Example: HSN 4 27.2899172

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 170

HTN 𝐭𝐚𝐧𝐡 𝒙

Format: HTN expression

See also: AHT, HCS, HSN

Function: Hyperbolic tangent

Description: Returns the hyperbolic tangent of expression.

Example: HTN 0.9 0.71629787

INT

Format: INT expression

See also: FIX

Function: Integer

Description: Returns the integer portion of expression. If expression is negative, INT will

return the first negative integer smaller than or equal to expression.

Example: INT -1.9 -2

LN 𝐥𝐨𝐠𝒆 𝒙

Format: LN expression

See also: EXP, LOG, ^, TEN

Function: Natural logarithm

Description: Returns the logarithm of the base e (~2.718281828 ...) of expression.

This function is the inverse of the EXP function. Any numerical expression is

allowed, provided that its result is within the permissible value range. The

corresponding function key is .ln..

Example: LN 2 0.69314718

10:CLS: INPUT "ARGUMENT ="; X

20:PRINT "THE LOGARITHM TO THE BASE"

30:PRINT "e IS:"; LN (X)

40:INPUT "FURTHER CALCULATION (Y/N)"; A$

50:IF A$ = "Y" THEN 10

60:END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 171

LOG 𝐥𝐨𝐠 𝒙

Format: LOG expression

See also: EXP, LN, ^, TEN

Function: Common logarithm

Description: Returns the common (base 10) logarithm of expression.

To obtain a logarithm in a base other than 10, e.g. for any base B, use the

following formula:

𝑙𝑜𝑔𝐵𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
log 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

log 𝐵

The inverse of the common logarithm can be calculated with the power

operator (^), if one chooses the number 10 as the power base. The

corresponding function key is .log..

NCR nCr =
𝒏!

𝒓!(𝒏−𝒓)!

Format: NCR(expression1,expression2)

See also: NPR

Function: Combination

Description: Returns the number of combinations of expression2 elements out of a group of

expression1 elements. The corresponding key is .nCr..

Example: NCR(6,3) 20

NPR nPr =
𝒏!

(𝒏−𝒓)!

Format: NPR(expression1,expression2)

See also: NCR

Function: Permutation

Description: returns the number of permutations of expression2 elements out of a group of

expression1 elements. The corresponding key is .nPr..

Example: NPR(6,3) 120

PI 𝝅

Format: PI

Function: 𝜋

Description: PI is a numeric pseudo variable that has the value of 𝜋. The use of PI is

identical to the use of the .. 𝜋.. key.

Example: PI 3.141592654

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 172

POL (𝒙, 𝒚) → (𝒓, 𝜽)

Format: POL(expression1,expression2)

See also: REC

Function: Rectangular to polar coordinate conversion

Description: Converts the rectangular coordinate pair (expression1, expression2) to polar

coordinates. Expression1 is the distance from the y-axis and expression2 is the

distance from the x-axis (the order is reversed). The distance and the angle in

the polar coordinates are assigned to the fixed variables Y and Z, respectively.

The value of converted angle depends on the angle mode (DEG, RAD or

GRAD).

Example: DEGREE

POL(8,6) 10 (r = 10)

Z 36.86989765

 (𝜃 ≈ 36.9°)

10:X=POL (10,10)

20:PRINT X

30:PRINT Z

40:END

>RUN

14.14213562

45.

>

^ (Power) 𝒚𝒙

Format: expression1^expression2

Function: x
th

 power

Description: Returns expression1 raised to the expression2 power. The corresponding

function key is .. 𝑦𝑥
..
.

Example: 4^2.5 32

RCP 𝟏
𝒙⁄

Format: RCP expression

Function: Reciprocal

Description: Returns the reciprocal of expression

Example: RCP 4 0.25

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 173

REC (𝒓, 𝜽) → (𝒙, 𝒚)

Format: REC(expression1,expression2)

See also: POL

Function: Polar to rectangular coordinate conversion

Description: Converts the polar coordinate pair (expression1, expression2) to rectangular

coordinates. Expression1 is the distance from the origin while expression2 is

the angle. The angle can be in degrees, radians, or gradians. To obtain the

correct value, the computer must be set to the correct angle mode (DEG, RAD

or GRAD). The converted values indicate the distances from the x-axis and y-

axis, and are assigned to the fixed variables Y and Z, respectively.

Example: DEGREE

REC(12,30) 10.39230485 (x ≈ 10.4)

Z 6 (y = 6)

10:X=REC (12,30)
20:PRINT X

30:PRINT Z

40:END

>RUN

10.39230485

6.

>

SGN

Format: SGN expression

Function: Sign

Description: Returns the sign of the expression. Expression can be any numeric expression.

If x > 0, the function returns 1.

If x < 0, the function returns -1.

If x = 0, the function returns 0.

Example: 5:WAIT 100
10:FOR N = -2 TO 2

20:PRINT N, SGN (N)

30:NEXT N

40:END

> RUN

-2 -1

-1 -1

0 0

1 1

2 1

>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 174

SIN 𝐬𝐢𝐧 𝒙

Format: SIN expression

See also: ASN, COS, TAN

Function: Sine

Description: Returns the sine of expression. The specified angle can be in degrees, radians,

or gradians. To obtain the correct value, the computer must be in the correct

angle mode (DEG, RAD, GRAD). The corresponding function key is .SIN..

Example: DEGREE

SIN 30 0.5

10:DEGREE

20:G$ = CHR$(&F8)

30:PRINT "sin (30";G$; ") =";SIN(30)

40:PRINT "sin (45";G$; ") =";SIN(45)

50:END

>

RUN

sin (30°) = 0.5

sin (45°) = 7.071067812E-01

>

SQR √𝒙

Format: SQR expression

See also: SQU

Function: Square root

Description: Returns the positive square root of expression. The value of expression must

be zero or positive. If expression is negative, ERROR 22 is displayed. The

corresponding function key is .√x..

Example: SQR 3 1.732050808

SQU 𝒙𝟐

Format: SQU expression

See also: SQR

Function: Square

Description: Returns the square of expression. The corresponding key is ..x2
...

Example: SQU 4 16

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 175

TAN 𝐭𝐚𝐧 𝒙

Format: TAN expression

See also: ATN, COS, SIN

Function: Tangent

Description: Returns the tangent of expression. The specified angle can be in degrees,

radians, or gradians. To obtain the correct value, the computer must be in the

correct angle mode (DEG, RAD, GRAD). Because the value of TAN is

undefined at certain angles, an error code will be displayed at these angles.The

corresponding key is .TAN..

Example: DEGREE

TAN 45 1

10:DEGREE

15:WAIT 128

20:PRINT "ANGLE IS IN DEGREES!"

30:PRINT "ANGLE: 0, TANGENT:";TAN(0)

40:PRINT "ANGLE: 45, TANGENT:";TAN(45)

50:PRINT "ANGLE: 90, TANGENT:";TAN(90)

> RUN

ANGLE IS IN DEGREES!

ANGLE: 0, TANGENT: 0

ANGLE: 45, TANGENT: 1

ANGLE: 90, TANGENT:

ERROR 20 IN 70 (press CLS key!)

TEN 𝟏𝟎𝒙

Format: TEN expression

See also: EXP, LN, LOG, ^

Function: Common antilogarithm

Description: Returns the value of 10 (the base of the common log) raised to the value of

expression. The corresponding key is .10
x..

Example: TEN 3 1000

&H

Function: Hexadecimal to decimal conversion

Description: Converts a hexadecimal value to a decimal value.

Example: &HF82 3970

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 177

13.2. General Commands

ASC

Format: ASC("string"string-variable)

Abbr: AS.

See also: CHR$

Description: Returns the ASCII code

If string consists of more than one character, the ASCII code of the first

character is returned. The relationship between the ASCII code and the

associated character is shown in Appendix H: Table of Character Codes.

Example: 10: WAIT 0: CLS

20: PRINT "PLEASE ENTER A CHARACTER OR"

30: INPUT "ENTER A STRING:", S$

40: WAIT 100

50: PRINT "THE ASCII CODE IS:"; ASC (S$)

60: END

>RUN

PLEASE ENTER A CHARACTER OR STRING: SHARP

THE ASCII CODE IS: 83

>RUN

PLEASE ENTER A CHARACTER OR STRING:

 ⋮

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 178

AUTO

Format: AUTO [[line-number] [, increment]]

See also: RENUM

Description: automatic insertion of line numbers in PRO mode.

The AUTO command can be used to facilitate programming in PRO mode by

automatically generating line numbers.

The starting line number and incremental value may be specified. If not

specified, the computer automatically sets the first line number to 10 and the

increment to 10. However, if the AUTO command has been previously set to

other values, those values are used. An error is generated if the starting line

number exceeds 65279.

When the mode is changed from PRO to RUN and then back to PRO, entering

AUTO assumes the previously set increment and resumes line numbering from

the most recently generated line number.

Pressing .SHIFT. + .CA., turning the power off then on, or entering an

operation mode other than PRO or RUN will exit AUTO.

Example: AUTO 10,20,30,40,
AUTO 100 100,110,120,

AUTO 400,20 400,420,440,

BEEP

Format: BEEP number [, [tone] [, duration]]

Description: generates beeps of the specified tone and duration through the computer’s

internal speaker..

number : determines how often the beep will sound. Specify a number or

expression between 0 ... 65535.

tone : specifies the frequency of the beep in the range of 255 to 0. As the

value of the tone parameter increases, the frequency drops. A value

of 0 is about 7 kHz. A value of 255 is about 230 Hz

 If this parameter is missing, the default frequency is approximately

4 kHz.

duration : determines the duration of a beep in the range of 0 to 65279. The

beep duration varies with the tone parameter. A given duration

value will give a relatively longer beep at low frequencies.

If the duration is omitted, a default value of 160 is set.

If the tone is omitted, the frequency of the beep is set to approximately 4kHx

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 179

BLOAD

Format: BLOAD ["filename"]

Abbr: BLO.

See also: BLOAD?, BSAVE

Description: loads a BASIC program from cassette to the computer. If "filename" is

specified, the computer will search the tape for a program with the label

"filename" then load the program. If "filename" is not found, the

computer continues to search even if the end of the tape is reached. Press

.BREAK. to stop searching.

BLOAD can also be used to load a BASIC program from another Sharp PC-

G850 into memory via the serial (11-pin) interface.

The BSAVE must be entered simultaneously on the second Sharp.

Note: This transmission uses an internal protocol and is therefore

not suitable for exchanging data between the Sharp PC-

G850 and a PC. Likewise, the parameters for the serial

interface in TEXT mode under SIO are ignored.

BLOAD M

Format: BLOAD M [start-address]

Abbr: BLO. M

See also: BSAVE M

Description: loads a machine code program from cassette to the computer. The program is

loaded starting at start-address and overwrites any prior program stored at

that address.

BLOAD M can also load machine code from another Sharp PC-G850 into

memory via the serial (11-pin) interface.

BSAVE M must be entered simultaneously on the second Sharp.

Note: This transmission uses an internal protocol and is therefore

not suitable for exchanging data between the Sharp PC-

G850 and a PC. Likewise, the parameters for the serial

interface in TEXT mode under SIO are ignored.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 180

BLOAD?

Format: BLOAD?

Abbr: BLO. ?

See also: BLOAD

Description: compares a BASIC program from cassette with the BASIC program in

memory. If "filename" is specified, the computer will search the tape for a

program with the label "filename" then compare the program with the one

in memory. If "filename" is not found, the computer continues to search

even if the end of the tape is reached. Press .BREAK. to stop searching. If the

program on cassette does not match the one in memory, an error message is

displayed.

BLOAD? can also be used to compares the program in memory with a

program from another Sharp PC-G850 with the program through the serial

(11-pin) interface.

Note: This transmission uses an internal protocol and is therefore

not suitable for exchanging data between the Sharp PC-

G850 and a PC. Likewise, the parameters for the serial

interface in TEXT mode under SIO are ignored.

BSAVE

Format: BSAVE ["filename"]

Abbr: BS.

See also: BLOAD

Description: saves a BASIC program to the cassette tape. If "filename" is specified, the

program is saved to tape with and assigned the name "filename".

BSAVE can also send a BASIC program to another Sharp PC-G850 via the

serial (11-pin) interface.

The BLOAD command must be entered simultaneously on the second Sharp.

Note: This transmission uses an internal protocol and is therefore

not suitable for exchanging data between the Sharp PC-

G850 and a PC. Likewise, the parameters for the serial

interface in TEXT mode under SIO are ignored.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 181

BSAVE M

Format: BSAVE M [start-address,end-address[,start-

address2]]

Abbr: BS. M

See also: BLOAD M

Description: saves a machine code program from the computer to a cassette. The program

starting at start-address and ending at end-address. Is sent to the cassette.

BSAVE M can also send machine code to a second Sharp PC-G850 via the

serial (11-pin) interface.

The BLOAD M command must be entered simultaneously on the second

Sharp.

Transfer starts at address start-address and ends at address end-address.

Optionally, the destination address (start-address2) can be specified.

Note: This transmission uses an internal protocol and is therefore

not suitable for exchanging data between the Sharp PC-

G850 and a PC. Likewise, the parameters for the serial

interface in TEXT mode under SIO are ignored.

CALL

Format: CALL [#bank,]address

Abbr: CA.

See also: PEEK, POKE

Description: run a machine language program.

With CALL, a machine language program can be started from a BASIC

program or in RUN mode and then returned to the calling mode.

bank : determines the memory bank from the range 0 … 7, where the

machine language program is stored. If this parameter is not

specified, memory bank 0 is used.

address : identifies the starting address of the program within the valid

memory bank. The addresses must be in the range from 0 … 65535

(&0 … &FFFF). The address must be given and cannot be omitted.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 182

CHR$

Format: CHR$(expression)

Abbr: CH.

Description: Returns the character that corresponds the character code of the expression.

The argument can be either a constant, a variable, or an expression. The

argument must be an integer. A hexadecimal number can be specified with

“&H” in front of the character code,(e.g. A$=CHR$(&H5A)).

See Appendix H for a table of character codes.

Example: 10: FOR X = 33 TO 126

20: PAUSE CHR$ (X);

30: NEXT X

40: END

CIRCLE

Format: CIRCLE(exp1,exp2),expr3[,exp4,expr5,exp6[,S|R|X],

[exp7]]]

Abbr: CI.

See also: LINE

Description: Draws a circle.

The command can be used to draw circles, arcs, sectors, and ellipses with a

solid line.

Exp1 and exp2 specify the x and y coordinates, respectively, of the center of

the circle. The origin (0,0) of the underlying coordinate system is located in

the upper left corner of the display. The values must be in the range of -32768

to 32767. To specify points within the screen, use the following ranges:

exp1: 0 … 143

exp2: 0 … 47

Exp3 is used to specify the radius of the circle. The value of exp3 must be

within the range of 1 to 32767.

Exp4 and exp5 are used to specify the starting and ending angle, respectively,

of an arc or sector in degrees. The values must be within the range of -360 to

360. A value of 0 specifies the positive x-axis. Angles increase in a

counterclockwise direction. If a negative value is specified, a radius is drawn

from the origin to the arc. If a positive value is specified, this radius is not

drawn. The default value for exp4 is 0 degrees and that of exp5 is 360 degrees.

Exp6 is used to specify the following ratio:

ratio =
𝑟𝑦 (𝑟𝑎𝑑𝑖𝑢𝑠 𝑖𝑛 𝑦 − 𝑎𝑥𝑖𝑠)

𝑟𝑥 (𝑟𝑎𝑑𝑖𝑢𝑠 𝑖𝑛 𝑥 − 𝑎𝑥𝑖𝑠)

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 183

If the value of exp6 is 1, a circle is drawn. If the value is other than 1, an

ellipse is drawn. The default value of exp6 is 1.

Options S, R, and X are used to set, reset, or reverse the pixel on the screen.

S: Draws a line while activating the corresponding dots on the screen

(set).

R: Draws a line while deactivating the corresponding dots on the screen

(reset). This option is useful in reverse video or to erase a line on the

screen.

X: Draws a line, activating the corresponding dots if they are inactive, or

deactivating the corresponding dots if they are already active. (reverse)

The default parameter is S.

Exp7 specifies a pattern for filling the circle. The value must be in the range of

0 to 6. Patterns are as follows:

Example: CIRCLE(71,23),20 Simple circle with radius 20

CIRCLE(71,23),20,,,0.5,,2 flattened circle with vertical fill

CIRCLE(71,23),20,-45,-135 sector from 45° to 135°

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 184

CLEAR

Format: CLEAR

Abbr: CL.

See also: DIM, NEW, ERASE

Description: erase variables used in the program and resets all preallocated variables to

zero or null

CLEAR recovers memory space used to store simple numeric variables and

array variables secured using the DIM statement. It can also be used at the

beginning of a program to clear space occupied by variables from previously

run programs if several programs are in memory. Do not use the CLEAR

command in a FOR…NEXT loop. Use the ERASE command to clear specific

array variables.

Example: 5: WAIT 30 Sets wait time for PRINT

10: DIM C(5) Dimensioned array C(N)

20: FOR N = 1 TO 5 These lines read the

30: READ A: LET C(N) = A DATA values

40: PRINT C(N) and

50: NEXT N prints them

60: DATA 10,20,30,40,50 Provides the data

70: CLEAR Deletes all variables

80: PRINT A Verification of deletion

90: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 185

CLOSE

Format: CLOSE [#file-number1 [, #file-number2]…]

Abbr: CLOS.

See also: END, OPEN

Description: closes all specified files.

CLOSE terminates the ability to access files. Without any parameters, CLOSE

closes all open files. Specifying the parameter file-number will only close the

file associated with that file number. The file number is then released for use

with other files. All files are closed in the following cases:

 An end or run command is executed.

 The power is turned off.

 The computer is changed to an operation mode other than PRO or RUN.

 The program is written or read (by LOAD).

Example: 10: OPEN "E: PAYMENT" FOR INPUT AS #1
20: OPEN "E: UPDATE" FOR INPUT AS #2

 ⋮
400: CLOSE #1, #2

CLS

Format: CLS

See also: LOCATE

Description: clears the display.

Clears the display and resets the display start position to (0,0).

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 186

CONT

Format: CONT

Abbr: C.

Description: continues a program that was temporarily halted.

Enter CONT to continue a program that was stopped under the following

conditions:

 Abort by STOP instruction

 Abort by actuation of the BREAK key

 Interruption by PRINT instruction

Example: 10: PRINT "PROGRAM STOP HERE"

20: STOP

30: PRINT "PROGRAM CONTINUED"

40: PRINT "PROGRAM ENDED

50: END

>RUN

PROGRAM STOP HERE

BREAK IN 20

>CONT

PROGRAM CONTINUED

PROGRAM ENDED

>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 187

DATA

Format: DATA list-of-values

Abbr: DA.

See also: READ, RESTORE

Description: provide values for use by READ.

When assigning initial values to an array, it is convenient to list the values in a

DATA statement and use a READ statement in a FOR…NEXT loop to load the

values in the array. When the first READ is executed, the first value in the first

DATA statement is returned. Successive READs use the succeeding values in

the sequential order in which they appear in the program, regardless of how

many values are listed in each DATA statement or how many DATA statements

are used.

A DATA statement may contain any numeric or string values, separated by

commas. Enclose string values in quotes. Spaces at the beginning or end of

the string should be enclosed in quotes.

DATA statements have no effect if encountered in the course of regular

program execution, so they can be inserted wherever appropriate. Many

programmers include them after the READ that uses them. If desired, the

values in a DATA statement can be read a second time sing the RESTORE

statement.

Example: 10: FOR I = 1 TO 5

20: READ N

30: PRINT N

40: NEXT I

50: END

60: DATA 10,20,30,40,50

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 188

DEGREE

Format: DEGREE

Abbr: DE.

See also: RADIAN, GRAD

Description: Set the angle mode to decimal degrees.

In this mode, all angular data is assumed to be in decimal degrees. To mark

this, the symbol DEG appears in the status line. All arguments of the functions

SIN, COS and TAN and the results from ASN, ACS and ATN are in degrees.

The DMS$ and DEG functions can be used to convert angles from decimal

degrees to degrees, minutes, second form and vice versa.

Example: 10: DEGREE

20: PAUSE "ANGLE DATA IN DEGREES"

30: PRINT ASN (0.5), ASN (1)

40: PRINT ACS (0.5), ACN (1)

50: PRINT ATN (0.5), ATN (1)

60: END

DELETE

Format: DELETE [line number][-][line number]

Abbr: DEL.

See also: NEW, RENUM

Description: deletes the specified lines of a BASIC program.

DELETE <line number>

Deletes the specified line if it exists in the program.

DELETE <line number> -

Deletes program lines from the given line to the end of the program.

DELETE <line number> - <line number>

Deletes all lines of a program, starting with the first and ending with the

second line. The second line number must be greater than the first named

number.

DELETE - <line number>

Deletes all lines of a program starting from the beginning of the program

up to and including the specified line.

To completely delete a program, the command NEW should be used.

Example: DELETE 150

DELETE 50-150

DELETE -35

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 189

DIM

Format: DIM variable[$](index1[,index2])[*string-length][,]…

Abbr: D.

See also: CLEAR, ERASE, READ

Description: reserves space for numeric and string array variables.

DIM is used to reserve space for an array variable. The size of the array is the

number of elements in that array.

The variable name consists of up to 2 alphanumeric characters starting with a

letter. For string variables, “$” is attached to the end of the variable name.

With the exception of the standard variables A to Z and A$ to Z$, which are

equivalent to the two one-dimensional arrays A(1) to A(26) and A$(1) to

A$(26), all array variables are sized with DIM to provide sufficient space in

memory. If an array is not dimensioned, then it cannot be used.

index1 and index2 are called “subscripts” and specify the number of elements

in the n
th

 dimension of the array. An array with one subscript is called a one-

dimensional array, with 2 subscripts, a two-dimensional array. Values of

index1 and index2 are restricted to the range 0…255. The number of elements

in the array is (index1 + 1) * (index2 + 1).

string-length determines the length of the string for the string arrays.

However, if the strings have more characters than specified with string-length,

they will be truncated to the appropriate size and all extra characters will be

lost. If string-length is omitted, strings can contain up to 16 characters by

default. The maximum string length is 255 characters.

Once an array has been dimensioned, it cannot be resized unless the computer

is reset or a CLEAR, NEW, RUN, or ERASE command is performed. A running

program aborts with the display of an ERROR code when it either encounters

an array not declared with DIM or it tries to re-dimension a previously sized

array. Indexes that exceed the maximum values set with index1 or index2 also

lead to a program termination. Negative indices are illegal.

Example: 10: DIM C(13)

20: DIM F$(10)

30: DIM H(4,6)

40: DIM G$(7,5) *25

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 190

END

Format: END

Abbr: E.

See also: STOP

Description: Signals the end of a program.

The program will be terminated when the END statement is executed.

Statements after the END statement in the same line cannot be executed. All

opened files are closed.

If the END statement is missing, the program ends with execution of the last

program line.

Example: 10: GOSUB 50

20: PRINT "AFTER REPEAT ENDS THE"

30: PRINT "MAIN PROGRAM WITH LINE 40"

40: END

50: PRINT "THIS IS THE SUB-PROGRAM"

60: RETURN

>RUN

THIS IS THE SUB-PROGRAM

AFTER REPEAT ENDS THE MAIN PROGRAM WITH LINE 40

EOF

Format: EOF (file-number)

Abbr: EO.

Description: determines is the end of a sequential file is reached.

EOF returns a value that indicates whether all the data in a sequential file

specified by file-number has been read.

If all data has been read, EOF returns -1 (true) as its value. If not, EOF returns

0 (false). An error occurs if a file with the specified file-number has not been

opened for input.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 191

ERASE

Format: ERASE variable1|array1[, variable2|array2]…

Abbr: ER.

See also: CLEAR

Description: erases specified variables and arrays

ERASE deletes specified simple variables and string variables. Only numeric

variables and string variables that are not standard variables (A to Z or @(1)

to @(26) and A$ to Z$ or @$(1) to @$(26)) are valid arguments for ERASE.

The ERASE statement cannot delete individual elements of an array. The

whole array is cleared and its memory area is freed. Arrays are specified with

empty parenthesis (). To resize an array, first ERASE it then re-define it with a

DIM statement.

Example: 10: ERASE AB, Z$()

FILES

Format: FILES

Abbr: FI.

See also: LFILES

Description: returns a list of the files on the RAM disk (Disk E)

FILES displays the filename, filename extension, and file length on the RAM

disk. File length is measured in bytes. The filename extensions are:

.BAS : BASIC programs

.TXT : assembler, C, CASL programs

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 192

FOR … NEXT

Format: FOR variable=expression1 TO expression2 [STEP

 expression3]

 ⋮
NEXT variable

Abbr: F. N. STE.

Description: repeats a series of operations a specified number of times.

FOR and NEXT are used in pairs to enclose a group of statements that are to be

repeated. The first time this group of statements is executed the loop variable

(the variable named immediately following FOR) is assigned its initial value

(expression1).

When execution reaches the NEXT statement, the loop variable is increased by

the STEP value (expression3) and then this value is tested against the final

value (expression2). If the value of the loop variable is less than or equal to

the final value, the enclosed group of statements is executed again, starting

with the statement following FOR. If expression3 is omitted, the increment

becomes 1. If the value of the loop variable is greater than the final value,

execution continues with the statement that immediately follows NEXT.

Because the comparison is made at the end, the statements within a

FOR…NEXT pair are always executed at least once.

When the increment is zero, FOR…NEXT will continue in an infinite loop.

The loop variable may be used within the group of statements, for example as

an index to an array, but care should be taken in changing the value of the

loop variable.

Write programs so that the program flow does not jump out of a FOR…NEXT

loop before the counter reaches the final value. To exit a loop before it has

been repeated the specified number of times, set the loop variable higher than

the final value

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 193

The group of statements enclosed by a FOR…NEXT pair can include another

pair of FOR…NEXT statements that use a different loop variable as long as the

enclosed pair is completely enclosed; i.e., if a FOR statement is included in the

group, the matching NEXT must also be included. FOR…NEXT pairs may be

nested up to six levels deep. Illegally jumping out of an inner loop will

generate an ERROR.

Do not use CLEAR, DIM, or ERASE within a FOR…NEXT loop.

Example: 10: FOR I = 1 TO 20

50: NEXT I

230: FOR K = 2 TO 17 STEP 2

290: NEXT K

10: FOR M = 1 TO 10

20: FOR N = 5 TO 20 STEP 5

80: NEXT N

90: NEXT M

10: A = 2: B = 5

20: FOR I = A TO B STEP 0.2

30: NEXT A

FRE

Format: FRE

Abbr: FR.

Description: Returns the free space available in the program data area in bytes.

FRE indicates the byte count of the free space (not occupied by program,

array variables, or simple variables) in the program and data area of memory.

As a function, FRE can pass its value to a variable.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 194

GCURSOR

Format: GCURSOR(expression1, expression2)

Abbr: GC.

See also: GPRINT

Description: specifies starting point on the display.

GCURSOR specifies the starting point on the display for the dot pattern to be

displayed by the GPRINT command.

The display consists of 144 columns and 48 rows of dots, which can be

addressed by column numbers 0..143 and row numbers 0…47. Any dot on the

screen can therefore be addressed as a starting point by specifying the column

number with expression1 and row number with expression2.

The values of expression1 and expression2 may range from -32768 to 32767.

If the value of expression1 is outside 0…143 or that of expression2 is outside

0…47, the display starting point will become a virtual point outside of the

screen boundaries.

 Horizontal position (specified by expression1)
 0...143

0

⋮

47

 Vertical position (specified by expression2)

Example: 5: CLS
10: GCURSOR(50,20)

20: GPRINT”1824458F452418”

Display starting point (50,20)

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 195

GOSUB … RETURN

Format: GOSUB line-number|"label"|*label

 ⋮
RETURN

Abbr: GOS. RE.

See also: GOTO, ON…GOTO, ON…GOSUB

Description: diverts program execution to a subroutine.

A subroutine is a group of consecutive program lines that are executed several

times in the course of the program. The group of statements is included in the

program at some location that is not reached in the normal sequence of

execution. A common location is following the END statement that marks the

end of the main program.

At each location in the main body of the program where a subroutine is to be

executed, include a GOSUB statement with a line number or a label that

indicates the starting point of the subroutine. The last line of each subroutine

must be a RETURN.

When GOSUB is executed, the computer transfers control to the indicated line

number or label and processes the statements until a RETURN is reached.

Control is then transferred back to the statement following the GOSUB.

Subroutines may be “nested” with a maximum depth of 10 levels deep. If the

depth is greater than this limit, the program is aborted and an ERROR code 50

is shown on the display.

Since there is an ON…GOSUB structure for choosing different subroutines at

given locations in the program, the expression in a GOSUB statement usually

consists of just the desired line number or label.

Example: 10: GOSUB 90

20: GOSUB "A"

 ⋮
90: "A" PRINT "SUB-PROGRAM STARTED"

95: RETURN

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 196

GOTO

Format: GOTO line-number|"label"|*label

Abbr: G.

See also: GOSUB, ON…GOTO, CONT

Description: Transfers program control to the specified line-number or label

GOTO performs a non-conditional jump to the specified line number or label.

The jump automatically executed and does not depend on any condition

(unless one uses the instruction IF…THEN…GOTO).

If a line containing the commands DATA or REM is specified as the jump

destination, program execution continues at the next line (or executable

instruction).

In RUN mode, GOTO can also be used to start a program from a specific line.

Unlike the RUN command, no variables are deleted.

GOTO can also be used to resume a program that has been interrupted with the

.BREAK. key.

Example: 10: INPUT A$

20: IF A$ = "Y" THEN 40

30: PRINT "NO": GOTO 50

40: PRINT "YES"

50: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 197

GPRINT

Format: GPRINT string

GPRINT expression [;expression]…

GPRINT

Abbr: GP.

See also: GCURSOR

Description: displays the specified dot pattern.

The GPRINT command displays the specified dot pattern. Each column of a

bit image is represented by 8 vertical dots. The height of a column of pixels is

the height of a character in TEXT mode.

If GPRINT is followed by a string, each 8 dot column is divided into a lower

and upper group of 4 dots. Each group of dots is then represented by a

hexadecimal number. Each pair of hexadecimal numbers represents one 8 dot

column, with the first number representing the lower 4 dots and the second

number representing the upper 4 dots. The string is enclosed by “ ”.

GPRINT “XXXXXXXX”

Hex

number

Dot

pattern

Hex

number

Dot

pattern

Hex

number

Dot

pattern

Hex

number

Dot

pattern

0

4

8

C

1

5

9

D

2

6

A

E

3

7

B

F

The vertical 8-dot pattern can be specified using a hexadecimal or decimal

value. A “weight” is assigned to each dot as shown below.

 1

Weight of each dot

(hexadecimal)

 1

Weight of each dot

(decimal)

 2 2

 3 4

 4 8

 10 16

 20 32

 40 64

 80 128

Specify the dot pattern with a numeric value equal to the sum of the “weights”

of the dots to be displayed. The value is a number between 0 and 255.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 198

The following instructions are identical in their effect:

GPRINT 16;40;18;253;18;40;16 (decimal)

GPRINT &10;&28;&12;&FD;&12;&28;&10 (hexadecimal)

GPRINT “102812FD122810” (hex string)

If no dot pattern is specified, the graphic cursor is moved down one line

without affecting the contents of the display. If a GPRINT statement ends

with a semicolon (;), the next GPRINT command takes effect from the next

cursor position (the “;” concatenates the commands).

Example: 10: AA$ = “102812FD122810”

20: GCURSOR(30,20)

30: GPRINT AA$;AA$;AA$

The 8 dots above and including the display starting point (30,20)

specified by the GCURSOR command are used to display the first

value given in GPRINT

GRAD

Format: GRAD

Abbr: GR.

See also: DEGREE, RADIAN

Description: Sets the angle mode to gradian.

In this mode, all angular data is assumed to be in gradians. To mark this, the

symbol GRAD appears in the status line. All arguments of the functions SIN,

COS and TAN and the results from ASN, ACS and ATN are in gradians.

Gradian form represents the angular measurement in terms of percent

gradient, i.e. a 45° angle is a 50 percent gradient.

Example: 10: GRAD

20: PAUSE "ANGLE IN GRADIANS"

30: PRINT ASN (0.5), ASN (1.0)

40: PRINT ACS (0.5), ACS (1.0)

50: PRINT ATN (0.5), ATN (1.O)

60: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 199

HEX$

Format: HEX$(number)

Abbr: H.

See also: VAL

Description: converts a decimal number into its hexadecimal character string equivalent.

The value of the expression must be an integer in the range of -9999999999 to

9999999999. The resulting hexadecimal character string will be up to 10

digits long. HEX$(64) returns the string: "&40"

Example: 10: PRINT "CHANGE: DECIMAL TO HEX"
20: INPUT "DECIMAL NUMBER ="; X

30: IF X> 65535 THEN 100

40: IF X <0 THEN 110

50: PRINT "HEXADECIMAL VALUE ="; HEX$(X): PRINT

60: INPUT "ONE NUMBER (Y/N)"; A$

70: IF A$ = "Y" THEN 20

80: IF A$ = "N" THEN END

90: GOTO 60

100: PRINT "ERROR: MAXIMUM = 65535!": GOTO 20

110: PRINT "ERROR: MINIMUM = 0!": GOTO 20

120: END

IF … THEN … ELSE

Format: IF condition THEN line-number|*label|statement

 [ELSE line-number|*label|statement[:statement]…]

Abbr: IF T. EL.

Description: controls program flow, depending on whether a condition is fulfilled or not.

The decision depends on the condition to be checked between the words

IF…THEN. If this is true, the line specified after THEN, which is either a line-

number, *label, or statement, is executed. Otherwise, the next line will be

executed.

If the instruction IF…THEN contains an ELSE statement, then if the condition

is false, the program does not continue with the next line, but with the line or

instructions specified after ELSE.

If ELSE is not followed by a line number or label, all statements (including

those separated by a colon) are executed as long as they are on the same line.

The instructions IF…THEN…ELSE can also be nested within a program line.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 200

The condition to be tested between the IF…THEN is formed by a logical

expression which, however complex, can always be built from the following

forms:

X = Y : X is equal to Y

X <> Y : X is not equal to Y

X < Y : X is less than Y

X > Y : X is greater than Y

X <= Y : X is less than or equal to Y

X >= Y : X is greater than or equal to Y

X AND Y : Logical AND

X OR Y : Logical OR

NOT y : Logical NOT

Examples of logical expressions:

X = 1

Condition is fulfilled if X has the value 1.

(P = 2 AND Q = 4) OR P = 1

The condition is fulfilled if either P has the value 1 (independent of

Q) or if P = 2 and Q = 4.

Example: 10: INPUT "SHOULD I SQUEEK", A$

20: IF A$ = "N" THEN 60

30: IF A$ = "Y" THEN BEEP 3: GOTO 10

40: PRINT "Y OR N ENTER!"

50: GOTO 10

60: PRINT "SORRY!"

70: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 201

IF…THEN…ELSE…ENDIF

Format: IF condition THEN

 statement1

 [ELSE

 statement2]

ENDIF

Abbr: IF T. EL. ENDI.

Definition: conditionally executes statements at runtime.

When the condition of the IF statement is true, the statement after THEN is

executed; if it is false, the statement following ELSE is executed. Program

execution continues at the statement after ENDIF.

IF, ELSE, ENDIF must always follow directly after a line number, not a label

An instruction, expression, or remark should not follow the same line after

THEN (or ELSE). Otherwise, the statement is treated like a normal

IF…THEN…ELSE statement.

The use and interpretation of the conditional expressions conforms to the

IF…THEN…ELSE statement.

Example: 10: WAIT:CLS

20: INPUT “COORDINATE”;A

30: LOCATE 14,0:INPUT “COORDINATE”;B

40: IF (4*A)<B OR (2*A)>B THEN

50: PRINT "IMPOSSIBLE"

60: ELSE

70: C=B-INT(B/2)*2

80: IF C=1 THEN

90: PRINT "ODD"

100: ELSE

110: X=(2*A)-B/2:Y=(B/2)-A

120: WAIT 0:PRINT “ROW”;X

130: WAIT:PRINT “COLUMN”;Y

140: ENDIF

150: ENDIF

160: GOTO 10

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 202

INKEY$

Format: INKEY$

Abbr: INK.

See also: INPUT

Description: Gives the specified variable the value of the key pressed while the INKEY$

function is executed.

INKEY$ is used to respond to the pressing of individual keys without waiting

for the key to end the entry. The INKEY$ command reads the .SHIFT. or

.CAPS. key if it is pressed. Thus it is unable to read the function or symbol

key that is pressed following either of these keys. See the following table for

the list of applicable keys and the characters that are returned. If no key is

pressed, a value of 0 is returned.

Example: 300: A$ = INKEY$
310: IF A$ = "" THEN 300

320: IF A$ = "*" THEN 500

330: GOTO 300

 ⋮
500: PRINT "HI"

 0 16 32 48 64 80 … 128 144 … 240

 Hi
0 1 2 3 4 5 8 9 F

Lo

0 0 2ND F SPACE 0 P

1 1 1 A Q ln

2 2 CLS 2 B R log

3 3 3 C S

4 4

 4 D T

5 5

CAPS 5 E U sin

6 6 6 F V cos

7 7 ANS BS 7 G W 1/x tan

8 8 BASIC R-CM (8 H X x2

9 9 TEXT M+) 9 I Y

10 A TAB * J Z

11 B INS + ; K DEG 

12 C CONST ‘ L FE √
13 D

 — = M nPr

14 E

 . N MDF

15 F

 / O

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 203

INPUT

Format: INPUT variable [, variable]…

INPUT "prompt", variable [[,"prompt"], variable]]…

INPUT "prompt"; variable [[,"prompt"]; variable]]…

Abbr: I.

Description: allows keyboard entry of values.

Executing an INPUT instruction stops the program and displays prompt on

the display, if specified in the instruction. The display of the question mark

can be suppressed by adding a semicolon (;) after prompt. If prompt is

missing, a question mark will appear.

During this pause in the program, data can be entered via the keyboard. The

received data is assigned sequentially to the variable listed in the parameter.

The variables in the list separated by commas. Entry is completed by pressing

the key.

In all the cases just described, the cursor is positioned after the question mark

or prompt. However, if prompt is followed by a comma, the cursor will move

to the first column and erase prompt.

Example: 10: INPUT A

20: INPUT "A ="; A

30: INPUT "A =", A

40: INPUT "X =?"; X, "Y =?"; Y

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 204

INPUT#

Format: INPUT# file-number, variable [, variable]…

Abbr: I.#

See also: DIM, INPUT, OPEN, PRINT

Description: reads data from a file

INPUT# reads data from a file that resides on the RAM disk or from the serial

interface.

File number is the number of the file that was assigned to it when it was

opened by the OPEN command. An attempt to read an unopened file ends with

an ERROR. For reading from the serial interface, the file number is 1. For

RAM disk files, either 2 or 3.

The list of variables determines the names of the variables into which the data

records are to be read. Variables can consist of simple variables, standard

variables or arrays. The data format must match the order and type of the

variable list. String variables must be dimensioned to the appropriate length.

Arrays must have a pseudo-index (*) in the variable list, for example: A(*).

Comma, space, LF, CF, or CR + LF are used as delimiters when reading

data into numeric variables. If the data file starts with a double quotes ("), all

data up to the next comma is assigned to one variable.

Example: 10: A$ = "AB" + CHR$(34)+ "CDE" + CHR$(34)
20: B$ = CHR$(34) + "CD, EF" + CHR$(34)

30: PRINT A$

40: PRINT B$

50: OPEN "E:ABC.DAT" FOR OUTPUT AS #2

60: PRINT #2, A$; ","; B$

70: CLOSE #2

80: OPEN "E:ABC.DAT" FOR INPUT AS #2

90: INPUT #2, C$, D$

100: PRINT C$

110: PRINT D$

120: CLOSE: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 205

KILL

Format: KILL "filename[.BAS]"

Abbr: K.

See also: SAVE

Description: deletes a BASIC program

KILL deletes basic programs stored on the RAM disk. filename determines

which file is to be deleted. The extension .BAS is optional. It is not possible

to specify the name of the RAM disk (E:) or other devices. The use of

"wildcards" (* or ?) is not allowed.

All other file types created or deleted via the TEXT monitor.

Example: KILL "TEST" This instruction deletes the basic program TEST from the

RAM disk

LCOPY

Format: LCOPY startline, endline, targetline

Abbr: LC.

Description: copy lines.

LCOPY copies lines of BASIC programs from startline to endline to

targetline. Line numbers for jumps in BASIC commands are not adjusted

(unlike RENUM).

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 206

LEFT$

Format: LEFT$(string, number)

Abbr: LEF.

See also: LEN, MID$, RIGHT$

Description: returns the specified number of characters starting from the left end of the

string.

LEFT$ returns a substring of length <number> characters of the given string

starting from the left.

The number of characters of the substring must be in the range of 0 to 255. A

fractional number will be rounded to the nearest whole number. If the number

is greater than the number of characters of the given string, the entire string is

returned.

Example: 10: X$ = "SHARP"

20: FOR N = 1 TO 6

30: TS$ = LEFT$(X$,N)

40: PRINT TS $

60: NEXT N

>RUN

S

SH

SHA

SHAR

SHARP

SHARP

SHARP

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 207

LEN

Format: LEN(string)

See also: LEFT$, MID$, RIGHT$

Description: number of characters in a string

LEN determines the length of a string, i.e. the number of characters contained

in it. This number also takes into account spaces and non-printable characters,

such as control codes, e.g. a "carriage return" (symbol: <CR>, code: &OD).

Example: 10: INPUT "ENTER A WORD:", W$

20: N = LEN(W$)

30: PRINT "THE WORD HAS ";N;" LETTERS"

40: END Notice what happens when W$ has more than

16 characters.

10: A$ = "ONE"; B$ = "TWO"; C$ = "THREE"

20: S$ = A$ + CHR$(13) + B$ + CHR$(7) + C$

30: PAUSE S$

40: PRINT "NUMBER OF CHARACTERS ="; LEN(S$)

50: END

>RUN

ONE TWO THREE

NUMBER OF CHARACTERS = 14

>

LET

Format: [LET] var1e=exp1[, var2=exp2]…

Abbr: LE.

Description: variable assignment

Assigns values to variables. Numeric variables can only be assigned numeric

values and string variables can only be strings. The command word LET is

optional and can be omitted. This makes the following two assignments

identical: LET A = 5 or simply: A = 5

LET must be used if variable assignment occurs immediately after a THEN or

ELSE.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 208

LFILES

Format: LFILES

Abbr: LF.

See also: FILES

Description: prints a list of files

LFILES prints a list of the files on the RAM disk (Disk E:), i.e. a table of

contents, on the connected printer. Each file is displayed with the following

information:

Filename Extension (for example: .BAS for BASIC programs, .TXT

for assembler, C, CASL)

LINE

Format: LINE [(exp1, exp2)]-(exp3, exp4)[,S|R|X][, exp5]

[,B|BF]

Abbr: LIN.

See also: CIRCLE

Description: draw a line or a rectangle.

LINE draws a line or rectangle from the first point with the coordinates (exp1,

exp2) to the second point with the coordinates (exp3, exp4) on the display.

The origin (0,0) of the underlying coordinate system is located in the upper

left corner of the display.

If the first point is omitted, the current position of the graphic cursor is

assumed.

The values of expressions1-4 should be between -32768 to 32767. To specify

points within the screen, use the following ranges:

exp1 and 3: 0 to 143

exp2 and 4: 0 to 47

Options S, R, and X are used to set, reset, or reverse the pixel on the screen.

S: Draws a line while activating the corresponding dots on the screen

(set).

R: Draws a line while deactivating the corresponding dots on the screen

(reset). This option is useful in reverse video or to erase a line on the

screen.

X: Draws a line, activating the corresponding dots if they are inactive, or

deactivating the corresponding dots if they are already active. (reverse)

The default parameter is S.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 209

Exp5 is used to specify a line pattern. The value of exp5 ranges from 0 to

65535. (&0- &FFFF). This number represents a bit pattern. For example, if

the value of expn5 is 26214 (&H6666), the following line pattern is drawn:

 16 dots

The binary representation of 26214 (&H6666) is: 0110011001100110. A 1

represents an active dot while a 0 represents an inactive dot. A solid line is

drawn if exp5 is omitted.

Options B and BF are used to draw a rectangle whose opposite corners are

specified by (exp1, exp2) and (exp3, exp4).

B: draws an empty rectangle

BF: draws a filled rectangle.

Example: 10: CLS

20: FOR N = 10 TO 100 STEP 30

30: M = N + 20

40: LINE (N, 10) - (M, 20),BF

50: NEXT N

60: END

10: LINE -(124,31)

10: LINE (24,0)-(124,47),&HF18F,B

10: LINE (34,3)-(114,44),X,BF

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 210

LIST

Format: LIST [line-number|"label"]

Abbr: L.

See also: LLIST

Description: output lines of a BASIC program on the display.

If line-number or "label" is not specified, LIST starts at the first line of the

program and displays the following program lines until the bottom of the

display. The cursor is positioned invisibly behind the first line number.

Additional lines can be displayed by moving the cursor downwards with the

..M.. key and the lines at the top of the display are scrolled off.

If line-number or "label" is specified, the list starts with that line. If there is no

line with this line number, the list is started with the line having the next

highest number. If line-number is greater than the highest line number in the

program or if the specified label is not found, an ERROR code is displayed.

A program protected using PASS cannot be listed because access to the PRO

mode is blocked in this case. The LIST command is only accepted in PRO

mode.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 211

LLIST

Format: LLIST [line-number1|"label1"][-[line-number2|

"label2"]]

Abbr: LL.

See also: LIST

Description: outputs lines of a BASIC program.

If line-number or “label” is specified, LIST starts the list with the first line of

the program. Although LLIST is used in much the same way as the LIST

command, it is more flexible.

LLIST

lists the complete program, i.e. all lines of the program.

LLIST line-number

lists only the desired line

LLIST line-number1|"labe11"-line-number2|"label2"

lists from line-number1 or label1 to line-number2 / label2.

LLIST line-number|"label"-

lists from the specified line-number or label and continues until the

end of the program.

LLIST -line-number|"label"

lists from the first line of the program to the specified line number /

label.

Example: LLIST

LLIST 10-100

LLIST 10-"A"

LLIST "A" -

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 212

LNINPUT#

Format: LNINPUT# file-number, string-variable1[, string-

variable2]…

Abbr: LNI.#

Description: reads data from a file

This command reads data from a file on the RAM disk or the serial interface.

File-number is the number assigned to the file when opened with the OPEN

command. An attempt to read an unopened file will display an ERROR code.

File number 1 is used for reading from the serial interface. For RAM disk

files, use either 2 or 3.

The list of string variables are the names of the variables into which the data

are to be stored. Variables may consist of simple string variables, standard

variables or arrays. The variables should be dimensioned to appropriate

length. Arrays must have the pseudo-index (*) in the variable list, for

example: A(*). A CR+LF is used as a delimiter when reading data.

Example: 10: LNINPUT #2, AA$

10: LNINPUT #2, AA$, AB$, AC$

10: DIM AA$(4)*16

20: LNINPUT #2, AA$(*) Reads 5 records

LOAD

Format: LOAD "filename[.BAS]"

Abbr: LO.

See also: RUN, SAVE

Description: load a file

Loads a file on the RAM disk into internal memory. filename determines

which BASIC file to load. The extension .BAS is optional. Additionally, the

name of the RAM disk (E:) or other device is also optional.

All open files are closed by LOAD.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 213

LOCATE

Format: LOCATE [expression1[, expression2]]

Abbr: LOC.

Description: specifies the display start position in column units.

Specifies the start position of the display in units of character position for the

contents displayed by the PRINT command. The display position is defined as

follows:

 Horizontal position (specified by expression1)
 0 1 2 3 426

0

1

2

3

4

5

 Vertical position (specified by expression2)

A position on the display is specified by its horizontal and vertical position.

Expression1 specifies the horizontal position while expression2 specifies the

vertical position. The range of expression1 is 0 to 39. The range of

expression2 is 0 to 5. An error occurs if the expressions are not in the

specified range.

If expression1 or expression2 is omitted, the current position is assumed.

Example: 10: LOCATE 5

20: PRINT "TEXT1";

30: LOCATE, 4

40: PRINT "TEXT2";

50: LOCATE 0.3

60: PRINT "TEXT3"

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 214

LOF

Format: LOF(file-number)

Description: returns the size of the specified file.

The LOF command returns the size of a file with the specified file-number.

The size of the file is displayed in bytes. The file must be opened via the

OPEN command and assigned a file number. If the specified file is not open,

an ERROR will occur.

This file number is used to address the file whose size is to be determined.

Example: 10: OPEN "E: FILE1.TXT" FOR INPUT AS #2

20: N = LOF(2)

30: PRINT "FILE1 CONSISTS OF"; N; "BYTES"

40: CLOSE #2

50: END

LPRINT

Format: LPRINT [USING "format"] [expression1|string1[,|;

[expression2|string2]…][;]

Abbr: LP.

See also: PRINT

Description: sends output to the printer.

The commands LPRINT and LPRINT USING are used in the same way as

PRINT and PRINT USING.

LPRINT without parameters feeds the paper by one line.

LPRINT with parameters prints the values of the listed expressions one after

the other. These expressions can be either numeric or a string. If a semicolon

is used to separate the expressions, their values print immediately after each

other. If a comma is used, the value of the next expression is printed at the

next column (For the CE-126P, the column starts at position 13 or 0)

If the list of expressions ends with a semicolon, the following LPRINT

continues at the next position. If there is no semicolon at the end of the

statement, a line feed is sent.

LPRINT USING behaves identically to PRINT USING.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 215

MID$

Format: MID$(string,expression1,expression2)

Abbr: MI.

See also: LEN, LEFT$, RIGHT$

Description: returns a string of characters from inside another string

MID$ returns a string of expression2 characters from inside string starting

from the expression1 character in the string.

expression1 value in the range 1...255. Values outside of the range

results in an ERROR. If the value is greater than the

number of characters contained in the string, a NULL

string is generated.

expression2 value in the range 0...255. determines how many

characters from the given string are to be copied. Values

with decimal places are rounded down to the nearest

whole number.

Example: 10: Z$ = "ABCDEFG"
20: Y$ = MID$(Z$,3,4)

30: PRINT Y$

>RUN

CDEF

>

MON

Format: MON

Abbr: MO.

Description: Switches to the machine language monitor.

NEW

Format: NEW

See also: DELETE, CLEAR

Description: Clears existing programs and data

The NEW command clears all programs and data that are in memory. Password

protected programs cannot be deleted.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 216

ON…GOSUB

Format: ON expression GOSUB line-number1|"label1", line-

number2|"label2",…

Abbr: O. G., O. GOS.

See also: GOSUB, GOTO, ON…GOTO

Description: Execute on of a set of subroutines depending on the value of a control

expression.

When ON…GOSUB is executed, the expression between ON and GOSUB is

evaluated and reduced to an integer. If the value of the integer is 1, control is

transferred to line-number1 / “label1” in the list, as in a normal GOSUB. If the

expression evaluates to 2, then control is transferred to line-number2 /

“label2”, and so forth.

If the expression is zero, negative, or larger than the number of line numbers

provided in the list, no subroutine is executed and execution proceeds with the

next statement or line of the program.

Use commas (,) to separate line numbers or labels in the list.

Example: 10: INPUT "NUMBER (1-3) ="; N
20: ON N GOSUB 100,200,300

 ⋮
90: END

100: REM FIRST SUBPROGRAM

 ⋮
190: RETURN

200: REM SECOND SUBPROGRAM

 ⋮
290: RETURN

300: REM THIRD SUB-PROGRAM

 ⋮
380: RETURN

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 217

ON…GOTO

Format: ON expression GOTO line-number1|"label1",line-

number2|"label2",…

See also: GOSUB, GOTO, ON…GOSUB

Description: Transfer control/executes one of a set of subroutines, depending on the value

of a control expression.

When ON…GOTO is executed, the expression between ON and GOTO is

evaluated and reduced to an integer. If the value of the integer is 1, control is

transferred to line-number1 / “label1” in the list. If the expression evaluates to

2, then control is transferred to line-numbe2 / “label2”, and so forth.

If the expression is zero, negative, or larger than the number of line numbers

provided in the list, execution proceeds with the next statement or line of the

program.

Use commas (,) to separate line numbers or labels in the list.

Example: 10: INPUT A
20: ON A GOTO 100,200,300

30: GOTO 900

100: PRINT “FIRST”

110: GOTO 900

200: PRINT “SECOND”

210: GOTO 900

300: PRINT “THIRD”

310: GOTO 900

900: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 218

OPEN

Format: OPEN "E:file" FOR INPUT|OUTPUT|APPEND AS #file-

 number>

OPEN "COM:|COM1:|LPRT:|PIO:"

Abbr: OP.

See also: CLOSE, END

Description: opens a file or I/O on a device for reading, writing, or appending.

OPEN "E:file" opens a file on the RAM disk. The OPEN command must

be accompanied by an appropriate attribute (INPUT, OUTPUT or APPEND).

The file can then be accessed for that purpose. Before a file can be opened for

another purpose, it must first be closed with CLOSE.

file : indicates the complete file name, including the extension.

INPUT : allows sequential reading data records from the file using

INPUT# or LNINPUT#.

OUTPUT : allows data to be sequentially written to the file with

PRINT#. In this mode, any previously written information in

the file is lost.

APPEND : allows data to be added to the end of the file with PRINT#.

file-number : may only have the value 2 or 3. All other input and output

commands, such as PRINT# or LNINPUT#, uses this

number. This also means a maximum of 2 RAM disk files

may be opened at the same time.

Files cannot be created with OPEN. Files must first be created in TEXT mode

under RFILES. Additional file administration must be performed in TEXT

mode.

Example: 10: OPEN "E:DATA.TXT" FOR OUTPUT AS #2

20: FOR J = l TO 5

30: PRINT #2, J

40: NEXT J

50: CLOSE #2

60: OPEN "E:DATA" FOR INPUT AS #2

70: IF EOF(2) THEN 110

80: INPUT# 2, J

90: PRINT J

100: GOTO 70

110: REM FILE END REACHED

120: CLOSE #2

130: END

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 219

PAINT

Format: PAINT (expression1, expression2), expression3

Abbr: PAI.

See also: CIRCLE, GCURSOR, LINE

Description: fills an area with a pattern.

PAINT fills an area surrounding the coordinates expression1, expression2

with the pattern specified by expression3. The values must be in the range of -

32768 to 32767. To specify points within the screen, use the following ranges:

expression1 : 0 (left) … 143 (right)

expression2 : 0 (top) … 47 (bottom)

If an off screen point is specified, the PAINT command is ignored. The fill

pattern is specified by expression3. Legal values for expression3 are:

Example: >PAINT (71,23),3

PASS

Format: PASS "character-string"

Abbr: PA.

Description: sets and cancels passwords.

The PASS command protects a program against unauthorized access by

assigning a password. Character-string consists of up to eight arbitrarily

combined alphanumeric characters, which are enclosed in quotation marks

like a string constant. The quotation mark (") cannot be used within the

password.

Once a password has been set, the computer can no longer be put into PRO

mode. The following commands remain as ineffective as well as the and

 buttons:

AUTO RENUM LCOPY LIST LLIST

BSAVE SAVE BLOAD LOAD NEW DELETE

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 220

The program cannot be listed, saved or changed. Similarly, overwriting by

loading another program is prevented. If there are several programs in

memory, protection applies to all programs. The only way to remove the

protection is to re-enter the PASS command with the correct password.

The PASS command is only applicable if there is actually a program in

program memory.

Example: >PASS "SECRET" This command protects all programs stored in

memory with the password "SECRET".

PEEK

Format: PEEK(address)

Abbr: PE.

See also: POKE, CALL

Description: returns the contents of the specified memory address.

address is in the range of &0…&FFFF (0…65535).

Example: A = PEEK(100)

A = PEEK(&H4001)

POINT

Format: POINT(expression1, expression2)

Abbr: POI.

Description: returns status of the specified point.

The arguments expression1 and expression2 can be any numeric expression.

The values of expression1 and expression2 determine the display point. If the

point is set, then POINT returns a value of 1, in all other cases the value is 0.

If the specified point is outside the display boundary, the command returns 0.

The values of expression1 and expression2 may be within the range of -32768

... 32767. A point within the display boundaries is addressed only with the

value of expression1 is from 0…143 and the value of expression2 is from

0…47.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 221

POKE

Format: POKE address, byte[, byte]…

Abbr: POK.

See also: CALL, PEEK

Description: write value into memory

POKE provides direct access to the memory of the computer. It is thus

possible to write data in the form of bytes to the specified RAM addresses.

address : determines in which memory address the (first) byte is to be

written. The address must be in the range of 0…65535 or

&0…&FFFF.

byte : specifies an 8-bit value in the range of 0 to 255 (&0…&FF) to be

written to the memory specified by address.

If several bytes are listed, which must be separated by commas, they will be

written consecutively into consecutive addresses. The parameter address acts

as start address. If the available memory space is insufficient for all listed

bytes, an ERROR code will be displayed.

Example: POKE &FF00, &13, &B7, &37, &C9

PRESET

Format: PRESET(expression1, expression2)

Abbr: PRE.

See also: PSET, LINE

Description: clears the pixel at the specified coordinates

The arguments expression1 and expression2 can be any numeric expression.

The value of expression1 and expression2 must be in the range from -32768

… 32767. A pixel on the screen is only addressed if the value of expression1

is from 0 (left) – 143 (right) and the value of expression2 is from 0 (top) – to

47 (bottom).

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 222

PRINT

Format: PRINT [USING "format"] [exp1|string1[,|;

exp2|string2]…][,|;]

Abbr: P.

See also: LPRINT, USING

Description: displays information.

PRINT sends the values of the listed expressions one after the other. These

expressions can be either numeric or a string. If a semicolon is used to

separate the expressions, their values are displayed one after each other.

BASIC divides each line of the display into two equal zones of 12 columns. If

a comma is used as the delimiter, the value of the subsequent expression is

displayed at the next zone (column 1 or 13).

Numeric data is displayed right justified, but strings are displayed left-

justified. Single numeric data is displayed in the right zone, single string data

in the left zone.

A PRINT statement without any parameter displays a blank line, which is

equivalent to a printer line feed.

The USING statement allows formatting of printed data. The format is

determined by a format string, which is used as a parameter of the USING

statement. See USING for additional details.

PRINTLPRINT

The computer can switch all PRINT commands to LPRINT. Attach the

printer before executing the following statements:

PRINT = LPRINT : redirects the PRINT command to the printer.

PRINT = PRINT : resets PRINT output to the screen.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 223

PRINT#

Format: PRINT# file-number,variable1[,|;variable2]…[,|;]

Abbr: P.#

Description: write data to a file or the serial interface.

File-number is the number under which the file was opened using the OPEN

command. Attempting to write something to an unopened file results in an

ERROR code. This value must be 1 (serial), 2, or 3.

If the variables are delimited by semicolons, they are written to the file

without a space. If a comma is used as a delimiter, the data is separated into

zones of 20 characters. If a comma needs to be written to the file, it should be

put in quotation marks.

Data can include both numeric and string variables. In both cases, attention

should be paid to the use of the correct separators. Otherwise, there may be

problems with reading using INPUT#. With array variables, individual

elements can be addressed. The entire array must be specified in the form

A(*).

PSET

Format: PSET(expression1,expression2)[,X]

Abbr: PS.

See also: PRESET, LINE, CIRCLE

Description: sets or clears a point at the specified coordinates.

The arguments expression1 and expression2 can be any numeric expression.

The values of expression1 and expression2 must be in the range from -32768

… 32767. A point on the screen is only addressed if the value of expression1

is from 0 (left) – 143 (right) and the value of expression2 is from 0 (top) – to

47 (bottom).

If the 3rd parameter is not used, the point will be set. If the 3rd parameter is

present, PSET will invert the current state of the pixel. An on pixel will turn

off and vice versa.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 224

RADIAN

Format: RADIAN

Abbr: RAD.

See also: DEGREE, GRAD

Description: sets angular mode radians.

In this mode, all angular data is assumed to be in radians. To mark this, the

symbol RAD appears in the status line. All arguments of the functions SIN,

COS and TAN and the results from ASN, ACS and ATN are in radians. Radian

form represents the angle in terms of the length of the arc with respect to the

radius, i.e., 360° is 2π radians since the circumference of a circle is 2π times

the radius.

Example: 10: RADIAN

20: PAUSE "ANGLES IN RADIANS"

30: PRINT ASN (0.5), ASN (1)

40: PRINT ACS (0.5), ACS (1)

50: PRINT ATN (0.5), ATN (1)

60: END

RUN ANGLE IN RADIANS

5.235987E-01 1.570796327

1.047197551 0

0.463647609 7.853981E-01

>

RANDOMIZE

Format: RANDOMIZE

Abbr: RA.

See also: RND

Description: resets the seed for random number generation.

When random numbers are generated using the RND function, the computer

begins with a predetermined “seed” or starting number. RANDOMIZE resets

this seed to a new randomly determined value.

The starting seed will be the same each time the computer is turned on, so the

sequence of random numbers generated with RND is the same each time,

unless the seed is changed. This is very convenient during the development of

a program because it means the behavior of the program should be the same

each time it is run, even with the RND function. When you want the numbers

to be truly random, the RANDOMIZE statement can be used to make the seed

itself random.

Example: 10: RANDOMIZE

20: X = RND(10)

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 225

READ

Format: READ variable[, variable]…

Abbr: REA.

See also: DIM, RESTORE

Description: reads values contained in DATA statements and assigns them to the listed

variables. At least one DATA statement must be present within the program.

Each variable listed as is sequentially assigned to the next element in a DATA

statement. The variables in the parameter list must be of the same type as

constants in the DATA statement.

The values to be read do not all have to be in a single DATA statement, it can

be distributed over any number of DATA statements. It always applies that the

next read variable in a DATA statement is read with the next READ variable.

If all the values in the DATA lines are read, the next READ instruction results

in an ERROR code.

Example: 10: DIM B (10)

20: FOR I = 1 TO 10: READ B (I)

30: PRINT B (I): NEXT I

40: DATA 10,20,30,40,50

50: DATA 60,70,80,90,100

REM (‘)

Format: REM

Description: allows insertion of comments in the program text.

Comments are used to identify parts of the program. The comments are

ignored during program execution. Instead of REM, the apostrophe (') can also

be used. Program lines marked as such are non-executable instructions. If

these are jumped to by GOTO or GOSUB, program execution continues with

the next non-comment line. Comments can be added after statements in a line

by using the colon (:) as the delimiter before REM.

10: V = G * H / 3: REM VOLUME OF A PYRAMID

If using an apostrophe, a colon is not required, as it includes the separation

function:

10: V = G * H / 3 'VOLUME OF A PYRAMID

After the REM instruction, the rest of the line is considered a comment. Any

statements after the comment on the same line are ignored.

10: REM VOLUME OF PYRAMID: V = G * H / 3

20: 'VOLUME OF PYRAMID: V = G * H / 3

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 226

RENUM

Format: RENUM [oldline[, newline][, increment]]

Abbr: REN.

Description: renumbers the lines of a BASIC program.

Line numbers are changed from old line numbers to new line numbers with

the specified increment.

oldline : selects the first line for renumbering.

newline : defines the new starting line number.

increment : specifies the interval which the numbers are generated. If

this information is missing, line numbers are generated in

increments of ten.

RENUM automatically corrects all line numbers in GOTO and GOSUB

statements accordingly. This also applies to the line numbers used in other

branch instructions, e.g. IF…THEN…ELSE, are included. If renumbering is

attempted with a non-existent line number, an error message is displayed and

renumbering is stopped.

REPEAT … UNTIL

Format: REPEAT

 statement

UNTIL condition

Abbr: REP. UN.

Description: execute statements between REPEAT and UNTIL until condition is true.

REPEAT and UNTIL includes a set of statements to be repeated. After

executing the statements after REPEAT, condition is checked by UNTIL. If

condition is true, execution continues with the line after UNTIL. This

completes the loop. If condition is false, the statements after REPEAT are

executed until condition is true.

A REPEAT…UNTIL loop may be nested within another one. The inner loop

must be completely nested within the outer loop.

If the program exits the REPEAT…UNTIL loop before condition is true, a

nesting error may occur, depending on how the loops are executed (for

example, if the program contains several REPEAT statements).

REPEAT and UNTIL must always be used together. The commands CLEAR,

DIM, and ERASE cannot be use in a REPEAT…UNTIL loop.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 227

RESTORE

Format: RESTORE [line-number|"label"]

Abbr: RES.

See also: DIM, READ

Description: resets the DATA pointer or to the beginning of the indicated DATA line. This

allows the values provided by the DATA statements to be read again.

If RESTORE is used without parameters, the pointer will be set to the first

value of the first DATA line found in the program.

If a line-number or a "label" is specified, the pointer is set to the first element

of the DATA statement occurring in this line.

If the line specified as a parameter does not contain a DATA statement, the

pointer is set to the beginning of the next DATA statement.

Example: 100: DIM A$(3*10)

110: GOSUB "FRUIT"

120: RESTORE

130: GOSUB "FRUIT"

140: RESTORE 310

150: GOSUB "FRUIT"

160: END

200: "FRUIT"

210: FOR N = 1 TO 3

220: READ A$(I)

230: PAUSE A$

240: NEXT N

250: PAUSE

260: RETURN

300: DATA "PLUM", "PEACH" "," NECTARINE "

310: DATA" APPLE "," PEAR "," MANDRIN”

>RUN

PLUM

PEACH

NECTARINE

PLUM

PEACHCH

NECTARINE

APPLE

PEAR

MANDRIN

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 228

RIGHT$

Format: RIGHT$(string, number)

Abbr: RI.

See also: LEN, LEFT$, MID$

Description: returns a substring of number characters starting from the right of string.

number must be in the range 0 to 255. If a fractional number is used, it will be

rounded to the nearest whole number. If number is greater than the number of

characters of the given string, the entire string is returned.

Example: 5: WAIT 32
10: X $ = "SHARP"

20: FOR N = 1TO 6

30: S $ = RIGHT$(XS, N)

40: PRINT S$

50: NEXT N

60: WAIT

70: END

>RUN

P

RP

ARP

HARP

SHARP

SHARP

>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 229

RND

Format: RND(expression)

Abbr: RN.

See also: RANDOMIZE

Description: generates a random number

The argument expression can be any numeric expression. If expression is less

than 1 but greater than or equal to 0, the random number is less than 1 and

greater than 0. If expression is an integer greater than or equal to 1, the result

is a random number greater than or equal to 1 and less than or equal to

expression. If expression is greater than or equal to 1 and not an integer, the

result is a random number greater than or equal to 1 and less than or equal to

the smallest integer that is larger than the expression. (In this case, the

generation of the random number changes dependent on the decimal portion

of the argument.) If expression is negative, the previously set numeric

expression is used to generate the random number.

 <number> Lower Bound Upper Bound

 .5 0< <1

 2 1 2

 2.5 1 3

The same sequence of random numbers is normally generated because the

same “seed” is used each time the computer is turned on. To randomize the

seed, use the RANDOMIZE command.

Example: 10: FOR I = 1 TO 3

20: FOR J = 1 TO 10: R = RND(9): PRINT R; : NEXT J

30: PRINT: NEXT I

40: END

>RUN

6425682768

5577126536

3157345742

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 230

RUN

Format: RUN [line-number|"label"]

Abbr: R.

See also: END, STOP

Description: starts a BASIC program in memory.

Without a parameter, the execution of the program begins with its first line,

that is, the smallest occurring line number. Specifying a line-number or a label

starts the program from the specified point.

RUN deletes variables and sets the internal pointer of DATA statement to the

first possible position.

Example: >RUN
>RUN 100

>RUN "F"

>RUN "BRAND"

SAVE

Format: SAVE "filename[.BAS]"

Abbr: SA.

Description: saves the BASIC program in memory to the RAM disk. If filename already

exists, it will be overwritten. If no extension is specified, .BAS is assumed.

See also: LOAD, KILL

Example: SAVE "TEST"

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 231

STOP

Format: STOP

Abbr: S.

See also: CONT

Description: interrupt a program during the test phase.

If a STOP command is issued, the program is aborted and a message BREAK

IN <line number> is displayed stating which line was aborted.

By querying the variables and other examinations, the source of program

errors can be discovered. Likewise, incorrectly assigned variables can now be

assigned the expected values and further behavior can be tested by restarting

the program with CONT. Continuation is only possible if no changes have

been made to any program lines.

Unlike END, STOP does not close any open files.

Example: 10: FOR N = 1 TO 10

20: LET S = N * 5

30: STOP

40: GRAPH

50: LINE(0,0) - (N, S)

60: NEXT N

STR$

Format: STR$(expression)

Abbr: STR.

Description: converts expression into a string.

The resulting string consists of the characters of the numeric value. However,

the string cannot be used for calculations.

The function STR$ can be regarded as the inverse of the VAL function. If the

numeric value is negative, the string also contains the relevant sign.

If the numerical value is too large to represent with ten digits, it will appear in

floating point notation.

Example: ⋮
110: N = N * 3

120: A$ = STR$(N)

130: B$ = LEFT$(A$, 1)

140: M = VAL(B$)

 ⋮

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 232

SWITCH … CASE … DEFAULT … ENDSWITCH

Format: SWITCH variable

 CASE value1 | letter-sequence1

 statement1

 CASE value2 | letter-sequence2

 statement2

 ⋮
 [DEFAULT

 statement#]

ENDSWITCH

Abbr: SW. CAS. DEFA. ENDS.

Description: executes specific instructions according to the value of a given variable.

This command compares the value of variable following SWITCH with a

number or a string of letters that follows each CASE statement. If they match,

the statements between the matching CASE statement and the next CASE

statement are executed. If the value of the variable does not match any CASE

statement, the DEFAULT statement is executed. If no DEFAULT statement is

available, the ENDSWITCH statement is executed.

If the same sequence of numbers or strings is used in more than one CASE

statement, the CASE statement closest to the SWITCH statement will be

executed if they match.

SWITCH and ENDSWITCH must always be used together. CASE, DEFAULT

and ENDSWITCH must always follow after a line number, not a label.

SWITCH statements cannot be nested.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 233

TRON / TROFF

Format: TRON
TROFF

Abbr: TR. TROF.

Description: switch TRACE mode on or off.

If this mode is activated via the TRON command, the computer stops after

executing each BASIC line and displays the line number on the screen.

Each subsequent keypress will execute and display the line number of the next

program line. If a key is pressed continuously, the computer processes the

program lines one after the other without displaying the corresponding line

numbers. A line which has just been processed can be made visible by

pressing .

If execution halts as a result of a PRINT or INPUT command, execution can

be continued by pressing .

If the program halts due to a STOP command or if it was aborted by the

.BREAK. key, the program can be restarted with .SHIFT. + .CA..

TROFF turns off the trace mode.

TRON and TROFF are also programmable. TRACE mode will remain in effect

until the next TROFF command is found in the program.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 234

USING

Format: USING [format-string]

Abbr: U.

Description: controls the format of displayed or printed output.

USING can be used by itself or as a clause in a PRINT, or LPRINT

statement. When used in a PRINT, or LPRINT statement, it is valid only for

the values or strings output by that statement. If used independently (on an

independent line), it is valid for all subsequent PRINT or LPRINT

commands. USING establishes a specified output format for all output that

follows until changed by another USING.

Format is determined by format-string, which consists of a series of characters

that must be enclosed in quotation marks. The characters that make up format-

string are:

Right-justified numeric field character

. Decimal point (delimiter between the integer and decimal part of a

number

, 3-digit separator in numeric fields

^ Display the number in scientific notation

& Left-justified alphanumeric field

The number sign (#) and the ampersand (&) are placeholders. For each #

contained in format-string, one digit of the numerical value can be displayed.

For each &, one character of a string can be displayed. All other format

symbols are used to describe the numeric formats in more detail. With the

numerical formats, both positive and negative values can be represented.

However, the sign is only displayed for negative values.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 235

Together with the string format can be a total of six basic formats can be

defined:

(1) "###" 43

(2) "###." 98.

(3) "###. ##" 64.29

5.00

-13.44

-2.00

(4) "##. ##^" 23.11E 05

-4.33E-02

7.00E 00

(5) "###, ###." 34,567. 2

-230.

2,345.

(6) "&&&&&&" ABCDEF

The maximum number of # allowed in formats (1), (2), (3), (4) and (6) is 11

and 14 in format (5).

VAL

Format: VAL(string)

Abbr: V.

Description: converts string to a numeric value.

The VAL function can be regarded as the inverse of two functions, STR$ and

HEX$. It converts a string consisting of numeric characters into a numeric

value.

If string is a decimal string, it must be composed of the characters 0 through

9. It may contain a decimal point and an exponent, plus a sign for the mantissa

and one for the exponent. In this case, VAL is the exact inverse of STR$.

If string is a hexadecimal string, the first character in the string must be ‘&’,

and the subsequent characters must be symbols used to represent hex digits. In

this case, VAL acts as the inverse of the HEX$ function.

If string contains invalid characters, 0 is returned.

Example: 10: INPUT "FREQUENCY ="; A $

15: IF ASC(A$) <48 OR ASC(A$)> 57 THEN 100

20: F = VAL(A$)

30: PRINT F

40: END

 ⋮
100: PRINT "ONLY NUMBER ENTRY ALLOWED"

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 236

VDEG

Format: VDEG(string)

Abbr: VD.

See also: DEG, DMS

Description: converts a string in the format "dd°mm’ssrr" (sexagesimal) to an angle in

degrees, where:

dd : degrees

mm : minutes

ss : seconds

rr : fractional seconds (00 ... 99)

Example: 10: AA$ = "1°30'36""

20: B = VDEG AA$

30: PRINT B

>RUN

1.51

WAIT

Format: WAIT[expression]

Abbr: W.

Description: controls the length of time that displayed information is shown before

program execution continues.

WAIT without a parameter sets the waiting time to 0. After a PRINT

statement, the program stops completely. However, since you can see a >, the

program is not aborted. It only paused and can be continued by pressing .

If expression is specified, the waiting time is determined as a multiple of 1/64

second. A value 64 results in a pause of 1 second, a value 128 of 2 seconds,

etc. The value of expression ranges from 0…65535. expression can be any

numeric expression.

A default WAIT duration of 0 is set on starting a program.

Example: 10: FOR I = 1 TO 10

20: WAIT (64 * I)

30: PRINT "*";

40: NEXT I

50: WAIT

60: END

>RUN

********** Each star appears 1 second later than the previous one.
>

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 237

WHILE … WEND

Format: WHILE condition

 statement

WEND

Abbr: WH. WE.

Description: The instructions between WHILE and WEND are executed as long as condition

is true.

First, condition of the WHILE statement is checked. If condition is false,

execution resumes at the statement after WEND. If condition is true, the

instructions between WHILE and WEND are repeated until condition is false.

WHILE and WEND must always be used together. The commands CLEAR,

DIM or ERASE cannot be used within a WHILE loop.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 238

13.3. I/O Commands

CLOSE

Format: CLOSE [#file-number1 [, #file-number2]…]

Abbr: CLOS.

See also: END, OPEN

Description: closes all I/O ports.

Closing an I/O port does not require any additional parameters.

INP

Format: INP(port)

INP

See also: OUT

Description: returns a byte of data from the specified port.

The value port determines the input port from which a byte is to be fetched.

The port is specified by a 16-bit address, i.e. with a value in the range

0…65535 or &0…&FFFF

INP without parameters returns the values of XIN, DIN and ACK from the 11-

pin interface.

Example: 10: A = INP
20: PRINT A

>3 0x4 + 1x2 + 1x1 = 3

 XIN = Lo DIN = HI ACK = HI

LLIST

Format: LLIST [line-number1|"label1"][-[line-number2|

"label2"]]

Abbr: LL.

Description: outputs lines of a BASIC program.

Use of LLIST is as described under General Commands (page 211).

However, if a I/O port is open, output is sent as ASCII characters to the I/O

port. If the I/O port is closed, output is directed to the printer (CE-126P).

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 239

LPRINT

Format: LPRINT [USING "format"] [expression1|string1[,|;

[expression2|string2]…][;]

Abbr: LP.

See also: PRINT

Description: sends output to the printer, I/O port.

Use of LPRINT is as described under General Commands (page 214).

However, if the I/O port is open, output is sent as ASCII characters to the I/O

port. If the I/O port is closed, output is directed to the printer (CE-126P).

OPEN

Format: OPEN "COM:|COM1:|LPRT:|PIO:"

Abbr: OP.

See also: CLOSE, END

Description: opens a port on a device for reading or writing.

Opening an I/O device does not require any additional options.

COM: Serial input/output. Input/output takes place via the usual input

and output commands. The file number is #1 (for example,

PRINT#1,”Hello world.”) It is also possible to

communicate using the INP and OUT commands. The settings for

the serial interface are found in TEXT mode under SIO Format.

COM1: Similar to COM:

PIO: communication with the PIO. Input / output is via the commands

PIOSET, PIOGET, PIOPUT, INP, OUT

LPRT: output to a serial printer. Commands like LPRINT, LLIST are

redirected to the serial port

Example: 10: OPEN "LPRT:"

10: OPEN "COM1:"

10: OPEN "COM:"

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 240

OUT

Format: OUT address, byte[byte]…

OUT value

Description: sends one byte to the desired memory address of the Z80-compatible

microprocessor.

address : is an address (16-bit value) in the range 0…65535 (&0…&FFFF),

which selects the desired port.

byte : specifies the value to be inserted to the address. If several bytes

are listed, each subsequent byte is sent to the next memory

address. Successive bytes are thus passed to consecutive

addresses in memory.

OUT also sets the bits for BUSY, DOUT and XOUT on the 11-pin interface.

Before setting, OPEN must be executed on COM:, COM1: or LPRT.

See also: INP

Example: OUT 80,187 This statement sends the value 187 (= &BB) to memory

address 80 (= &50).

OUT 6 6 = 1x4 + 1x2 + 0x1

BUSY = HI, DOUT = HI, XOUT = LO

PIOGET

Format: PIOGET

Description: reads a byte from the PIO port.

The PIO port must be initialized with OPEN "PIO:" and PIOSET prior to

running PIOGET.

PIOPUT

Format: PIOPUT byte

Description: writes byte to the PIO port.

The PIO port must be initialized with OPEN "PIO:" and PIOSET prior to

running PIOPUT.

SHARP PC-G850V(S) USERS GUIDE: BASIC Command Glossary

 241

PIOSET

Format: PIOSET byte

Description: sets input and output mode of the PIO port.

byte is interpreted bit by bit:

Bit 7 : EX2

Bit 6 : EX1

Bit 5 : ACK

Bit 4 : Din

Bit 3 : Xout

Bit 2 : Xin

Bit 1 : Dout

Bit 0 : Busy

Example: PIOSET &HF0 (Din, ACK, EX1, EX2)

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 243

APPENDIX A: 11-PIN INTERFACE

Signals and Pin-Out

On the left side of the PC-G850V(S) there is an 11-pin interface intended for communication

with other devices. It is a multi-functional interface, hence, it can operate in different (sub-

)modes. The actual mode is selected through operational commands or menu items of the

PC-G850V(S).

1. SIO / RS-232C mode (e.g. OPEN“COM:“)

2. SSIO mode (Synchronous Serial Input/Output)

a. CE-126P print protocol (e.g. LPRINT without preceding OPEN)

b. LPRT-protocol (e.g. OPEN“LPRT:“)

3. PWM mode (Pulse Width Modulation)

a. CE-126P tape protocol (e.g. BSAVE/BLOAD with a CE-126P)

b. Generic PWM-protocol (e.g. BSAVE/BLOAD with another PC-G850V)

4. PIO mode (e.g. OPEN“PIO:“)

Programmable, 8-bit parallel port interface

5. PIC mode (activated by the PIC-loader in the assembler menu)

Programming interface for PIC microcontrollers

The association of physical pins to logical signals (called pin-out) as well as the configured

direction for input (I) or output (O) depends on the active mode. The following table gives an

overview. Looking at the left side of the PC-G850V(S) pin-1 is the leftmost and pin-11 the

rightmost.

Pin

SIO mode SSIO/PWM mode PIO mode PIC mode

Signal I/O Signal I/O Signal I/O Signal I/O

1 – – – – – – – –

2 VCC (+5V) – VCC (+5V) – VCC (+5V) – VCC (+5V) –

3 GND – GND – GND – GND –

4 RTS O BUSY O Bit0 I/O CP O

5 DTR O DOUT O Bit1 I/O CLK# O

6 RXD I XIN I Bit2 I/O DATAIN I

7 TXD O XOUT O Bit3 I/O DATAOUT O

8 CD I DIN I Bit4 I/O LOWBATT# I

9 CTS I ACK I Bit5 I/O – –

10 DSR I EX1 I Bit6 I/O – –

11 CI I EX2 I Bit7 I/O – –

The next sections describe the SIO mode and the respective connection options in detail. The

other modes are covered subsequently.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 244

SIO mode

RS-232 Standard and Conventions

The PC-G850V(S) in SIO mode exposes the signals of the RS-232 standard, but with

different voltage levels (see below). This section provides the necessary basics of the

standard and covers some specifics of the PC-G850V(S).

Within the RS-232 standard the terms DTE (Data Terminal Equipment) and DCE (Data

Communication Equipment) are introduced. The DTE is the PC-G850 for example and the

DCE is a modem or another peripheral device, like a serial printer.

When two computers shall communicate directly (i.e. without a modem), you need a so

called null-modem (cable/adaptor), which connects the outputs of one DTE with the inputs of

the other and vice versa (crossed signals).

Typically 25-pin (Sub-D 25 / DB-25) or 9-pin (Sub-D 9 / DB-9) plugs and jacks are used to

connect RS-232 capable devices.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 245

The pin-out and meanings are summarized in the following table.

Signal Name

Alternative

Name

Direction

(DTE

view) Definition

Pin #

DB9

Pin#

DB25

TXD Transmitted Data SD Out Data from DTE to DCE 3 2

RXD Received Data RD In Data from DCE to DTE 2 3

RTS
Request (Ready) to

Send
RS Out

DTE requests permission from

DCE to send data
7 4

RTR Ready to Receive
DTE is ready to receive data from

DCE

CTS Clear to Send CS In
DCE is ready to receive data from

DTE

8 5

DTR Data Terminal Ready ER Out DTE interface ready for operation 4 20

DSR Data Set Ready DR In DCE interface ready for operation 6 6

CD Carrier Detect In DCE detects remote DCE 1 8

CI Call Indicator DI In Call of a remote DCE 9 22

GND Signal Ground SG None Signal ground (reference) 5 7

FG Frame Ground PG None Shield – 1

Note: In the late 1980’s there was a shift in the meaning of the RTS signal:

Originally the DTE (computer) requests the DCE (modem) for permission

that the DTE may send data - and the DCE “answers” via CTS. But this

protocol is asymmetric because the DTE has no means to notify the DCE

to wait for internal computations when the DCE sends data. For this

reason, “Request To Send” was re-claimed: The DTE requests the DCE to

send data – or in other words, the DTE is “Ready To Receive” (RTR).

RTR and CTS are now independent of each other and the protocol

between DTE and DCE is symmetric. But in most cases the name

“Request To Send” (RTS) was kept, hence it is fairly ambiguous.

The PC-G850V(S) implements the newer, symmetric RTR-semantics (but the signal name

RTS has been kept). This is in contrast to the preceding pocket computer model PC-E500(S),

which implements the original RTS meaning and therefore needs the XON/XOFF-protocol

when it reads data/programs from a PC. The PCG850V(S) sets the DTR signal to HIGH,

when the SIO-interface is active, but it does not care about the DSR input. So there is no

DTR/DSR-handshake. The RTS/CTS handshake, or alternatively the XON/XOFF-protocol

can be configured in the TEXT/Sio/Format-submenu by the item "flow".

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 246

Signal Levels

The following table summarizes the logic and voltage levels of the RS-232 standard in

comparison with UART-TTL and the PC-G850V(S).

 Logic

level

Voltage

level

Description of data

signals (RXD, TXD)

Description of control

signals (RTS, CTS, etc.)

RS-232
LOW -15V to -3V 1 (Mark), Idle, Stop Inactive

HIGH +3v to +15V 0 (Space), Start Active

UART-TTL
LOW 0V 0 (Space), Start Active

HIGH +3.3V/+5V 1 (Mark), Idle, Stop Inactive

PC-G850V(S)
LOW 0V 1 (Mark), Idle, Stop Inactive

HIGH 5V 0 (Space), Start Active

So the PC-G850V(S) exposes inverted UART-TTL level signals in SIO-mode, just as most

other SHARP pocket computers do. That means the logic is identical to the RS-232 standard

(HIGH=0/active), but the voltage level is TTL.

Caution: In order to connect peripheral devices with the PC-G850V(S) that operate at

RS-232 voltage levels, a level converter is mandatory!

The state of the TXD- and RTS-signals in SIO mode is undefined, except for the following

cases:

1. The interface has explicitly been opened in SIO mode (e.g. OPEN“COM:“) when in

BASIC mode.

2. R- or W-commands are executed in MON mode.

3. Data transfer via SIO in TEXT mode.

Data Transfer Cable CE-T800 and CE-T801

The data transfer cables CE-T800 and CE-T801 are RS-232 level converters with an

integrated null-modem wiring. They can be used to connect the PC-G850V(S) to a personal

computer (PC) or other devices.

With these cables you can transfer data, program source-code or machine language programs

from or to a PC by using the TEXT/SIO submenu or the SIO commands (R, W) of the

integrated hex-monitor (MON). The DB-25 plug of the cable can be connected directly to a

PC (if necessary via a DB-9 adaptor), when there is a physical COM port. Alternatively, it

can be connected to a USB-port through an additional serial-to-USB adaptor. Don't use a

null-modem adaptor or wiring for a PC-connection (because it's already integrated in the

cable).

However, if a peripheral RS-232 device like the 4-color plotter CE-515P is to be connected, a

null-modem adaptor/wiring is mandatory in order to compensate for the integrated one.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 247

On the CE-T800 pins 6 and 20 are not connected, pin 11 is not connected on both models

(CE-T800 and CE-T801).

Caution: Never touch the pins of the DB-25 plug. Static electricity may be harmful for

the circuits.

A free working area of about 300bytes is required for data transfer from a PC.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 248

USB PC Adapter Cable with Hardware Handshake

An elegant, powerful yet simple DIY alternative to connecting the PC-G850V (S) to a

modern PC is based on a pre-fabricated USB-UART adapter cable with an open ends.

Specification: FTDI USB-UART / TTL Adapter Cable with FT232R Chip, 5V, 6-pin

(GND, 5V, RXD, TXD, RTS, CTS)

For physical connection with the 11-pin interface of the PC-G850V a common multi-pin

connector with 2.54mm spacing can be used. You need to solder the UART lines of

adaptor to the multi-pin connector by using a null-modem wiring.

FTDI-UART signal (color) PC-G850V(S) signal (pin)

GND (black) GND (3)

RXD (yellow) TXD (7)

TXD (orange) RXD (6)

CTS (brown) RTS (4)

RTS (green) CTS (9)

VCC (red) -

Additionally, a 10Kohm resistor should be between pin 4 and pin 3 on the connector. This

serves as a pulldown for the RTS signal in order to produce a defined LOW level. Without

this, I/O errors in the data transfer from the PC to the PC-G850V(S) may occur because the

PC may not receive wait requests from the Pocket Computer.

Finally, download the tool FT_PROG from the manufacturer's website: www.ftdichip.com.

With this tool, you must invert the signals RXD, TXD, RTS and CTS of the FTDI chip since

the serial interface of the PC-G850V(S) works with inverted UART logic (see above). This

only needs to be done once as the settings are stored permanently in the integrated EEPROM

of the FTDI chip.

RS-232 printer

The SIO mode can also be used to control printers that have an RS-232C interface, such as

the 4-color plotter CE-515P or CE-516P.

Never connect an RS-232 printer without a level converter to the PC-G850V(S)! You can use

the data transmission cable CE-T800 / 801 in combination with null modem wiring or

adaptor. For the CE-515P / 516P via RS-232, a DIN-4 plug is required with the following

wiring (null modem included):

DIN-4 plug CE-T800 / 1 DB-25 plug

Pin# Signal Pin# Signal

1 +12V –

2 BUSY# 4 RTS

3 GND 7 GND

4 DATA# 3 RXD

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 249

Be sure to properly configure the DIP switches on the back panel of the CE-515P / 516P (see

printer manual for details). Additionally, the RS-232 settings in the TEXT/Sio/Format

submenu of the PC-G850V(S) must be changed to the following to communicate with the

CE-151P:

Baud rate = 1200

Data bit = 8

Stop bit = 1

Parity = none

End of line = CR

Flow = RS/CS

To direct output to a RS-232 printer, the 11-pin interface must be opened explicitly in SIO

mode (OPEN”COM:”) and closed after use (CLOSE). Character strings and control codes are

transmitted via the PRINT#1 command.

OPEN”COM:”

PRINT#1,”HELLO WORLD”

 ⋮
CLOSE

The commands LPRINT, LLIST, LFILES, however, are not routed to the 11-pin interface

in SIO mode.

SSIO mode

The SSIO mode is for synchronous, serial data transfer, in contrast to the asynchronous serial

data transfer of the SIO mode. “Synchronous” means that the sender also provides and

additional strobe/clock signal to which the receiver aligns. This makes an explicit baud rate

obsolete. Therefore, SIO parameters in the TEXT / Sio / Format menu are irrelevant.

The SSIO mode of the PC-G850V (S) has several sub-modes or protocols.

CE-126P printer protocol

This is the default protocol for the 11-pin interface of the PC-G850V(S). It is the protocol for

the CD-126P printer and it is active if and only if there are no other sub-modes selected. The

commands LPRINT, LLIST and LFILES are routed to the printer in this mode.

The integrated cassette interface of the CE-126P can also be controlled by the PC-G850V.

The corresponding protocol shares the same handshake as the printer protocol, but it uses

PWM for data transfer instead of SSIO (see below).

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 250

The pin-out and signal descriptions within the CE-126P print protocol is as follows:

Pin# Signal Direction Description

4 BUSY Out Clock for synchronous, serial data transmission

5 DOUT Out Data line

6 XIN In No function

7 XOUT Out

HIGH: CE-126P sub-device select (printer vs. cassette interface)

resp. command transfer

LOW: idle or data transfer

8 DIN In No function

9 ACK In CE-126P ready to receive data or commands (handshake)

10 EX1 In No function

11 EX2 In No function

The following diagram shows the timing of the LPRINT "X" command with the CE-126P

connected:

The PC-G850V (S) waits for the ACK signal before setting BUSY high. This synchronous

serial protocol is also used by the CE-126P interface of the PC-E500(S).

LPRT Protocol and Mini I/O Port

The mini-I / O port of the PC-G850V(S) is just the logical grouping of the six main signals of

the SSIO mode into two groups of three signals/bits each:

Mini I/O output port (3-bit)

XOUT (Bit-0)

DOUT (Bit-1)

BUSY (Bit-2)

Mini I/O input port (3-bit)

ACK (Bit-0)

DIN (Bit-1)

XIN (bit 2)

The bits of the mini I/O port can be explicitly controlled via the functions OUT/miniput()

and INP/miniget(), so that custom communication protocols can be implemented on

that basis

In addition, the PC-G850V(S) offers a synchronous, serial protocol for data transfer to a

respective peripheral device. To enable this, the 11-pin interface must be opened with the

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 251

command OPEN(“LPRT:”). The data streams of the commands LPRINT, LLIST and

LFILES are then sent over this protocol using ASCII code.

The definitions of the signals of the LPRT protocol is as follows:

Pin# Signal Direction Function

4 BUSY Out Frame indicator for each transmitted byte

5 DOUT Out Data line

7 XOUT Out Clock with pause after each byte

9 ACK In
LOW: Receiver is ready

HIGH: PC- G850V(S) must wait

The following diagram shows the signal timings:

Data is transmitted byte byte-wise with the most significant bit (MSB) first. DOUT is valid

on the rising edge of the pulse. The BUSY signal provides an additional reference frame for

each byte.

PWM Mode

CE-126P Tape Protocol

This protocol is implemented by the commands BSAVE, BSAVEM, BLOAD, BLOADM,

BLOAD? when the CE-126P (or compatible cassette interface) is connected for storing,

loading, and verifying BASIC programs or binary data (such as machine programs) by means

of a cassette recorder, like the CE-152.

The protocol includes the SSIO handshake of the CE-126P printer protocol is identical, but

data transfer is achieved using pulse width modulation (the digital equivalent of analog

waveforms). It is a mixture of SSIO and PWM protocol.

Here are the definitions of the CE-126P tape protocol signals:

Pin# Signal Direction Description

4 BUSY Out Clock for synchronous, serial handshake

5 DOUT Out Data line for handshake

6 XIN In PWM encoded data from the cassette interface (load)

7 XOUT Out Handshake: See CE-126P printer protocol

Data: PWM encoded data to the cassette interface (save)

8 DIN In No function

9 ACK In CE-126P ready to receive data or commands (handshake)

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 252

The following diagram shows the signal paths of the CE-126P band protocol of a BSAVE

execution (saving a single-line BASIC program):

The dynamics for a BLOAD operation is equivalent. The difference that the PWM data is

received on the XIN signal.

Generic PWM protocol

This protocol is equal to the CE-126P tape protocol reduced to XOUT and XIN (i.e.,

handshake is omitted). It is activated by the commands BSAVE, BSAVEM, BLOAD, BLOADM,

BLOAD? if no CE-126P (or compatible cassette interface) is connected. Typically, this would

be the case when two PC-G850V(S) are directly connected by data exchange cable, like the

EA-129C. The PC-G850V(S) distinguishes between the CE-126P tape protocol and the

generic PWM protocol by setting XOUT to HIGH at the start of a BSAVE/BLOAD command

and then observes the response of ACK. If ACK is not set HIGH, then the generic PWM

protocol is used (i.e. BUSY/DOUT/ACK handshake is skipped).

PIO mode

The PIO mode is primarily intended for controlling external digital hardware rather than

communication with other devices. In this mode, the pocket computer becomes a

microcontroller with an on-board development environment.

The 11-pin interface becomes a programmable 8-bit port. The logic levels (LOW/HIGH) can

be set and read by the PIO API (application programming interface) in BASIC or C. Each of

the 8 signals/bits can be configured individually to serve as input or output. The direction can

be set by the pioset/PIOSET function (see Command Reference). The function

pioput/PIOPUT sets the individual logic levels of each signal by setting the respective bit

of 0 (LOW) or 1 (HIGH). Signals that are configured as input are ignored. The function

pioget/PIOGET reads all 8 logic levels of the port into one byte.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 253

The following is a very basic example of PIO mode use:

In this example, bit-0/pin-4 serves as an output which lights up a LED when it is HIGH. Bit

1/pin 5, on the other hand, Bit-1 / Pin-5, on the other hand, serves as an input and represents

the status of a push button switch. An open input (i.e., undefined input level) is interpreted as

logical 0, which is the case when the button is open. In order to distinguish that state from the

closed state, the button is connected to VCC (i.e., HIGH / logic 1) and not to GND.

The goal of the “microcontroller” code would be to switch on the LED with the first button

press and to switch it off with the next, and so on. An example in the C programming

language is shown below (BASIC would be similar, however, less structured).

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 254

1 #define BOOL char

2 #define TRUE 1

3 #define FALSE 0

4 #define BTN 0x02

5

6 char BTNstate = 0;

7 char LEDstate = 0;

9

10 BOOL setupPIO() {

11 if(!fopen("pio","a+")) {

12 printf("can't open port\n");

13 return FALSE;

14 }

15 pioset(BTN);

16 return TRUE;

17 }

19

20 BOOL pressed() {

21 BOOL rtn=FALSE;

22 char btn;

23 btn=pioget()&BTN;

24 if(btn && BTNstate==0)

25 rtn=TRUE;

26 BTNstate=btn;

27 return rtn;

28 }

29

30 toggleLED() {

31 LEDstate=!LEDstate;

32 printf("LED=%x\n",LEDstate);

33 pioput(LEDstate);

34 }

39

100 main() {

101 printf("PIO test\n");

102 if(!setupPIO())

103 abort();

104 while(TRUE) {

105 if(pressed()){

106 printf("button pressed\n");

107 toggleLED();

108 }

109 }

110 }

To enter the symbol '\', press .SHIFT. G in TEXT mode. It is displayed as ¥.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 255

Comments on the code:

 Line 4: Mask for bit-1 (0b00000010), i.e. push button input

 Line 6: Global state variable for the push button

 Line 7: Global state variable for the LED

 Line 11: Opens the interface in PIO mode for read and write.

 Line 15: Configure bit 1/pin 5 as input. All other signals are output.

 Line 20: This function detects the transition from bit 1 = 0 to bit 1 = 1, i.e. the close

event of the push button.

 Line 23: The PIO port is read and all bits except bit 1 are masked (hidden).

 Line 30: This function changes the state of the LED

 Line 33: The new LED state (bit 0) is written to the port. Unused outputs are set to 0.

 Line 104: Main loop, abort with the ON / BREAK button

The following images shows an example of the test setup and the respective trace outputs on

the display of the PC-G850V.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 256

PIC mode

The PIC mode of the PC-G850V(S) is used to transfer an assembled PIC program (see

chapter 12) to a PIC microcontroller. This process is called PIC programming, PIC program

(up)loading, or PIC burning, since a specific “burning” voltage is needed that is much higher

than normal operating voltage. This mode is activated by the PIC loader option in the PIC

assembler submenu. The PC-G850V(S) supports the serial ICSP (In-Circuit Serial

Programming) protocol of the PIC16F8x family and compatible models.

The pin out and signal description of the 11-pin interface in PIC mode are:

Pin# Signal Direction Description

4 CP Out This signal controls the ICSP programming mode of the PIC.

If the signal is HIGH, the burning voltage (+12 to +14V)

must be applied to the MCLR of the PIC. If the signal is

LOW, the MCLR# must be at GND or VDD (+5V).

5 CLK Out This signal provides the ICSP clock pulse for the PIC to be

programmed. However, the inverted signal (i.e., CLK) must

be provided at RB6 of the PIC. The latter latches data bits on

the falling edge of the CLK pulse.

6 DATAIN In This input must be connected to RB7 of the PIC. Data is read

by the PIC for programming and verification.

7 DATAOUT Out This output is used for serial data and command transfer to

the PIC in ICSP mode. It needs to be connected to RB7 of the

PIC.

8 LOWBATT In This input can be connected to a voltage monitoring circuit

(especially when using an external power supply). LOW is

interpreted as power supply is too weak.

According to the specification of the PIC16F8x family, the PIC switches to ICSP

programming mode as soon as the following conditions are fulfilled:

 VDD = + 5V, VSS = GND

 MCLR# = +12 to +14V

 RB6 (CLK) = LOW.

 RB7 (DATA) = LOW.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 257

The following figure shows the pin assignment of the PIC16F84A:

The PIC loader of the PC-G850V(S) supports the ICSP protocol as stated above, but this is

preceded by a connection check. If it fails, the programming process is stopped and the error

message Connection error! is displayed.

To explore the details of the PIC loader, we will use a minimalistic example code for the

PIC16F84A. It consists of the configuration word and an infinite loop without a body:

10 #include “p16f84a.inc”

20 __config 0x3ff6

30loop goto loop

The PIC assembler compiles this source program into a PIC machine program which is only

one PIC word (14-bit). The next diagram shows the phases of a successful burning process

controlled by the integrated PIC loader of the PC-G850V(S):

CLK was strobed at the RB6 input of the PIC (i.e., the already inverted CLK signal). Data

was strobed at RB7. CP directly controls the programming voltage at MCLR.

1. Connection Tests: The PC-G850 sets DATAOUT to HIGH and checks if DATAIN

also goes high. The two signals must therefore be connected, otherwise the ICSP

protocol will not be activated!

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 258

2. This is the ICSP phase. It is initiated by MCLR = 12.5V, CLK = LOW, DATA =

LOW.

a. Writing the assembled 14-bit word (PIC op-code)

b. Verification of the last programmed PIC op-code

c. Increment the PIC program counter. If the PIC program consisted of more

than one word, there would be a 2a/b/c loop for every other word.

d. Writing the PIC configuration word

e. Verification of the PIC configuration word

An enlargement of the phase 2a shows the following:

PIC-ICSP commands are 6 bits wide (see specifications for your PIC). A command can be

followed by a data word, reading or writing. Data words are 14-bit wide, but they are framed

by a start and a stop bit, so they are 16-bits overall. Transmission occurs with the least

significant bit (LSB) first. As previously mentioned, all bits are latched/provided at the

falling edge of the CLK pulse.

1. PIC ICSP command “Load Data for Program Memory” (0x02).

2. Data transfer for the “Load Data for Program Memory” command. For this example,

the 14-bit op-code compiled by the PIC assembler is 0x2800.

3. PIC ICSP command “Start Programming Cycle” (0x08). This command has no data

parameter and starts the PIC burning process for the latched 14-bit word.

A suitable PIC burner circuit is needed for the 11-pin interface of the PC-G850V(S), which

uses the integrated PIC loader and supports the PIC16F8x microcontroller family. The circuit

must meet the following criteria:

1. The CP signal must control the programming/burn voltage for the PIC.

2. DATAIN and DATAOUT must be interconnected for the connection check.

3. The CLK signal must be inverted at the RB6 pin of the PIC.

4. The CLK signal is very sensitive to crosstalk, especially from DATOUT. Shielding

may be necessary. Additionally, a pull-down resistor is required for a defined LOW

level of the CLK signal.

5. The LOWBATT input should either be connected to a programming voltage

monitoring circuit or be constantly HIGH.

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 259

The following circuit meets these requirements. An additional feature is that it does not

require an external power supply for the programming voltage, but generates it from the

supply voltage (+5V) by means of a DC/DC converter:

A +5V to +12V DC/DC converter (e.g., TMA0512C or ~D) can be used to generate the burn

voltage. The CP signal controls this as VPP at the MCLR pin over the transistor path T1, T2.

The LED serves as an indicator for ICSP mode. The CLK signal is inverted via T3 and R8

and is applied to the PIC as CLK. C2 is optional and serves as a low-pass filter to clear the

CLK signal if necessary. The low voltage indicator applies only if the supply voltage falls

below the LOW threshold (i.e., logical 0) during the programming phase.

To test the complete PIC programming process with the PC-G850V(S), a simple program

that will flash an LED connected to pin RB1 of the PIC can be used:

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 260

10 #include "p16f84a.inc"

20 __config 0x3ff1 ;CP_OFF & PWRT_ON & WDT_OFF & XT_OSC

30DELAY1 equ 0x08 ;delay counter 1

40DELAY2 equ 0x09 ;delay counter 2

50 org 0

99

100start

110 bsf STATUS,RP0 ;change to bank 1

120 bcf TRISB,1 ;enable RB1 for output

130 bcf STATUS,RP0 ;back to bank 0

140loop

150 bsf PORTB,1 ;RB1=1,LED=on

160 call delay

170 bcf PORTB,1 ;RB1=0,LED=off

180 call delay

190 goto loop

299

300delay

310 movlw 255

320 movwf DELAY1

330 movwf DELAY2

340dloop

350 decfsz DELAY1,f

360 goto dloop

370 decfsz DELAY2,f

380 goto dloop

390 return

Enter the program in TEXT mode and compile it with the integrated PIC assembler. Now

connect a PIC16F84A to the 11-pin interface of the PC-G850V(S) with the above PIC burner

circuit (or an equivalent). Activate the PIC loader in the assembler menu (see chapter 12).

SHARP PC-G850V(S) USERS GUIDE: 11-Pin Interface

 261

After successful programming, release the PIC from the burner and install it in the following

test circuit:

This test circuit uses an external crystal <4MHz as a clock. This corresponds to the setting of

XT_OSC within the configuration word (0x3FF1) of the example program (see specification

of the PIC16F84A).

If the PIC has been correctly "burned" with the example program, the LED will start flashing

as soon as a voltage source (+ V) is connected to the test circuit. The pushbutton is optional

and, when pressed, will place the PIC in the RESET state (MCLR = LOW). The program

execution will be stopped and the LED goes off. The flashing frequency is influenced on the

hardware side by the quartz frequency and on the software side by the number of iterations of

the external delay loop (line 310, value range = 1 … 255).

SHARP PC-G850V(S) USERS GUIDE: Appendix B – Keyboard Commands

 263

APPENDIX B: KEYBOARD COMMANDS

Keys Description

.ON. Turns on the power even if the unit is turned off by the AUTO OFF

function.

 Interrupt program execution (.BREAK.).

 Interrupt the execution of commands such as LOAD or BSAVE

during direct entry.

 In TEXT and C modes, returns to the main menu or menu.

.OFF. Turn off the device

.BASIC. Switch to BASIC. Toggles between RUN or PRO mode.

.SHIFT. + .ASBML. Switches to assembler, CASL or PIC mode

.TEXT. Switch to TEXT mode

.SHIFT. + .TEXT. Switch to the C compiler

.SHIFT. + .ANS. Adjust screen contrast.

.SHIFT. Activate second function of a key (displayed directly above the

button). .SHIFT. must be held down to access.

.CAPS. Toggle capital letters on and off. CAPS appears on the display when

on. By default, CAPS is on after turning on the device.

Toggle between large and small characters in Kanji mode.

 Toggle Kanji mode on and off

.TAB. Moves the cursor to the next tab position:

 BASIC/RUN/PRO: moves at intervals of seven digits.

 TEXT: moves by eight digits on the first press, six digits on the

second press, and seven digits on each subsequent press.

  Moves the cursor to the right.

 Executes playback instructions.

 Displays the cursor when it is not visible when content is

displayed.

 Clear an error message.

 Delete a character in direct input.

 Moves the cursor to the left. Otherwise, the same as the

button

.ANS. Retrieve results of the last calculation.

.CONST. Enters a constant for calculations (CONST appears on the display).

Pressing .SHIFT. + .CONST. (.2nd F. + .CONST.) will display the

currently stored constant.

.INS. Switch to insert mode. On initial startup of the computer, insert mode

is off..

SHARP PC-G850V(S) USERS GUIDE: Appendix B – Keyboard Commands

 264

Keys Description

.SHIFT. + .DEL. Deletes the character at the cursor location.

.BS. Delete the character directly to the left of the cursor.

.2nd F. Activate the second function of a key (displayed directly above the

key).

.CLS.  Clears the screen

 Clears a displayed error.

.SHIFT. + .CA. Clears the display and resets the computer to default state.

 Reset the WAIT time setting.

 Reset the display (USING) format

 Reset TRON status to TROFF.

 Clears error conditions

  Enter a line of code into the computer when writing programs.

 Ask for manual calculation or direct execution of a command

statement.

 Resume a program that has been temporarily interrupted by the

INPUT command.

.SHIFT. + .PNP. Toggle PRINT mode on or off when an optional printer is connected.

The keys and have various functions, depending on the operating mode and the status

of the computer as listed in the following table.

Mode Status

RUN

Program execution Not functional

Interrupted by STOP

or .BREAK..

Execution of following line

and stop.

Hold to display executable

or executed program line.

Error condition Not functional Hold to display line with

error.

Trace mode ON. Hold to run program. Hold to display executable

or executed program line.

PRO

(no program lines)

Program interrupted. Display of the interrupted

line.

Error condition Display of line with error

Other condition. Display of first line Display of last line

(line numbers displayed)

 Display following program

line.

Display previous program

line

SHARP PC-G850V(S) USERS GUIDE: Appendix C – Calculation Ranges

 265

APPENDIX C: CALCULATION RANGES

Numerical Calculations

For a calculation involving x, the number x must fall within one of the ranges below:

-1 x 10
100

 < x ≤ -1 x 10
-99

 for negative x

10
-99

 ≤ x < 10
100

 for positive x

x = 0

The value of x displayed is limited by the number of digits on the display screen.

Functions

Command Function Range of x

SIN x

COS x

TAN x

sin x

cos x

tan x

DEG: | x | <10
10

RAD: | x | < 𝜋

180
 x 10

10

GRAD: | x | < 𝜋

9
 x 10

10

Also, only for tan x: (n = integer)

DEG: | x | ≠ 90 (2n-1)

RAD: | x | ≠ 𝜋

2
 (2n-1)

GRAD: | x | ≠ 100 (2n-1)

ASN x

ACS x

sin
-1

 x

cos
-1

 x
-1 ≤ x ≤ 1

ATN x tan
-1

 x | x | < 10
100

HSN x

HCS x

HTN x

sinh x

cosh x

tanh x

-227.9559242 ≤ x ≤ 230.2585092

AHS x sinh
-1

 x | x | < 10
50

AHC x cosh
-1

 x 1 ≤ x < 10
50

AHT x tanh
-1

 x | x | < 1

LN x

LOG x

ln x

log x
10

-99
 ≤ x < 10

100

EXP x e
x
 -10

100
 < x ≤ 230.2585092

TEN x 10
x
 -10

100
 < x < 100

RCP x

SQU x

CUB x

SQR x

CUR x

1/x

x
2

x
3

√𝑥

√𝑥
3

| x | < 10
100

, x ≠ 0

| x | < 10
50

| x | < 2.154434690 x 10
33

0 ≤ x < 10
100

| x | < 10
100

y ^ x (y
x
=10

xlogy
)

when y > 0, -10
100

 < x log y < 100

when y = 0, x > 0

when y < 0, {
x = integer or 1

𝑥
 = odd integer (x ≠ 0)

and − 10100 < x log | y | < 100

SHARP PC-G850V(S) USERS GUIDE: Appendix C – Calculation Ranges

 266

Command Function Range of x

&H x
0 ≤ x ≤ 2540BE3FF (x in hexadecimal)

FDABF41C01 ≤ x ≤ FFFFFFFFFF

POL (x, y)
𝑟 = √𝑥2 + 𝑦2

𝜃 = tan
𝑦

𝑥

(x
2
 + y

2
) < 10

100

𝑦

𝑥
 < 10

100

REC (r,)
x = r cos 

y = r sin 

r < 10
100

| r sin  | < 10
100

,| r cos  | < 10
100

NPR (n,r) nPr
𝑛!

(𝑛−𝑟)!
 < 10

100
, 0 ≤ r ≤ n ≤ 9999999999

n, r integers

NCR (n,r) nCr

𝑛!

(𝑛−𝑟)!𝑟!
 < 10

100
, 0 ≤ r ≤ n ≤ 9999999999

n, r integers

when n – r < r, n – r ≤ 69

when n – r ≥ r, r ≤ 69

FACT x n! 0 ≤ x ≤ 69

DEG x DMS  DEG | x | < 10
4

DMS x DEG  DMS | x | < 10
4

Statistical Calculations

Range | x | < 10
50

 1 ≤ n < 10
100

 | y | < 10
50

Statistics For the following calculations, the absolute value of the intermediate and final results is

less than 1 x 10
100

. The denominator (divisor) is not 0. The result of √ is a positive number.

 Σ𝑥 Σ𝑥2 Σ𝑦 Σ𝑦2

 𝑥̅ =
Σ𝑥

𝑛
 𝑦̅ =

Σ𝑦

𝑛

𝑠𝑥 = √

Σ𝑥2−𝑛𝑥2

𝑛−1
 𝑠𝑦 = √

Σ𝑦2−𝑛𝑦2

𝑛−1

𝜎𝑥 = √

Σ𝑥2−𝑛𝑥2

𝑛
 𝜎𝑦 = √

Σ𝑦2−𝑛𝑦2

𝑛

 𝑟 = 𝑦̅ − 𝑏𝑥̅ 𝑏 =
𝐒𝑥𝑦

S𝑥𝑥

 𝑟 =
𝑆𝑥𝑦

√S𝑥𝑥 × S𝑦𝑦
 S𝑥𝑥 = Σ𝑥2 −

(Σ𝑥)2

𝑛

 𝑥′ =
𝑦−𝑎

𝑏
 S𝑦𝑦 = Σ𝑦2 −

(Σ𝑦)2

𝑛

 𝑦′ = 𝑎 + 𝑏𝑥 S𝑥𝑦 = Σ𝑥𝑦 −
Σ𝑥 × Σ𝑦

𝑛

SHARP PC-G850V(S) USERS GUIDE: Appendix D – Specifications

 267

APPENDIX D: SPECIFICATIONS

Device: PC-G850V(S)

Processor: 8-bit CMOS CPU (equivalent to Z80)

Memory capacity: System Internal: 2.3KB

Fixed variable area: 208 bytes

Program/data area: 30179 bytes

Stack: Function stack: 16 level

Data stack: 8 level

Subroutine stack: 10 level stack for BASIC

 total of 90 bytes:

 REPEAT-UNTIL: 4 bytes per instance

 WHILE-WEND: 5 bytes per instance

 SWITCH-CASE: 6 bytes per instance

 FOR-NEXT: 18 bytes per instance (only one instance

 SWITCH-CASE allowed)

Operators: Addition, subtraction, multiplication, division, trigonometric and

inverse trigonometric functions, logarithmic and exponential

functions, angle conversion, square and square root, power, sign,

absolute, integers, pi, coordinate conversion, etc.

Numerical precision: 10 digits (mantissa) + 2 digits (exponent)

Editing functions: Cursor right and left, line up and down, character insert, character

delete.

TEXT Editor, monitor for Z80 machine language.

Interface Options: Sharp-11Pin interface:

CE-126P (printer)

CE-T800 (PC data transmission cable)

EA-129C (connection cable between 2 Sharp computers)

Display: Liquid crystal display

 Text: 6 lines, 24 characters with 5x7 dot matrix

 Graphics: 48x144 pixels

Operating temperature: 0°C – 40°C (32° – 104°F)

SHARP PC-G850V(S) USERS GUIDE: Appendix D – Specifications

 268

Power supply: Four AAA batteries

6V DC 0.2W external power supply. (e.g. EA-23E)

Power consumption: 0.2W at 6.0V DC.

Approximately 90 hours of continuous operation under normal

conditions (based on 10 minutes of operation or program execution

and 50 minutes of display per hour at a temperature of 20°C/68°F).

The operating time may vary slightly depending on usage and type

of battery used.

Dimensions: 196 (W) x 95 (D) x 20 (H) mm

Weight: 270g (G850VS: 260g)

Accessories: Hard cover, 4 dry batteries. Operation Manual

SHARP PC-G850V(S) USERS GUIDE: Appendix E – Resetting the computer

 269

APPENDIX E: RESETTING THE COMPUTER

If there is a problem with the computer, e.g. due to faulty programs, resetting the computer

can help.

1. Press the ON button and then press the

reset button under the SHIFT button

with a ballpoint pen or similar device.

Then release the reset button again.

2. Immediately after pressing the RESET button, the PC-G850V displays the following

screen. If any other indication appears, the repeat the above procedure. The PC-

G850V(S) asks for confirmation to clear the memory:

MEMORY CLEAR O.K.? (Y/N)

3. If you want to keep the data, press the ..N.. key

RUN MODE

>

If the computer still does not work properly, you can reset the computer to its factory default

settings. This will delete all data on the computer. Repeat steps 1 and 2, then continue with

step 4 below:

SHARP PC-G850V(S) USERS GUIDE: Appendix E – Resetting the Computer

 270

4. Press the ..Y.. key. The following message flashes, indicating that the computer was

initialized and all memory contents are deleted.

* *

* ALL CLEAR *

* *

5. Press any key. The following display appears:

RUN MODE

>

SHARP PC-G850V(S) USERS GUIDE: Appendix F – System Bus

 271

APPENDIX F: SYSTEM BUS

The PC-850V(S) provides a system bus for direct access to the 8-bit processor. Access to the

system bus in on the right side of the computer.

Note: Depending on the battery power, the voltage at Vcc will be between 4-6V.

Since the computer consists of CMOS components, the CMOS standard

levels must be maintained.

TOP BOTTOM

Signal Pin Pin Signal

Vcc 1 2 Vcc

M1 3 4 MREQ

IORQ 5 6 IORESET

WAIT 7 8 INT1

WR 9 10 RD

BNK1 11 12 BNK0

CEROM2 13 14 CERAM2

D7 15 16 D6

D5 17 18 D4

D3 19 20 D2

D1 21 22 D0

A15 23 24 A14

A13 25 26 A12

A11 27 28 A10

A9 29 30 A8

A7 31 32 A6

A5 33 34 A4

A3 35 36 A2

A1 37 38 A0

GND 39 40 GND

TOP

BOTTOM

SHARP PC-G850V(S) USERS GUIDE: Appendix G – Kanji Conversion Chart

 273

APPENDIX G: KANJI CONVERSION CHART

SHARP PC-G850V(S) USERS GUIDE: Appendix G - Kanji Conversion Chart

 274

SHARP PC-G850V(S) USERS GUIDE: Appendix I – Memory Map

 275

APPENDIX H: CHARACTER CODE TABLE

This table shows characters and their corresponding character codes used with the CHR$ and

ASC commands. Each character code consists of 2 hexadecimal characters (or 8 binary bits).

Example:

"A" = hexadecimal "41", decimal "65" and bin "01000001".

"P" = hexadecimal "50", decimal "80", and bin "01010000".

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 @ P ‘ p ｰ ﾀ ﾐ 

1 1 ! 1 A Q a q ｡ ｱ ﾁ ﾑ 円

2 2 " 2 B R b r ｢ ｲ ﾂ ﾒ

3 3 # 3 C S c s ｣ ｳ ﾃ ﾓ 月

4 4 $ 4 D T d t ､ ｴ ﾄ ﾔ 日

5 5 % 5 E U e u ･ ｵ ﾅ ﾕ

6 6 & 6 F V f v ｦ ｶ ﾆ ﾖ

7 7 ' 7 G W g w ｧ ｷ ﾇ ﾗ

8 8 (8 H X h x ｨ ｸ ﾈ ﾘ  ”

9 9) 9 I Y i y ｩ ｹ ﾉ ﾙ 

10 A * : J Z j z ｪ ｺ ﾊ ﾚ 

11 B + ; K [k { ｫ ｻ ﾋ ﾛ 

12 C , < L ¥ l | ｬ ｼ ﾌ ﾜ

13 D - = M] m } ｭ ｽ ﾍ ﾝ

14 E . > N ^ n ~ ｮ ｾ ﾎ ﾞ

15 F / ? O _ o ｯ ｿ ﾏ ﾟ

Note: When printing with the CE-126P, the characters with the codes 129

(&H81) – 159 (&H9F), 224 (&HE0) – 231 (&HE7), 236 (&HEC) – 240

(&HF0), 245 (&HF5) – 248 (&HF8) are printed as spaces.

SHARP PC-G850V(S) USERS GUIDE: Appendix I – Memory Map

 277

APPENDIX I: MEMORY MAP

Memory Area:

0000H
Header 0000 – 00FF

Machine code area

0100 – [7FFE,7FFF]-1

0100H

Program Files Area

(RAM Disk)

 [7FFE, 7FFF] -

Data files

 TEXT area [7973,7974] – [7975,7976]

 BASIC program

area

 [79E1,79E2] – [79E3, 79E4]

 Variable area

 Workspace

 Fixed variables

 Workspace

8000H

Stack area [79FC, 79FD] – 77DF

 ROM BANK0

(System ROM)

77E0 – 7FFF

C000H

ROM BANK1

BASIC ROM

ROM

BANK2

ROM

BANK3

FFFFH

Note: Addresses in brackets represent the address in which the respective current

memory position is stored.

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 279

APPENDIX J: ROM ADDRESSES

ROM Routines

Confirmed Addresses

Address OpCode Description

84F7 Roll the screen one line up.

871A Initialize the serial interface (11-pin)

9249
Jumps to an address in a particular bank following the CALL

statement

BCBE STAT Call STAT mode

BCDF
Reads a byte from the active serial interface to A (wait a

short baud-rate-dependent time for the start bit)

BCE2
Reads a byte from the serial interface to A (waits for the start

bit indefinitely)

BCE5
Reads a byte from the active serial interface to A (waits for

the start bit indefinitely)

BCE8 Open (OPEN) the serial interface (11-pin)

BCEB Close (CLOSE) the serial interface (11-pin)

BCEE Add CR / LF to the file pointed to by HL

BCFI CLRBAS Starts the routine for “BASIC DELETE OK?”

BCF7 CLRTXT Starts the routine for “TEXT DELETE OK?”

BCFD (88C1) GETCHR Reads a character from the keyboard into register A.

BD00 LDPSTR

Reads pixel string from position x, y of length B to address

from HL (x position in E, y position in D). x = 0-5 and y = 0-

23. 1 byte encodes 7 pixels and 5 bytes a character.

BD03 REGOUT
Displays values of all processor registers and waits for

keystroke

BD09 AOUT Displays value of the A-register and then waits for entry.

BD0F HLOUT Displays value of HL register and then waits for entry.

BD15
Reads an ASCII string from the serial interface to HL until

EOF, EOL or an error (SCF) is detected.

BD2D OFF Power off (turns off the calculator)

BE53 (89BE) INKEY

Tests if a key has been pressed and writes the key to A

(INKEY function). A = 0 No key pressed. A = 52 several

keys were pressed simultaneously (carry flag is set when a

key was pressed)

BE62 (8440) PUTCHR
Returns the character in register A. DE defines the x, y

position (x-position in E, y-position in D)

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 280

Address OpCode Description

BE65 INSLN
Creates a blank line at the x, y position (in DE) (x position in

E, y position in D)

BFAF Writes the contents of register A to the serial interface

BFB2
Writes a string from HL to the serial interface. The transfer

will be terminated when the character ZERO is received.

BFCD
Reads a character from the keyboard into register A. (wait

until a key is pressed)

BFD0

Writes a pixel string whose address is in HL with the length

B. The output starts from the x, y positions in DE (x position

in E, y position in D)? X = 0-5 and y = 0-23. 1 byte encodes

7 pixels and 5 bytes a character. In contrast to the routines

BFEE and BFF1, there is no line break

BFEE
Returns the character in A from position x, y in DE B times

in succession. X = 0-5 and y = 0-23

BFF1

Display string of length B from address HL with x-y position

in DE. If necessary, the string is wrapped at the end of the

line and at the end of the display the LCD is scrolled up (the

same behavior also with BFEE)

BFF4 Calling the RUN mode

C110 Power Off

BASIC Routines (Unconfirmed):

Address Command Description

C065 Initialize RAM (0000-003F)

C0FD Ask if the memory should be cleared.

D7C3 HL points to the basic byte. The token string is passed in DE

F9BD
Converts the contents of register A to 2 hex numbers pointing to

the HL

FFF7
Decodes Basic Byte in B. Returns the length in A and the address

of the string in DE

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 281

Other Addresses (Unconfirmed)

Address Description

0000 Jump to BFFA

0030 Jump to BD03

0038 RET

0066 RETN

USER area + 1A

Beginning of the ram disk (in MONITOR USER is changeable (default

USER = FF) The file length (always 8 + 8 bytes) in the ram disk is in

the two bytes after the filename

779C

Contrast. A change does not immediately cause the display to change.

Example: 10 PRINT "now:"; PEEK (& H779C)

 20 INPUT "change (0-31):"; A

 30 POKE & H779C, A

 40 OUT & H40, & H80 + A

 50 GOTO 10

77E0 Start the system RAM area

7800-78CF Variable range A-Z: 7800 = Z, 7 bytes each

78E7-78E8 Start address of the IO buffer

78EC

SIO Transmission mode bits:

 Bit 7: is received char EOT

 Bit 6: EOL matches (is complete)

 Bit 5: previous what CR

 Bit 4: check for EOL

78ED

Baud rate: 0x1 = 300, 0x2 = 600, 0x4 = 1200, 0x8 = 2400, 0x10 =

4800, 0x20 = 9600

- highest bit starting from bit 5 is relevant. all bits 0 ==> 300 baud

78EE

Parameters of the serial interface:

 Bit2: add -> CR, else if Bit0 add -> LF else add -> CRLF

 Bit 1: (set for CR LF)

 Bit 3: unused

 Bit 4: 1 + Bit 4 stop bits

 Bit 5: 0 = Odd 1 = Even parity if parity enabled

 Bit 6: 0 = no parity 1 = parity check / generation enabled

 Bit 7: 7 + Bit7 Data bits

78EF Byte for the identification of the transmission end (EOT)

78F0 Auto power-off Pointer

7900 current bank ID mapped to C000-FFFF

7901-7904

Screen display annunciators:

7901: 00000111

 | | +-Always

 |+---CAPS

+----Cana

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 282

Address Description

790D
VRAM display start position. first LCD row offset (0-7) [enables

simple scrolling]

790E Number of the last selected file in the ram disk

7912-7913 Beginning entry first file in the Ram disk (name)

7921 Current cursor line (0-3)

7922 Current cursor column (0-23)

7932 current interrupt mask at port 17H.

7966 INKEY1, keyboard code query, see Key Matrix

7973-7974 start text area

7975-7976 end text area

79B3-79B4 basic pointer

79B5-79B6 basic line being processed

79B9 current basic byte code

79C0-79C7 password

79E1-79E2 initial executable basic program

79E3-79E4 end executable basic Program

79FC-79FD Lower end Basic variable area RAMTOP

79FE-79FF Start executable basic program.

7A60-7A77 last line CAL calculation result

7A80-7A98 last CAL calculation result (exact to 11 digits)

7AA0-7AA1 program pointer

7AA2-7AA3 program pointer

7AA6-7AA7 currently used variable (?)

7AB6-7AB7 FOR pointer (?)

7AB8 -7AB9 variable pointer

7AC8-7AC9 FOR pointer

7ACA-7ACB variable pointer

7ADC-7ADD variable pointer

7B00-7B5F sign in the (monitor) display

7BB0-7BC7 Display line CAL

7C00-7CFF Input buffer, evaluated

7E00-7ED5 Basic string buffer

7E00-7ED5: INKEY2, ASCII value like INKEY $

7EE8- Line of input

7F40-7F4B LCD line scratch data (12 characters)

7FFD- TOP of Stack (decreased by PUSH) at most 178 bytes

7FFE-7FFF address of first non-USER range, i.e. here USER + 1 is stored

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 283

Display Control Ports 40h, 41h:

Low-level control of the LCD is via two ports:

40h = Control-Port

41h = Data-Port

The resolution of the LCD for cursor positioning is 144x6 (144 columns and 6 rows). The

rows have text resolution, the columns have graphic resolution.

The top left corner of the LCD is assigned coordinates (0,0). A vertical bit pattern (1 byte) in

GPRINT format can used to a set cursor position through port 41h (bit 0 = lowest pixel, bit 7

= highest pixel). Cursor position automatically changes after output with shift of one column

to the right.

This is the fastest way to access the LCD - it is controlled directly by the hardware LCD

driver without accessing VRAM (as with the PC-1600). The latter, however, is easy to

implement.

The control port can also be read. Bit 7 indicates whether the LCD hardware is BUSY. In this

case, you must wait for the next OUT command.

The following values can be written to port 40h:

Value (hex) Description Notes

0n Sets the lower-order nibble of the x-axis Value range: 0 ≤ n ≤ F

1n Sets the higher-order nibble of the x-axis Value range: 0 ≤ n ≤ 8

2n n = 4 LCD off

n = 5 LCD on

3n n = CursorBlinkRate 30-3F: from fastest to slowest.

Slowest blink rate still faster

than the standard rate.

40-7F VRAM display start position The LCD has 144x48 dots but

there are 144x64 dots in VRAM.

16 vertical points are always

hidden. Example of scrolling:

FOR A = 0 TO 63: OUT &H40,

&H40 + A: NEXT

80-9f LCD contrast 80–9F: from brightest to darkest.

Usable values are from 80-8F.

Outside this range, no difference

in contrast seen.

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 284

Value (hex) Description Notes

An n = 0 mirror mode off

n = 1 mirror mode on

n = 4 all pixels (mask) off

n = 5 all pixels (mask) on

n = 6 inverse off

n = 7 Inverse on

n = 8 Voltage on

n = 9 Reduce voltage

n = E all active pixels off

n = F all active pixels on

Sets display mode

Bn Sets the y-axis Value range: 0 ≤ n ≤ 5

Cn Partially switches on the display.

n = 0 normal display

n = 1 left 16 pixels

n = 2 right 10 pixels, including mode

n = 3 left 32 pixels

n = 4 1 + 2

n = 5 right 42 pixels + mode

Turning on a display draws a

line from the center to the

When the display is turned on, a

line ascending to the center

appears, depending on the left

and right. If bit 8 is set, it is a

line descending to the middle

Dn No function

En Unknown

Fn No function

Example:

Assembler program for setting the cursor position and writing the 8-bit pattern:

DI

LD A, 0 <colLow>

OUT (40H), A

LD A, 1 <colHigh>

OUT (40H), A

LD A, B <row>

OUT (40H), A

LD A, <8bit -pattern>

OUT (41H), A

EI

The corresponding BASIC program:

10 GCURSOR (<colHigh> * 16 + <colLow>, 7 + <row> * 8)

20 GPRINT "<8bit-pattern>"

Example for inverting the display in BASIC:

OUT &H40,&HA7

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 285

Key Matrix

Output 11h, input 10h

Output

Input
7 6 5 4 3 2 1 0

7) R–CM M+ Enter  . K U

6 / * - +  M J Y

5 9 6 3 = SPACE N H T

4 8 5 2 . TAB B G R

3 7 4 1 0 Cana V F E

2 π INS CON ON CAPS C D W

1 BS 0 ;  TXT X S Q

0 P I L  BASIC Z A OF

Output 12h, input 10h

Output

Input
7 6

7 CLS MDF

6 FE 1 / x

5 tan (

4 log yx ^

3 ln x2

2 cos Ì

1 sin DEG

0 2ndF nPr

Example:

10 CLS

20 LINE (7,16) - (18,7), B

30 A = 1

40 GCURSOR (8,15)

50 FOR B = 1 TO 7

60 OUT &H11, A

70 A = A * 2

80 GPRINT INP &H10;

90 NEXT

100 OUT &H11.0

110 FOR B = 1 TO 2

120 OUT &H12, B

130 GPRINT INP &H10;

140 NEXT

150 OUT &H12,0

160 GOTO 30

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 286

BIOS Key Values

High

Low
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 OFF Q W E R T Y U A S D F G H J

1 K Z X C V B N M , BASIC TEXT CAPS TAB SPACE 
2    ANS 0 . = + RETURN L ; CONST 1 2 3 -

3 M+ I O INS 4 5 6 * R-CM P BS π 7 8 9 /

4) nPr DEG x2 yx ^ (1 / x MDF 2ndF sin cos ln log tan FE

5 CLS ON

+80h when pressing the shift key

52h When two or more keys are pressed

Conversion of BEEP Command Values to Tones:

Format: BEEP repeat [, level] [, length]

Repeat : number of beep tones. 0 to 65535

Level : Frequency of the buzzer. 230Hz ~ 8kHz (0 ~ 255). Optional.

Length : Duration of the sound. 0 to 65535, optional. Length can be calculated by the

following equation: 1300000 / (166 +22 * level) Hz

C C+ D D+ E F F+ G G+ A A+ B

7

21 18 15 14 12 10 8

49 46 43 40 37 35 30 26 22

105 99 93 87 82 77 72 68 64 60 56 52

219 200 194 182 172 162 152 143 135 127 119 112

 246 232

Example:

10 DATA 105,93,82,77,68,60,52,49

20 FOR A = 1 TO 8

30 READ B

40 C = 650000 / (166 + 22 * B)

50 BEEP 1, B, C

60 EXT

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 287

Self-Test Mode

The following menu appears when you execute OUT &H69,6:

* PC-G850V V1.03 CHECK *

1:TOTAL 2:RAM

3:ROM 4:11PIN

5:LCD 6:KEY

7:SHOCK 8:AGING

9:L.B,ESD 0:CURRENT

Caution: Functions may clear the computer memory.

SHARP PC-G850V(S) USERS GUIDE: Appendix J – ROM Addresses

 288

BASIC Code Table

F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

0

H
ig

h

L
o

w

C
H

R
$

A
S

C

E
O

F

R
N

D

F
A

C
T

M
D

F

P
A

IN
T

P
R

IN
T

C
L

S

D
IM

C
S

A
V

E

R
U

N

 0

S
T

R
$

V
A

L

A
N

D

L
N

R
E

C

O
U

T
P

U
T

IN
P

U
T

L
O

C
A

T
E

C
A

L
L

O
P

E
N

N
E

W

 1

H
E

X
$

L
E

N

L
O

F

O
R

L
O

G

P
O

L

A
P

P
E

N
D

G
O

S
U

B

T
O

P
O

K
E

C
L

O
S

E

C
O

N
T

 2

D
M

S
$

V
D

E
G

N
O

T

E
X

P

A
S

L
N

IN
P

U
T

S
T

E
P

G
P

R
IN

T

S
A

V
E

P
A

S
S

 3

P
E

E
K

S
Q

R

L
P

R
IN

T

T
H

E
N

P
S

E
T

L
IS

T

 4

X
O

R

S
IN

R
E

T
U

R
N

O
N

O
U

T

P
R

E
S

E
T

R
A

N
D

O
M

IZ
E

L
L

IS
T

 5

M
O

D

N
C

R

IN
P

C
O

S

T
E

N

E
L

S
E

R
E

S
T

O
R

E

IF

D
E

G
R

E
E

C
L

O
A

D

 6

F
IX

N
P

R

T
A

N

R
C

P

F
O

R

R
A

D
IA

N

R
E

N
U

M

 7

P
IO

S
E

T

IN
T

S
Q

R

G
C

U
R

S
O

R

L
E

T

P
IO

S
E

T

G
R

A
D

L
O

A
D

 8

IN
K

E
Y

$

A
B

S

C
U

R

L
IN

E

R
E

M

P
IO

P
U

T

B
E

E
P

 9

M
ID

$

S
G

N

H
S

N

W
H

IL
E

E
N

D

S
P

O
U

T

E
R

A
S

E

W
A

IT

 A

L
E

F
T

$

D
E

G

H
C

S

W
E

N
D

N
E

X
T

S
P

IN
P

L
F

IL
E

S

G
O

T
O

D
E

L
E

T
E

 B

D
M

S

H
T

N

S
W

IT
C

H

S
T

O
P

H
D

C
O

P
Y

K
IL

L

G
R

O
N

F
IL

E
S

 C

R
IG

H
T

$

P
O

IN
T

A
S

N

A
H

S

C
A

S
E

R
E

A
D

E
N

D
IF

T
R

O
F

F

 D

 P
I

A
C

S

A
H

C

D
E

F
A

U
L

T

D
A

T
A

R
E

P
E

A
T

C
L

E
A

R

 E

C
U

B

F
R

E

A
T

N

A
H

T

E
N

D
S

W
IT

C
H

C
IR

C
L

E

U
N

T
IL

U
S

IN
G

L
C

O
P

Y

M
O

N

F

SHARP PC-G850V(S) USERS GUIDE: Appendix K – Error Messages

 289

APPENDIX K: ERROR MESSAGES

If an error in BASIC occurs, one of the following codes will be displayed. For errors that

occur during program execution, the line number where the error occurred is also displayed.

Error code Description

10 Syntax error.

12 Illegal command for specified mode (RUN/PRO).

13 Illegal CONT command.

14 Program does not exist for PASSWORD.

15 Illegal address for BSAVE M.

20 Overflow error (>10
100

).

21 Divide by zero.

22 Illegal operation.

30 Array already assigned.

31 Undimensioned array.

32 Array index overflow.

33 Out of range error.

40 Name/line number nonexistent.

41 Illegal line number.

43 Error with RENUM/LCOPY

44 End line < start line

50 Stack depth exceeded (for GOSUB, FOR, REPEAT, WHILE, and SWITCH)

51 Missing GOTO.

52 Missing NEXT.

53 Missing READ.

54 Buffer overflow.

55 String/line > 255 bytes.

60 Out of memory.

61 Missing ENDIF

62 Missing REPEAT.

63 Missing WEND.

64 Missing WEND.

66 Extra CASE/DEFAULT statement.

68 Missing ENDSWITCH.

69 Missing SWITCH.

70 Cannot print with current USING format.

71 Illegal USING format.

72 I / O error.

SHARP PC-G850V(S) USERS GUIDE: Appendix K – Error Messages

 290

Error code Description

77 File overflow.

80 Checksum error.

81 Timeout error.

82 Type mismatch error with BLOAD

83 Type mismatch error with INPUT#

84 Printer error

85 Device/file not opened before use

86 Device/file number already in use.

87 End of file.

90 Type mismatch error.

91 Type mismatch error.

92 Incorrect password.

93 Password protected

94 File not found

95 Illegal file name.

96 File type mismatch (BASIC vs. TEXT)

97 Greater than 255 files

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 291

APPENDIX L: Z80 PROGRAMMING REFERENCE

This chapter summarizes the instructions for the Z80 processor. It does not replace a manual

for Z80 programming. It should only serve as a reference.

Z80 registers and flags

The Z80 has various 8-bit and 16-bit registers. During execution, some 8-bit registers merge

into 16-bit registers (which can easily be recognized by the register names).

8-bit registers : A, B, C, D, E, H, L

16-bit registers : IX, IY, BC, DE, HL

The Z80 processor provides duplicates of the 8-bit registers so you have a pair of registers

available. With one command you can exchange register assignments.

The Z80 also has a number of flags. Flags are 1-bit registers in which current states can be

displayed. The flags are held in the F-register (from bit 7-0):

S : sign flag (1 if negative)

Z : zero flag (1 if result 0)

H : auxiliary flag (also called half-carry flag)

P : parity flag (1 if overflow)

N : subtraction flag (1 if subtraction in accumulator)

C : carry flag (carry flag or CY, 1 if overflow)

 S Z H P/V N C

Sign Carry

Zero Add/subtract

5
th

 bit of last Parity/overflow

Half-carry 3
rd

 bit of last

Z80 Instruction set

Abbreviations

r, r’ 8-bit registers A, B, C, D, E, H, L

dd 16-bit registers BC, DE, HL, SP

qq 16-bit registers AF, BC, DE, HL

pp 16-bit registers BC, DE, SP

n 8-bit constant

nn 16-bit constant, address

d Offset for indirect addressing in the range -128 to 127

b Bit to be used in single-bit instructions 0 ≤ b ≤ 7

m, M Contents of memory addressed by HL (L contains bits 0-7; H bits 8-15

p Value of 00h, 08h, 10h, 18h, 20h, 28h, 30h, or 38h

CY Carry flag

T Number of clock cycles

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 292

8-bit Load Instructions

These instructions move 8-bit data between registers or between registers and memory. The

first argument in the operand field is the destination address and the second is the source. The

contents of the source address are not changed.

Instruction T Operation SZHPNC

LD r, r’ 4 load register r’ into register r ------

LD r, n 7 load constant n into register r ------

LD r, m 7 load memory addressed by HL into register r ------

LD r, (IX + d) 19 load memory addressed by IX + offset d into register r ------

LD r, (IY + d) 19 load memory addressed by IY + offset d into register r ------

LD m, r 7 load register r into memory addressed by HL ------

LD (IX + d), r 19 load register r into memory addressed by IX + offset d ------

LD (IY + d), r 19 load register r into memory addressed by IY + offset d ------

LD m, n 10 load constant n into memory addressed by HL ------

LD (IX + d), n 19 load constant n into memory addressed by IX + offset d ------

LD (IY + d), n 19 load constant n into memory addressed by IY + offset d ------

LD A, (BC) 7
load memory addressed by register BC into register A

(accumulator)

LD A, (DE) 7
load memory addressed by register DE into register A

(accumulator)

LD A, (nn) 13
load memory addressed by nn into register A

(accumulator)

LD (BC), A 7
load register A (accumulator) into memory addressed by

register BC

LD (DE), A 7
load register A (accumulator) into memory addressed by

register DE

LD (nn), A 13
load register A (accumulator) into memory addressed by

nn

LD A, I 9 load register I (interrupt) into register A (accumulator) **0F0-

LD A, R 9 load register R (refresh) into register A (accumulator) **0F0-

LD I, A 9 load register A (accumulator) into register I (interrupt) ------

LD R, A 9 load register A (accumulator) into register R (refresh) ------

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 293

16-bit Load Instructions

These instructions move 16-bit data between registers or between registers and memory. The

first argument in the operand field is the destination address and the second is the source. The

contents of the source address are not changed.

Special 16-bit instructions include the PUSH and POP. 16-bit data from double registers can

be pushed into the stack or taken back to the double register.

All 16-bit data is stored in Intel (little-endian) order (least significant byte first).

Instruction T Operation SZHPNC

LD dd, nn 10 load constant nn into double register ------

LD IX, nn 14 load constant nn into index register IX ------

LD IY, nn 14 load constant nn into index register IY ------

LD HL, (nn) 16
load memory addressed by nn, nn+1 into double register HL

(nnL, nn+1H)

LD pp, (nn) 20
load memory addressed by nn, nn+1 into double register pp

(nnL, nn+1H)

LD IX, (nn) 20
load memory addressed by nn, nn+1 into double register IX

(nnX, nn+1I)

LD IY, (nn) 20
load memory addressed by nn, nn+1 into double register HL

(nnY, nn + 1I)

LD (nn), HL 16
load contents of double register HL into addresses nn, nn + 1

(Lnn, Hnn+1)

LD (nn), pp 20
load contents of double register pp into addresses nn, nn + 1

(Lnn, Hnn+1)

LD (nn), IX 20
load contents of double register IX into addresses nn, nn + 1

(Xnn, Inn+1)

LD (nn), I 20
load contents of double register IY into addresses nn, nn + 1

(Ynn, Inn+1)

LD SP, HL 6 load double register HL into SP (stack pointer) ------

LD SP, IX 10 load double register IX into SP (stack pointer) ------

LD SP, IY 10 load double register IY into SP (stack pointer) ------

PUSH qq 11
load double register qq into the stack

DEC SP; LD (SP), H; DEC SP; LD (SP), L

PUSH IX 15
load double register IX into the stack

DEC SP; LD (SP), I; DEC SP; LD (SP), X

PUSH IY 15
load double register IY into the stack

DEC SP; LD (SP), I; DEC SP; LD (SP), Y

POP qq 10
load last value on the stack into double register qq

LD L, (SP); INC SP; LD H, (SP); INC SP

POP IX 14
load last value on the stack into double register IX

LD X, (SP); INC SP; LD I, (SP); INC SP

POP IY
14

load last value on the stack into double register IY

LD Y, (SP); INC SP; LD I, (SP); INC SP

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 294

8-bit Arithmetic and Logic Instructions

These instructions work with the accumulator (A register) and other registers or memory

addresses. The result of these instructions is stored in the accumulator (A register).

Instruction T Operation SZHPNC

ADD r 4 add register r to the accumulator ***V0*

ADD m 7 add memory addressed by register HL to the accumulator ***V0*

ADD n 7 add constant n to the accumulator ***V0*

ADD (IX + d) 19
add memory addressed by register IX + offset d to the

accumulator
***V0*

ADD (IY + d) 19
add memory addressed by register IX + offset d to the

accumulator
***V0*

ADC r 4 add register r + carry flag to the accumulator ***V0*

ADC m 7
add memory addressed by m + carry flag to the

accumulator
***V0*

ADC n 7 add constant n + carry flag to the accumulator content ***V0*

ADC (IX + d) 19
add contents of memory addressed by register IX + offset d

and carry flag to the accumulator
***V0*

ADC (IY + d) 19
add contents of memory addressed by register IY + offset d

and carry flag to the accumulator
***V0*

SUB r 4 subtract contents of register r from the accumulator ***V1*

SUB m 7
subtract memory addressed by register HL from the

accumulator
***V1*

SUB n 7 subtract constant n from the accumulator ***V1*

SUB (IX + d) 19
subtract memory addressed by register IX + offset d from

the accumulator
***V1*

SUB (IY + d) 19
subtract memory addressed by register IY + offset d from

the accumulator
***V1*

SBC r 4 subtract register r + carry flag from the accumulator ***V1*

SBC m 7
subtract memory addressed by m + carry flag from the

accumulator
***V1*

SBC n 7 subtract constant n + carry flag from the accumulator ***V1*

SBC (IX + d) 19
subtract memory addressed by IX + offset d and carry flag

from the accumulator
***V1*

SBC (IY + d) 19
subtract memory addressed by IY + offset d and carry flag

from the accumulator
***V1*

AND r 4 logical AND of register r and the accumulator **1p00

AND m 7 logical AND of memory addressed m and the accumulator **1p00

AND n 7 logical AND of constant n and the accumulator **1p00

AND (IX + d) 19
logical AND of memory addressed by register IX + offset d

and the accumulator
**1p00

AND (IY + d) 19
logical AND of memory addressed by register IY + offset d

and the accumulator
**1p00

OR r 4 logical OR of register r and the accumulator **0p00

OR m 7 logical OR of memory addressed m and the accumulator **0p00

OR n 7 logical OR of constant n and the accumulator **0p00

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 295

Instruction T Operation SZHPNC

OR (IX + d) 19
logical OR of memory addressed by register IX + offset d

and the accumulator
**0p00

OR (IY + d) 19
logical OR of memory addressed by register IY + offset d

and the accumulator
**0p00

XOR r 4 logical XOR of register r and the accumulator **0p00

XOR m 7 logical XOR of memory addressed m and the accumulator **0p00

XOR n 7 logical XOR of constant n and the accumulator **0p00

XOR (IX + d) 19
logical XOR of memory addressed by register IX + offset d

and the accumulator
**0p00

XOR (IY + d) 19
logical XOR of memory addressed by register IY + offset d

and the accumulator
**0P00

CP r 4

compare register r with accumulator

 Zero-Flag: 1  contents are identical

0  contents are different

 Carry-Flag: 1  accumulator smaller

0  accumulator equal or greater

***V1*

CP m 7
compare memory addressed by register m with

accumulator
***V1*

CP n 7 compare constant n with accumulator ***V1*

CP (IX + d) 19
compare memory addressed by register IX + offset d with

accumulator
***V1*

CP (IY + d) 19
compare memory addressed by register IY + offset d with

accumulator
***V1*

INC r 4 increase value of register r by one ***V0-

INC m 11 increase value of memory addressed by m by one ***V0-

INC (IX + d) 23
increase value of memory addressed by register IX + offset

by one
***V0-

INC (IY + d) 23
increase value of memory addressed by register IY + offset

by one
***V0-

DEC r 4 decrease value of register r by one ***V1-

DEC m 11 decrease value of memory addressed by m by one ***V1-

DEC (IX + d) 23
decrease value of memory addressed by register IX + offset

by one
***V1-

DEC (IY + d) 23
decrease value of memory addressed by register IY + offset

by one
***V1-

DAA 4 BCD correction of accumulator using flags ***p-*

CPL 4 bitwise 1’s complement of accumulator --1-1-

NEG 8
subtract the accumulator from zero

(2's complement, bitwise negate, increase by 1)
***V1*

CCF invert carry flag --x-0*

SCF 4 Set carry flag to 1 --0-01

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 296

16-bit Arithmetic Instructions

These instructions work similarly to the 8-bit arithmetic instructions, but with double

registers. As the accumulator is not a 16-bit register, HL, IX or IY is used.

Instruction T Operation SZHPNC

ADD HL, dd 11 add register dd to register HL --x-0*

ADD IX, IX 15 add register IX to itself (doubling) --x-0*

ADD IY, IY 15 add register IY to itself (doubling) --x-0*

ADD IX, pp 15 add register pp to register IX --x-0*

ADD IY, pp 15 add register pp to register IY --x-0*

ADC HL, dd 15 add register dd + carry flag to register HL **xV0*

SBC HL, dd 15 subtract register dd + carry flag to register HL **xV1*

INC dd 6 increment register dd by one ------

INC IX 10 increment register IX by one ------

INC IY 10 increment register IY by one ------

DEC dd 6 decrement register dd by one ------

DEC IX 10 decrement register IX by one ------

DEC IY 10 decrement register IY by one ------

Register Exchange Instructions

These instructions are used to exchange 16-bit register contents. It also allows backup of

primary registers with their corresponding “shadow” registers.

Instruction T Operation SZHPNC

EX DE, HL 4 Exchange registers DE and HL ------

EX AF, AF’ 4 Exchange registers AF and AF’ ------

EXX 4 Exchange registers with shadow registers

BCBC’ DEDE’ HLHL’

EX (SP), HL 19 Exchange contents of register HL with last value in the stack

SP+1H, SPL

EX (SP), IX 23 Exchange contents of register IX with last value in the stack

SP+1I, SPX

EX (SP), IY 23 Exchange contents of register IY with last value in the stack

SP+1I, SPY

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 297

Branch Instructions

These include conditional and unconditional jumps. The destination of jumps can be

specified using absolute or relative addressing. Range of relative address is restricted from -

126 to +129 bytes. For conditional jumps, a flag must be specified as an operands and the

corresponding flag bit is tested. Depending on this test, the jump is either executed or

ignored.

Instruction T Operation SZHPNC

JP nn 10 jump to address nn ------

JP NZ, nn 10 jump to address nn if zero bit cleared (0) ------

JP Z, nn 10 jump to address nn if zero bit set (1) ------

JP NC, nn 10 jump to address nn if carry bit cleared (0) ------

JP C, nn 10 jump to address nn if carry bit set (1) ------

JP PO, nn 10 jump to address nn if parity/overflow bit cleared (0) ------

JP PE, nn 10 jump to address nn if parity/overflow bit set (1) ------

JP P, nn 10 jump to address nn if sign bit cleared (0) ------

JP M, nn 10 jump to address nn if sign bit set (1) ------

JR nn 10 jump to relative address nn ------

JR NZ, nn 12 jump to relative address nn if zero bit cleared (0) ------

JR Z, nn 12/7 jump to relative address nn if zero bit set (1) ------

JR NC, nn 12/7 jump to relative address nn if carry bit cleared (0) ------

JR C, nn 12/7 jump to relative address nn if carry bit set (1) ------

JP m 4 jump to address specified by register HL ------

JP (IX) 8 jump to address specified by register IX ------

JP (IY) 8 jump to address specified by register IY ------

DJNZ nn 13/8 decrement register B and jump to relative address nn if B0 ------

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 298

Subroutines

As with the jump instructions, there are conditional and unconditional instructions. The

subroutine call operates by storing the return address following the CALL command on the

stack. If the subroutine is terminated with the RET command, the return address is loaded

from the stack and execution continues from the return address.

Instruction T Operation SZHPNC

CALL nn 17 call subroutine at address nn ------

CALL NZ, nn 17/10 call subroutine at address nn if zero flag cleared (0) ------

CALL Z, nn 17/10 call subroutine at address nn if zero flag set (1) ------

CALL NC, nn 17/10 call subroutine at address nn if carry flag cleared (0) ------

CALL C, nn 17/10 call subroutine at address nn if carry flag set (1) ------

CALL PO, nn 17/10 call subroutine at address nn if parity/overflow flag cleared (0) ------

CALL PE, nn 17/10 call subroutine at address nn if parity/overflow flag set (1) ------

CALL P, nn 17/10 call subroutine at address nn if sign flag cleared (0) ------

CALL M, nn 17/10 call subroutine at address nn if sign flag set (1) ------

RST p 11
call subroutine at restart address

(valid addresses: 00h, 08h, 10h, 18h, 20h, 28h, 30h, 38h.)

RET 10 unconditional return from a subroutine ------

RET NZ 11/5 return from subroutine if zero flag cleared (0) ------

RET Z 11/5 return from subroutine if zero flag set (1) ------

RET NC 11/5 return from subroutine if carry flag cleared (0) ------

RET C 11/5 return from subroutine if carry flag set (1) ------

RET PO 11/5 return from subroutine if parity/overflow flag cleared (0) ------

RET PE 11/5 return from subroutine if parity/overflow flag set (1) ------

RET P 11/5 return from subroutine if sign flag cleared (0) ------

RET M 11/5 return from subroutine if sign flag set (1) ------

RETI 14 return from interrupt ------

RETN 14 return from non-maskable interrupt ------

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 299

Shift Instructions

These instructions allows bitwise shifting of values in the accumulator (A-register), register,

or in memory. The bit shifted out of the byte is stored in the carry flag.

Instruction T Operation SZHPNC

RLCA 4 rotate accumulator one bit to the left, bit 7 becomes bit 0 --0-0*

RRCA 4 rotate accumulator one bit to the right, bit 0 becomes bit 7 --0-0*

RLA 4
rotate accumulator one bit to the left, bit 7 becomes the carry

flag and the carry flag becomes bit 0
--0-0*

RRA 4
rotate accumulator one bit to the right, bit 0 becomes the

carry flag and the carry flag becomes bit 7
--0-0*

RLC r 8 rotate register r one bit to the left, bit 7 becomes bit 0 **0p0*

RLC m 15
rotate memory addressed by register m one bit to the left, bit

7 becomes bit 0
**0p0*

RLC (IX + d) 23
rotate memory addressed by register IX + offset d one bit to

the left, bit 7 becomes bit 0
**0p0*

RLC (IY + d) 23
rotate memory addressed by register IY + offset d one bit to

the left, bit 7 becomes bit 0
**0p0*

RRC r 8 rotate register r one bit to the right, bit 0 becomes bit 7 **0p0*

RRC m 15
rotate memory addressed by register m one bit to the right, bit

0 becomes bit 7
**0p0*

RRC (IX + d) 23
rotate memory addressed by register IX + offset d one bit to

the right, bit 0 becomes bit 7
**0p0*

RRC (IY + d) 23
rotate memory addressed by register IY + offset d one bit to

the right, bit 0 becomes bit 7
**0p0*

RL r 8
rotate register r one bit to the left, bit 7 becomes the carry flag

and the carry flag becomes bit 0
**0p0*

RL m 15
rotate memory addressed by register m one bit to the left, bit

7 becomes the carry flag and the carry flag becomes bit 0
**0p0*

RL (IX + d) 23

rotate memory addressed by register IX + offset d one bit to

the left, bit 7 becomes the carry flag and the carry flag

becomes bit 0

**0p0*

RL (IY + d) 23

rotate memory addressed by register IY + offset d one bit to

the left, bit 7 becomes the carry flag and the carry flag

becomes bit 0

**0p0*

RR r 8
rotate register r one bit to the right, bit 0 becomes the carry

flag and the carry flag becomes bit 7
**0p0*

RR m 15
rotate memory addressed by register m one bit to the right, bit

0 becomes the carry flag and the carry flag becomes bit 7
**0p0*

RR (IX + d) 23

rotate memory addressed by register IX + offset d one bit to

the right, bit 0 becomes the carry flag and the carry flag

becomes bit 7

**0p0*

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 300

Instruction T Operation SZHPNC

RR (IY + d) 23

rotate memory addressed by register IY + offset d one bit to

the right, bit 0 becomes the carry flag and the carry flag

becomes bit 7

**0p0*

SLA r 8
arithmetic shift left register r one bit, bit 7 becomes the carry

flag, bit 0 is 0.
**0p0*

SLA m 15
arithmetic shift left memory addressed by register m one bit,

bit 7 becomes the carry flag, bit 0 is 0.
**0p0*

SLA (IX + d) 23
arithmetic shift left memory addressed by register IX + offset

d one bit, bit 7 becomes the carry flag, bit 0 is 0.
**0p0*

SLA (IY + d) 23
arithmetic shift left memory addressed by register IY + offset

d one bit, bit 7 becomes the carry flag, bit 0 is 0.
**0p0*

SRA r 8
 arithmetic shift right register r one bit, bit 0 becomes the

carry flag, bit 7 is unchanged.
**0p0*

SRA m 15
arithmetic shift right memory addressed by register HL one

bit, bit 0 becomes the carry flag, bit 7 is unchanged.
**0p0*

SRA (IX + d) 23

arithmetic shift right memory addressed by register IX +

offset d one bit, bit 0 becomes the carry flag, bit 7 is

unchanged.

**0p0*

SRA (IY + d) 23

arithmetic shift right memory addressed by register IY +

offset d one bit, bit 0 becomes the carry flag, bit 7 is

unchanged.

**0p0*

RLD 18

4-bit leftward rotation of a 12-bit number whose 4 most

significant bits are the 4 least significant bits of register A

(accumulator) and its 8 least significant bits are in register HL

**0p0*

RRD 18

4-bit rightward rotation of a 12-bit number whose 4 most

significant bits are the 4 least significant bits of register A

(accumulator) and its 8 least significant bits are in register HL

**0p0*

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 301

Bit Commands

These instructions allow the testing, setting or deletion individual bits in registers or in

memory.

Instructions T Operation SZHPNC

BIT b, r
8 test bit b in register r, the inverse of bit b is written to the Z

flag.
x*1x0-

BIT b, m
12 test bit b in memory addressed by m, the inverse of bit b is

written to the Z flag.
x*1x0-

BIT b, (IX+d)
20 test bit b in memory addressed by IX + offset d, the inverse

of bit b is written to the Z flag.
x*1x0-

BIT b, (IY+d)
20 test bit b in memory addressed by IY + offset d, the inverse

of bit b is written to the Z flag.
x*1x0-

SET b, r 8 set bit b in register r ------

SET b, m 12 set bit b in memory addressed by m ------

SET b, (IX+d) 20 set bit b in memory addressed by IX + offset d ------

SET b, (IY+d) 20 set bit b in memory addressed by IY + offset d ------

RES b, r 8 clear bit b in register r ------

RES b, m 12 clear bit b in memory addressed by m ------

RES b, (IX+d) 20 clear bit b in memory addressed by IX + offset d ------

RES b, (IY+d) 20 clear bit b in memory addressed by IY + offset d ------

CPU Commands

These instructions control the CPU interrupts.

Instructions T Operation SZHPNC

NOP 4 no operation ------

STOP 4 executes NOP instructions until interrupt or RESET ------

DI 4 disables interrupts in mode 1 and mode 2 ------

EGG 4 enables interrupts in mode 1 and mode 2 ------

IM 0 8 set interrupt mode 0 (external) ------

IM 1 8 set interrupt mode 1 (OS) ------

IM 2 8 set interrupt mode 2 (user) ------

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 302

Copy/Compare

These instructions can copy blocks of memory or search for a particular byte. The search

ends when the byte is found or the end of the memory area has been reached.

Instruction T Operation SZHPNC

LDI 16

copies from memory addressed by HL to memory addressed

by DE, increments HL and DE, decrement BC

 if BC = 0  P = 0

 if BC ≠ 0  P = 1

--0*0-

LDIR 21 repeats LDI until BC = 0 --000-

LDD 16

copies from the memory addressed by HL to memory

addressed by DE, decrement registers DE, HL and BC

 if BC = 0  P = 0

 if BC ≠ 0  P = 1

--0*0-

LDDR 21 repeats LDD until BC = 0 --000-

CPI 16

compare memory addressed by HL with register A

(accumulator)

 if A = (HL)  Z = 1

 if A ≠ (HL)  Z = 0, increment HL, decrement BC

 if BC = 0  P = 0

 if BC ≠ 0  P = 1

****1-

CPIR 21 repeats CPI until BC = 0 or A = (HL) ****1-

CPD 16

compare memory addressed by HL with register A

(accumulator)

 if A = (HL)  Z = 1

 if A ≠ (HL)  Z = 0, decrement HL, BC

 if BC = 0  P = 0

 if BC ≠ 0  P = 1

****1-

CPDR 21 repeat CPD until BC = 0 or A = (HL) ****1-

SHARP PC-G850V(S) USERS GUIDE: Appendix L – Z80 Programming Reference

 303

Input/Output

These instructions allow for the exchange of data between registers/memory with external

blocks. The external block is accessed via a port address (8-bit value). Depending on the

instruction, this port address is either specified directly (as a constant) or located in register

C. Similar to copy, instructions for transferring blocks of memory are available.

If the C register is used for addressing, the B register is used to hold the more significant bits

of the address bus.

Instructions T Operation SZHPNC

IN A, (n) 11 reads from hardware port (n) to the accumulator ------

IN r, (C) 12 reads from hardware port in register C to register r **0P0-

INI 16

reads hardware port (C) and writes the result to memory

addressed by HL, increment HL, decrement B

 if B = 0  Z = 1 otherwise Z = 0

x*xx1-

INIR 21 repeat INI instruction until register B = 0 x1xx1-

IND 16

reads hardware port (C) and writes the result to memory

address HL, decrement HL, B

 if B = 0  Z = 1 otherwise Z = 0

x*xx1-

INDR 21 repeat IND instruction until register B = 0 x1xx1-

OUT (n), A 11 writes accumulator to hardware port (n) ------

OUT (C), r 12 writes memory addressed by r to hardware port (C) ------

OUTI 16

reads memory addressed by HL and writes the result to

hardware port (C), increment HL, decrement B

 if B = 0  Z = 1 otherwise Z = 0

x*xx1-

OTIR 21 repeat OUTI instruction until register B = 0 x1xx1-

OUTD 16

reads memory addressed by HL and writes the result to

hardware port (C), decrement HL, B

 if B = 0  Z = 1 otherwise Z = 0

x*xx1-

OTDR 21 repeat OUTD instruction until register B = 0 x1xx1-

SHARP PC-G850V(S) USERS GUIDE: Appendix M – Installing a Speaker

 305

APPENDIX M: INSTALLING A SPEAKER

The PC-G850V (S) has a connector for attaching a speaker. These connections are marked

with BZ+ and BZ-. Here the piezo is soldered and attached to the housing with double-sided

tape.

Note: The previous models do not have these two connections. In this case, the

cables must be connected directly to the 11-pin interface. (Pin 3 (FL3) and

pin 7 (FL7).

	1. OVERVIEW
	1.1. Precautions
	1.2. Using the PC-G850V(S) for the First Time
	1.2.1. Replacing the Batteries
	1.2.2. When to Change the Batteries

	1.3. Device Overview

	2. BASIC FUNCTIONS AND MODES
	2.1. Switching on the Computer
	2.2. Automatic Shutdown
	2.3. Setting the Contrast
	2.4. The SHARP PC-G850 Modes
	Mode Switching

	2.5. Basic Operation
	Cursor control

	2.6. The Display

	3. MANUAL CALCULATIONS
	3.1. Keypad Operation
	3.1.1. Keys for Mathematical Operations
	ANS
	EXP, ,𝟏𝟎-𝒙., and ,𝒆-𝒙.
	DIGIT
	USING
	MDF (Modification Function)
	Sign Change

	3.2. Memory Operations
	3.3. Calculations with Constants
	Using constants
	Viewing constants
	Delete the last constant

	3.4. Priority in Direct Input Calculations
	3.5. Base Conversion (BASE-n)
	3.5.1. Value Range
	3.5.2. Input Number
	3.5.3. Base Conversion
	3.5.4. Two’s Complement
	3.5.5. Calcuations

	4. STATISTICS MODE
	4.1. Entering STAT Mode
	4.2. One-Variable (Univariate) Statistics
	4.2.1. Data Entry
	4.2.2. Univariate Statistical Calculations
	4.2.3. Correcting Errors
	4.2.4. Printing

	4.3. Two-Variable (Bivariate) Statistics
	4.3.1. Bivariate Statistical Calculations

	4.4. Calculation Storage

	5. PROGRAM OPERATION
	5.1. Constants
	5.1.1. String Constants
	5.1.2. Hexadecimal

	5.2. Variables
	5.2.1. Types of Variables
	5.2.2. Fixed Variables
	5.2.3. Simple Variables
	5.2.4. Array Variables

	5.3. Program and Data Files
	5.3.1. File Names
	5.3.2. File Name Extensions

	5.4. Expressions
	5.4.1. Numeric Operators
	5.4.2. String Expressions
	5.4.3. Relational Expressions
	5.4.4. Logical Expressions
	5.4.5. Parenthesis and Operator Precedence

	6. PROGRAMMING IN BASIC
	6.1. Programs
	6.1.1. BASIC Statements
	6.1.2. Line Numbers
	6.1.3. Labeled Programs

	6.2. BASIC Commands
	6.2.1. Direct Commands
	6.2.2. Modes (Operating Modes)

	6.3. Beginning to Program
	6.3.1. Entering and Running a Program
	6.3.2. Editing a Program
	6.3.3. Using Variables in Programming
	6.3.4. More Complex Programming

	6.4. Debugging
	6.4.1. Trace Mode
	6.4.2. Debugging Procedures

	7. TEXT MODE
	7.1. Functions in TEXT mode
	7.1.1. Editing Programs and Files

	7.2. TEXT Editor
	A Auto
	L List
	R Renumber
	D Delete
	C Copy
	S Search
	E Replace
	7.2.1. The .TAB. Key

	7.3. Delete TEXT Memory (Del)
	7.4. Print TEXT Program (Print)
	7.5. Serial Input/Output (SIO)
	7.5.1. Set I/O Parameters (Format)
	Communication Parameters

	7.5.2. Send Program (Save)
	7.5.3. Receive Program (Load)
	7.5.4. Printing

	7.6. Program File Management (File)
	7.6.1. Save TEXT Program (Save)
	7.6.2. Load TEXT Program (Load)
	7.6.3. Delete Program File (Kill)
	7.6.4. List File Names (Files)
	7.6.5. About TEXT files

	7.7. BASIC Converter (Basic)
	7.7.1. Conversion of TEXT and BASIC Programs
	7.7.2. Out of Memory when Using the TEXT/BASIC Converter

	7.8. Data File Management (RFILE)
	7.8.1. Create File (Init)
	7.8.2. Load Data File (load)
	7.8.3. Delete Data File (Kill)
	7.8.4. List Data Files (Files)
	7.8.5. Save Data File (Save)

	8. THE C PROGRAMMING LANGUAGE
	8.1. Properties of the C Programming Language
	8.2. The C Compiler
	8.2.1. Call the Text Editor:
	8.2.2. Enter the C Source Program:
	8.2.3. Compile the Source Program
	8.2.4. Compile
	8.2.5. Running the Program

	8.3. Trace
	8.3.1. Start TRACE Mode
	Functions in Pause Mode:

	8.4. Redirecting Screen Output to the Printer
	8.5. Functional Diagram of the C Compiler
	8.6. C Programming Basics
	8.6.1. Formatting Options for Output (i.e. printf)
	8.6.2. Variable Types
	Variable Names

	8.6.3. Operators
	Comparison Operators
	Arithmetic Operators
	Assignment Operators
	Increment / Decrement Operators
	Logical Operators
	Bitwise Operators
	Shift Operators
	Keywords
	Escape Control Characters

	8.7. C SYNTAX
	8.7.1. Compound Instructions
	8.7.2. Conditional Jumps
	If…else
	switch…case

	8.7.3. Loops
	for
	while
	do-while

	8.7.4. Unconditional Jumps
	goto
	continue
	break
	return

	8.8. Storage Classes
	8.9. Arrays
	8.10. Structures
	8.11. Compiler Runtime Options
	#include “file”
	#define name [value]
	#if ... #elif ... #else ... #endif
	#ifdef name ... #endif
	#ifndef name ... #endif

	8.12. Library Functions
	8.12.1. Standard I/O Functions
	getc, getchar, fgetc
	gets, fgets
	scanf, fscanf, sscanf
	putc, putchar, fputc
	puts, fputs
	printf, fprintf, sprintf
	fflush
	clearerr

	8.12.2. Character Functions
	isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit
	tolower, toupper

	8.12.3. String Functions
	strcat
	strchr
	strcmp
	strcpy
	strlen

	8.12.4. Memory Functions
	calloc
	malloc
	free

	8.12.5. Mathematical Functions
	abs
	asin, acos, atan
	asinh, acosh, atanh
	exp
	log, log10
	pow
	sin, cos, tan
	sinh, cosh, tanh
	sqrt

	8.13. Hardware Interface Functions
	8.13.1. Mini I/O Functions
	miniget
	miniput

	8.13.2. 8-bit PIO Control via the 11-pin Interface
	fclose
	fopen
	pioget
	pioput
	pioset

	8.13.3. SIO (RS-232C) Control via the 11-pin Interface
	fclose
	fopen

	8.13.4. Buffer / Communications Controller
	feof

	8.13.5. I/O port functions
	inport
	outport

	8.13.6. Memory Functions / Program Call
	call
	peek
	poke

	8.13.7. Datafile Functions
	fclose
	feof
	flof
	fopen

	8.13.8. Graphic Functions
	circle
	gcursor
	gprint
	line
	paint
	point
	preset
	pset

	8.14. Other Functions
	abort, exit
	angle
	breakpt
	clrscr
	getch
	gotoxy
	kbhit

	8.15. Error Messages
	8.15.1. Compiler Error Messages
	8.15.2. Run-Time Error Messages

	9. CASL
	9.1. The CASL assembler
	9.2. CASL mode Functions
	9.3. CASL Programming Procedure
	9.4. Entering / Editing the Source Program
	9.4.1. Line Format

	9.5. The CASL Assembler
	9.5.1. CASL Assembler Log
	9.5.2. CASL Assembler Error Messages

	9.6. Simulation
	9.6.1. Normal Execution
	9.6.2. Trace Mode
	9.6.3. Trace Error Messages

	9.7. Monitor
	9.7.1. Display Register Contents
	9.7.2. Set Registers
	9.7.3. Display Object Code

	9.8. Sample CASL Program
	9.8.1. Operation Example:
	9.8.2. Trace Example

	9.9. COMET Specification
	9.10. COMET Architecture
	9.11. Command Summary
	9.11.1. Registers and Abbreviations
	9.11.2. Commands
	LD
	ST
	LEA
	ADD
	SUB
	CPA
	JPZ, JMI, JNZ, JZE
	JMP
	SLA, SRA
	SSL, SLR
	PUSH
	POP
	CALL
	RET

	9.11.3. Assembler Syntax
	START
	END
	DC
	DS

	9.11.4. Macro Commands
	IN
	OUT
	EXIT
	WRITE

	9.11.5. Sample Program

	10. MACHINE LANGUAGE MONITOR
	10.1. Using the Monitor
	10.2. Monitor Commands
	USER Set User Memory
	S Update Memory
	D Display Memory
	E Edit Memory
	P Toggle Printer
	G GOSUB
	R Receive data via the serial interface
	W Send data via the serial interface
	BP Set Breakpoint

	10.3. Error Messages in Monitor Mode

	11. ASSEMBLER
	11.1. Programming with the Assembler
	11.1.1. Example Program
	11.1.2. Assign Machine Code Area
	11.1.3. Assemble Source Program
	11.1.4. Check Generated Object Program
	11.1.5. Run Object (Machine Code) Program

	11.2. Coding / Editing a Source Program
	11.2.1. Source Program Format
	11.2.2. Line Format (Instructions)
	11.2.3. Deleting a Source Program
	11.2.4. Entering a Source Program

	11.3. Assembler Functions
	11.3.1. Assembler Menu
	11.3.2. Assembling
	Successful Assembly
	Unsuccessful Assembly
	Displaying the Object Code
	Printing the Assembler Log
	Sending the Assembler Log to the Serial Interface (SIO)

	11.4. Assembler Pseudo-Instructions
	ORG Beginning
	DEFB / DB / DEFM / DM Define Byte / Message
	DEFW / DW Define Word
	DEFS / DS Define Memory
	EQU Equal
	END End

	11.5. Error Messages

	12. PIC
	12.1. Defining the Machine Language Area
	12.2. Creating / Editing a Source Program
	12.3. PIC Assembler
	12.3.1. PIC Assembler Directives
	__CONFIG Configuration
	ORG Set Start Address
	EQU Define a Constant
	DW Define a Word
	#INCLUDE Insert a File

	12.3.2. PIC Assembler Error Messages

	12.4. PIC Loader
	12.4.1. PIC Loader Error Messages

	13. BASIC COMMAND GLOSSARY
	13.1. Scientific and Mathematical Functions
	ABS ,𝒙.
	ACS ,,𝐜𝐨𝐬-−𝟏.-𝒙.
	AHC ,,𝐜𝐨𝐬𝐡-−𝟏.-𝒙.
	AHS ,,𝐬𝐢𝐧𝐡-−𝟏.-𝒙.
	AHT ,,𝐭𝐚𝐧𝐡-−𝟏.-𝒙.
	ASN ,,𝐬𝐢𝐧-−𝟏.-𝒙.
	ATN ,,𝐭𝐚𝐧-−𝟏.-𝒙.
	COS ,𝐜𝐨𝐬-𝒙.
	CUB ,𝒙-𝟑.
	CUR ,𝟑-𝒙.
	DEG dd mm’ss” → ddd.dddd
	DMS ddd.dddd → dd mm’ss”
	EXP ,𝒆-𝒙.
	FACT 𝒏!
	FIX
	HCS ,𝐜𝐨𝐬𝐡-𝒙.
	HSN ,𝐬𝐢𝐧𝐡-𝒙.
	HTN ,𝐭𝐚𝐧𝐡-𝒙.
	INT
	LN ,,𝐥𝐨𝐠-𝒆.-𝒙.
	LOG ,𝐥𝐨𝐠-𝒙.
	NCR nCr = ,𝒏!-𝒓!(𝒏−𝒓)!.
	NPR nPr = ,𝒏!-(𝒏−𝒓)!.
	PI 𝝅
	POL (𝒙,𝒚)→(𝒓,𝜽)
	^ (Power) ,𝒚-𝒙.
	RCP ,𝟏-𝒙.
	REC (𝒓, 𝜽)→(𝒙, 𝒚)
	SGN
	SIN 𝐬𝐢𝐧 𝒙
	SQR ,𝒙.
	SQU ,𝒙-𝟐.
	TAN ,𝐭𝐚𝐧-𝒙.
	TEN ,𝟏𝟎-𝒙.
	&H

	13.2. General Commands
	ASC
	AUTO
	BEEP
	BLOAD
	BLOAD M
	BLOAD?
	BSAVE
	BSAVE M
	CALL
	CHR$
	CIRCLE
	CLEAR
	CLOSE
	CLS
	CONT
	DATA
	DEGREE
	DELETE
	DIM
	END
	EOF
	ERASE
	FILES
	FOR … NEXT
	FRE
	GCURSOR
	GOSUB … RETURN
	GOTO
	GPRINT
	GRAD
	HEX$
	IF … THEN … ELSE
	IF…THEN…ELSE…ENDIF
	INKEY$
	INPUT
	INPUT#
	KILL
	LCOPY
	LEFT$
	LEN
	LET
	LFILES
	LINE
	LIST
	LLIST
	LNINPUT#
	LOAD
	LOCATE
	LOF
	LPRINT
	MID$
	MON
	NEW
	ON…GOSUB
	ON…GOTO
	OPEN
	PAINT
	PASS
	PEEK
	POINT
	POKE
	PRESET
	PRINT
	PRINT#
	PSET
	RADIAN
	READ
	REM (‘)
	RENUM
	REPEAT … UNTIL
	RESTORE
	RIGHT$
	RND
	RUN
	SAVE
	STOP
	STR$
	SWITCH … CASE … DEFAULT … ENDSWITCH
	TRON / TROFF
	USING
	VAL
	VDEG
	WAIT
	WHILE … WEND

	13.3. I/O Commands
	CLOSE
	INP
	LLIST
	LPRINT
	OPEN
	OUT
	PIOGET
	PIOPUT
	PIOSET

	APPENDIX A: 11-PIN INTERFACE
	Signals and Pin-Out
	SIO mode
	RS-232 Standard and Conventions
	Signal Levels
	Data Transfer Cable CE-T800 and CE-T801
	USB PC Adapter Cable with Hardware Handshake
	RS-232 printer

	SSIO mode
	CE-126P printer protocol
	LPRT Protocol and Mini I/O Port

	PWM Mode
	CE-126P Tape Protocol
	Generic PWM protocol

	PIO mode
	PIC mode

	APPENDIX B: KEYBOARD COMMANDS
	APPENDIX C: CALCULATION RANGES
	Numerical Calculations
	Functions

	Statistical Calculations

	APPENDIX D: SPECIFICATIONS
	APPENDIX E: RESETTING THE COMPUTER
	APPENDIX F: SYSTEM BUS
	APPENDIX G: KANJI CONVERSION CHART
	APPENDIX H: CHARACTER CODE TABLE
	APPENDIX I: MEMORY MAP
	APPENDIX J: ROM ADDRESSES
	ROM Routines
	Confirmed Addresses
	BASIC Routines (Unconfirmed):
	Other Addresses (Unconfirmed)

	Display Control Ports 40h, 41h:
	Key Matrix
	BIOS Key Values
	Conversion of BEEP Command Values to Tones:
	Self-Test Mode
	BASIC Code Table

	APPENDIX K: ERROR MESSAGES
	APPENDIX L: Z80 PROGRAMMING REFERENCE
	Z80 registers and flags
	Z80 Instruction set
	Abbreviations
	8-bit Load Instructions
	16-bit Load Instructions
	8-bit Arithmetic and Logic Instructions
	16-bit Arithmetic Instructions
	Register Exchange Instructions
	Branch Instructions
	Subroutines
	Shift Instructions
	Bit Commands
	CPU Commands
	Copy/Compare
	Input/Output

	APPENDIX M: INSTALLING A SPEAKER

