A ELTE ECCA . e . >>%9.95

- . - - - - - - - - -
- - - - - - - - - - -
- - - - - - - - . . -

McGraw-Hill/VTX Series

Buchsbaum and Mauro Microprocessor-Based Electronic Games
(1983) (A BYTE Book)

Buffington Your First Personal Computer (forthcoming, 1983)
(A BYTE Book)

Chiu and Mullish CRUNCHERS: 21 Simple Games for the TIMEX/
SINCLAIR 1000 2K (1982) (A BYTE Book)

Kimberfey =~ MICROPROCESSORS: An Introduction (1982)

Mullish ~ BASICS: A Guide to the TIMEX/SINCLAIR 1000
(forthcoming, 1983) (A BYTE Book)

Thomas LEARN BASIC: A Guide to Programming the Texas
Instruments Compact Computer 40 (1983) (A BYTE Book)

Whells Building Stereo Speakers (1983)

A Guide to Programming
the Texas Instruments
Compact Computer 40

David Thomas

with the assistance of Texas Instruments

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogota
Guatemala Hamburg Johannesburg Lisbon London Madrid
Mexico Montreal New Delhi Panama Paris San Juan

Sdo Paulo Singapore Sydney Tokyo Toronto

LEARN BASIC: A Guide to Programming the Texas Instruments
Compact Computer 40

Copyright © 1983 by McGraw-Hill, inc. and Texas Instruments.

All rights reserved. Printed in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

McGraw-Hill/VTX Series. A BYTE Book. McGraw-Hill edition.
1234567890SEMSEM89876543
ISBN O-07-0Lu257-5

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Thomas, David, date
Learn BASIC.

Includes index.

1. Ti CC 40 (Computer)}—Programming. 2. Basic (Computer
program language) |. Title.

QA76.8.T136T48 1983 001.64'24 82-24905

ISBN 0-07-064257-5

The editors for this book were John A. Aliano and Jeffrey McCartney;
and the editing supervisor was Charles P. Ray.
Book design by Roberta Rezk.

Contents

Preface vii
Acknowledgments ix
lesson 1 The TI Compact Computer 40 1
lesson 2 Numeric Constants and Variables 6
Lesson 3 DISPLAYing Information 11
lesson 4 Beginning Programming 16
lesson 5 Strings—Alphanumeric Information 23
Review Test 1 27
lesson 6 INPUTing Keyboard Information 29
lewwon 7 More on the PAUSE Statement 36
lewwon 8 Program Branching—The GOTO Statement 39
lenon 9 The NUMBER and RENUMBER Commands 44
Leon 100 Decision Making—The IF THEN Statement 49
Review lTest 2 55
tewwon 11 Order of Calculations 57
lewmon 12 Higher-Order Mathematical Functions 63
tewwon 18 The INT and SGN Functions 66
Feom 40 Simulating Chance Occurrences 72

vi / Contents

Review Test 3 78
Lesson 15 FOR TO NEXT Looping 80
Lesson 16 REM Statements 88
Lesson 17 Storing DATA in a Program 91
Lesson 18 Arrays and Subscripts 99
Lesson 19 The GOSUB and RETURN Statements 110
Review Test 4 118
Lesson 20 More on DISPLAYing Information 120
Lesson 21 Multiple Statement Lines 127
Lesson 22 Maore on Decision Making 132
Lesson 23 More on FOR NEXT Looping 135
Review Test 5 141
Lesson 24 String Comparisons 143
Lesson 25 String Manipulations 150
Lesson 26 Logical Operations 158
Lesson 27 The ON GOTO and ON GOSUB Statements 164
Lesson 28 Subprograms 170
Review Test 6 179
Appendix A Table of ASCIl Codes and Characters 182
Appendix B List of Compact Computer BASIC Reserved

Words 190
Appendix C Answers to Review Questions 192
Index 208

Preface

The objective of this book is to help you learn BASIC and to sho
you how to use that language to program the Texas Instrumeni
Compact Computer 40. This book assumes that you have the Con
pact Computer 40 User’s Guide supplied with the CC-40 and th:
you have read the discussions regarding the operation of the con
puter and the functions of the keys. The book does not assum
that you understand everything in that manual, or that you hav
had previous computer programming experience. On the contrar
it assumes that you are now making your first efforts to learn ho
to program a computer. If you have had previous programming e:
perience, this book will help you utilize the full capabilities of th
CC-40.

There are 28 lessons in this book. Each lesson covers an importar
programming concept or BASIC statement or command and is sho
enough to be easily read in one session. The lessons gradual
build on the information discussed in the preceding lessons, s
read the lessons in sequence. At the end of each lesson is a sun
mary section. Use this section for a quick review and reinforcemer
of the contents of the lesson.

The only way to learn to program is to write programs and to ru
them. This book makes that easy. It contains example program
to illustrate every BASIC statement and command discussed. Th
example programs, however, are designed to do more than ju:

viii / Preface

show how a statement or command works. They also are intended
to arouse your interest and provide you with a core of useful pro-
gramming applications that you can adapt or expand to suit your
own needs. After reading the lessons and entering the given pro-
grams, try to write alternate versions. There are few things as flexible
as programming, and there are many ways of making the computer
perform the same actions. By composing programs of your own
design, you will more quickly develop your programming skills.

You will find a review test after every fourth or fifth lesson. The
questions in these tests have been selected to reinforce what you
have learned in the preceding lessons and challenge you to write
programs using that information. Take the time to work these exer-
cises. Complete answers to all questions are provided in Appendix
C at the back of the book. The explanations accompanying many
of the answers make additional points that were not specifically
detailed in the text.

One of the remarkable things about computer programming is that
you can learn to program from reading a book. The only require-
ments are enthusiasm, a desire to learn, and your own computer.
As you learn the BASIC programming language, one of today’s
most useful tools, | trust that you will discover, as | have, that there
are few activities more fascinating or rewarding than computer pro-
gramming.

David Thomas

Acknowledgments

The author wishes to express his gratitude to Mark
R. Waldin, whose idea made this book possible; to
Robert E. Whitsitt Il for the support needed to write
this book; and to Tom M. Ferrio and Floyd R. Gerwig
for their patient reading and many valuable sugges-
tions and criticisms.

For their help in proofreading the manuscript, | wish
to thank Frank Dever, Jeff Gray, Millie Hammond, Ken-
neth Edward Heichelheim, Ben Korte, and Walter L.
Wdowiak.

el R R R

Fig. 1-1 Texas Instruments Compact Computer 40 and peripheral de-
vices; (right background, top to bottom): Tl four-color Printer/Plotter,
Tl Wafertape™ Digital Tape Drive, and Tl R$232 Communication In-
terface; (right foreground): Wafertape™ digital tape cassettes; (center
foreground, left to right, top to bottom): cartridges for 8K Constant
Memory™ RAM and Solid State Software™ programs in electrical
engineering, finance, and mathematics.

Fig. 1-1 Texas Instruments Compact Computer 40 and peripheral de-
vices; (right background, top to bottom): Tl four-color Printer/Plotter,
Tl Wafertape™ Digital Tape Drive, and Tl RS232 Communication In-
terface; (right foreground): Wafertape™ digital tape cassettes; (center
foreground, left to right, top to bottom): cartridges for 8K Constant
Memory™ RAM and Solid State Software™ programs in electrical
engineering, finance, and mathematics.

Lesson .

The Tl Compact Computer 40

The Texas Instruments Compact Computer 40 is a remarkably pow-
erful computing system. The textbook size of the computer makes
it ideal for “on-the-spot” applications that require immediate solu-
tions anywhere you go. Its usefulness, though, extends beyond its
portability. With its powerful BASIC programming language, expand-
ability, and calculating accuracy, the CC-40 can do many things
that previously could be done only by large, immobile “main-frame”
computers. (See Fig. 1-1.)

The CC-40 is equipped with 6144 bytes of random access memory
(6K RAM). This is enough memory and power to write sophisticated
programs, work complex business and science problems, or store
several pages of data. If more memory is needed, the computer
can be expanded to as much as 22,528 bytes of memory by installing
a1 16K RAM expansion cartridge in the computer’s cartridge port.
I he cartridge port can also be used to run Tl Solid State Software™
preprogrammed application cartridges.

Directions to the computer and information to be stored in memory
are entered by means of a standard typewriter-like keyboard. Al-
though the compact size of the computer results in keys that are
smaller than those found on a normal typewriter, with a little practice,
Il is still possible to touch type. To the right of the main keyboard
11 a block of keys known as a ‘“‘numeric keypad.” Besides duplicating
Ihe number keys on the top row of the keyboard, the numeric keypad

1

Full typewriter-style Up to 10 keys assignable Cartridge port for Separate numeric

keyboard for special functions Solid State Software™ keypad speeds
and Memory Expansion™ data entry
cartridges
HEX-BUS™ Port for optional 31-character
peripheral AC adapter liquid crystal

port display

]

Display
contrast
control

Fig. 1-2 The Texas Instruments CC-40 standard QWERTY keyboard and numeric keypad with
cursor control keys make calculations and text and data entry quick and easy.

Full typewriter-style Up to 10 keys assignable Cartridge port for Separate numeric

keyboard for special functions Solid State Software™ keypad speeds
and Memory Expansion™ data entry
cartridges
HEX-BUS™ Port for optional 31-character
peripheral AC adapter liquid crystal
port ‘ display
Display
contrast

control

Fig. 1-2 The Texas Instruments CC-40 standard QWERTY keyboard and numeric keypad with
cursor control keys make calculations and text and data entry quick and easy.

Display

Typewriter keys

(Control} key —

Cursor

(Clear) key

16K Constant Memory™ RAM or
Solid State Software™ cartridges

TEXAS INSTRUMENTS COMPACT COMPUTER 40

RAD

key
E—[RUN] key
Power and keys

BASIC keyword keys
(on overlay)

SHIFT] key

Reset key (button)

Numeric key pad

(Function) key

Fig. 1-3 The dot-matrix design of the Texas Instruments CC-40’s liquid crystal display allows
display of a full range of both uppercase and lowercase letters, punctuation marks, signs, and

symbols.

4 / Lesson 1

contains editing keys and the mathematical calculation keys of addi-
tion, subtraction, multiplication, and division. The numeric keypad
permits calculations and data entry to be performed more quickly
than is possibie with a typewriter keyboard. (See Fig. 1-2.)

The results of programs and calculations, as well as the contents
of memory, are viewed through the 31-character liquid crystal display
built into the computer. (See Figs. 1-3 and 28-1.) The dot-matrix
design allows you to display both uppercase and lowercase letters,
as well as various punctuation marks, signs, and symbois. You can
even define your own symbols by specifying which dots the computer
is to turn on.

The computer is powered by four AA-size batteries that maintain
the contents of memory even when the computer is turned off.
The advantage of this feature is that programs and data can be
conveniently stored in the computer without the fear of loss. The
power consumption of the computer is low enough to permit up
to 200 hours of continuous operation before new batteries are
needed. This allows several hours of daily use for up to 6 months
between battery changes. Additionally, the computer is equipped
with a port for an optional AC adapter.

The heart of the computer is a new Texas Instruments 8-bit micro-
computer known as the TMS70C20. The microcomputer performs
the operations entered through the keyboard or specified in a pro-
gram and places the results in the display. If requested, it also
sends and receives information from other devices such as the
Wafertape™ Digital Tape Drive or the RS232 Communications Inter-
face. (See Fig. 1-1.) These devices, known as peripherals, are con-
nected to the Compact Computer 40 through the HEX-BUS™ |[ntelli-
gent Peripheral Interface located in the rear of the computer. Each
peripheral has its own computing power provided by a built-in dedi-
cated microcomputer.

The availability of such powerful peripherals as the Wafertape™
Digital Tape Drive, TI RS232 Communications Interface, and Tl
Printer/Plotter expand the usefulness of the computer enormously.
The Wafertape™ Drive allows you to store programs and data on
inexpensive, endless-loop tape cartridges. These tape cartridges

The TI Compact Computer 40 /5

are available in several storage capacities, up to a maximum of
49,152 bytes (48K). Since the tapes never require rewinding, they
permit all storage operations to be completely controlled by the
computer. The Wafertape™ Drive unit is powered by four AA batter-
ies operating independently of computer console power, and is fully
portable.

The RS232 Communication Interface allows the CC-40 to be con-
nected to a whole range of standard computer equipment, including
devices which allow the CC-40 to communicate with other appropri-
ately programmed computers throughout the world over regular tele-
phone lines. This allows you to use your CC-40 as a remote terminal
from your home, office, or even a motel room. The RS232 Interface
can be purchased with an optional parallel printer port that allows
you to print programs and data on most 80-column printers.

The Printer/Plotter peripheral can draw four-color X-Y graphs and
make permanent hard-copy printed records of your programs, data,
and solutions. With a printing speed of up to 11 characters per
second, the Printer/Plotter can print in 10 different type sizes and
even permits words to be printed upside down or vertically, if desired.
The Printer/Plotter uses standard 2%-inch plain paper rolls and
prints in red, blue, green, and black. Power for the Printer/Plotter
is supplied from rechargeable AA batteries.

The Texas Instruments Compact Computer 40, with its advanced
calculation capability, enhanced built-in BASIC language, and fiexi-
ble peripherals, provides you with the ideal opportunity to learn the
BASIC programming language. As computers become increasingly
important in our daily lives, it is becoming just as important to acquire
a familiarity and understanding of computers. Learning the BASIC
programming language is the first step in acquiring that proficiency.
The following lessons offer a practical, hands-on approach to learn-
ing BASIC, one of the most popular computer programming lan-
guages.

Lesson .ia..

Numeric Constants and
Variables

The Compact Computer’s BASIC language allows all but extremely
large or small numbers to be entered exactly as they are written.
Decimal numbers are entered with a decimal point, if needed, and
negative numbers are entered with a minus sign preceding the num-
ber.

To acquaint yourself with the entry of numbers, work the following
problems with the computer. The computer does not need an equals
key [=] to perform a calculation; simply type in the problem and
press the key. To clear the result of a previous calculation
from the display, just start typing the next calculation.

Enter Display
121+121 242

7.123—9 -1.8F7
629+5.2 IZVE.E

3/17 L 1VB47vESEER

(Note that the [+] key performs multiplication and the /] key performs
division.)

Numbers such as those illustrated above are known as numeric
constants, since their value cannot vary. In programming, you will
more often use numeric variables to represent numbers. A numeric
variable is a “name” assigned a number value that can be used
in place of a numeric constant.

6

Numeric Constants and Variables / 7

TRE R S

I'he Texas Instruments CC-40 keyboard design allows easy keyboarding
lor touch-typists.

Variables are assigned number values in BASIC using the equals
() sign. For example, type

x=14

o the computer. Before pressing [ENTER], consider the above
wcquence carefully. It illustrates an important difference between
the use of the equals sign in BASIC and the use of the equals
sign in standard mathematics.

In mathematics, the equals sign indicates that two values or expres-
sions are equal. For example, 2 + 3 = 5 is a familiar mathematical
«quation indicating that 2 + 3 and 5 are equal. The equals sign in
ihis usage simply states a fact, that the two sides of the equation
are equal.

eyboarding

The Texas Instruments CC-40 keyboard design allows
for touch-typists.

easy k

8 / Lesson 2

In BASIC, the equals sign performs an action: it defines or changes
the value of a variable. In the example that you just typed in, the
equals sign assigns the value 14 to the variable name “x”. The
variable may have had no previous value, or it may have had any
other value. In any case, after the execution of this sequence, x
will have a value of 14.

Now press [ENTER] to execute the sequence.

The computer responds by clearing the display and performing the
assignment operation, although it gives no indication of the latter
action. The value assigned to x can be checked by typing x and

pressing [ENTER]:
Enter Display
X 14

As the word “variable” implies, the value of a variable can be
changed by simply assigning it a new value using the equals sign.
This flexibility makes variables extremely useful in programming.

Type
X=X+X
and press [ENTER]. Then perform the check again.

Enter Display
X &8

The new value of x is 28. It was obtained by assigning x the value
of x + x. Notice that the “old” value of x was used in assigning a
new value to x. A BASIC sequence such as x = x + x cannot be
confused with a mathematical sequence, since it makes no sense
as an equation: it would be like saying 1 =1 + 1.

When assigning a value to a variable, always place the variable
name on the left side of the equals sign and the value on the right
side. This is a fundamental rule of BASIC programming.

Technical Note: Some BASICs require that assignment sequences
be preceded by the BASIC statement LET (for example, LET x=14

Numeric Constants and Variables / 9

or LET x=x+x). Compact Computer BASIC leaves this choice to
you. You can use or not use LET (or let) as desired. However,
since dropping the LET reduces your typing effort and makes no
difference in the computer’s operation, it is not used in this book.

The initial value of any numeric variable is zero. This is a convention
of BASIC that you will find useful and convenient. Once the variable
has been assigned a nonzero value, the variable retains that value
until altered by another BASIC instruction or until the computer is
turned [OFF]. Turning the computer or allowing the Automatic
Power Down™ to occur sets the value of all variables to zero.

The BASIC command new also sets the value of all variables to
zero, as well as erasing any program currently in the computer’s
memory. The primary advantage of this command is that it allows
you to quickly prepare the computer for a new program by clearing
all information, including the values of variables, from memory.

In Compact Computer BASIC, a variable name can be almost any
sequence of letters and digits up to 15 characters in length, as
long as the first character of the name is a letter, an underline
() character, or an at (@) sign. For example,

X
@payroll
counti2
first_new_date
ar7c3

cost

e all valid variable names. However,

3x
percentconcentration
lest 1

b12?

interest-costs

o mvalid names because they either begin with a number, are
too long, or contain characters that are not valid (in these examples,
the: space, question mark, or hyphen, respectively).

10 / Lesson 2

A list of names that would otherwise be valid, but cannot be used
because they represent BASIC program commands and statements,
is given in Appendix B. For example, the assignment sequence
“let = 5” is invalid because let is part of the BASIC language of
the computer. Unlike some BASIC languages, however, Compact
Computer BASIC allows variables to contain BASIC words as part
of a variable name. For example, run is a BASIC word and therefore
cannot be used as a variable, but “prune”, which contains run,
can be used.

LEARNED IN THIS LESSON

Numbers entered into the computer can be of two types: constants
and variables. Specific values such as 3.313 are referred to as
constants. “Names” assigned to numbers are called variables. Vari-
able names must begin with a letter of the alphabet, the underline
() character, or the @ symbol, and cannot be on the reserved
word list. The reserved word list is given in Appendix B of this
book.

The equals sign is used to assign values to variables. The variable
name must always be on the left side and the value on the right
side of the equals sign.

Until assigned another value, all numeric variables are equal to
zero. Once assigned a nonzero value, a numeric variable retains
that value in memory until it is replaced or cleared. The value of
a variable can be replaced by assigning it a new value. It can be
cleared by turning the computer or executing the new com-
mand. The new command instructs the computer to set all numeric
variables to zero and to erase any program currently in memory.

Lesson ‘...

DISPLAYing Information

The CC-40 is equipped with a 31-character liquid crystal display
(LCD). This display is your means of observing the entry of informa-
tion into the computer, monitoring its operation, and viewing the
contents of memory and the results of calculations and programs.
The computer automatically displays the results of calculations. This
greatly increases the convenience of using the computer as a pocket
calculator, but is unusual for a BASIC language computer. To see
the results of other types of actions, you must use a specific instruc-
lion.

lhe display statement is Compact Computer BASIC’s primary
method of placing information in the display. For example, enter

cost=10.25
How display the value of the variable using the display statement:

Fnter Display
display cost 18,25

1ho value is displayed with a nonflashing underline in the left side
al the display. The underline cursor indicates the computer is in
tho “pause” state. The purpose of the pause state is discussed
i | .esson 4. For the moment, be aware that when you see a non-
flashing underline you must press or before you can
mocoed with another operation.

11

12 / Lesson 3

The display statement is extremely powerful and offers several
optional parameters. For example, you can display information at
any character position with the at{co/umn) option. A comma must
separate the at parameter from the information being displayed.

Enter Display
display at(5),cost 18,25

This form of the display statement instructs the computer to display
the value beginning at the fifth column position. If you look closely,
however, you will observe that the number actually begins in the
sixth column position. This apparent discrepancy occurs because
BASIC places a “character space” in front of a positive number.
This space corresponds to the position occupied by the minus sign
of a negative number and is added for consistency. The “leading”
space in front of a positive number ensures that the digits of both
negative and positive numbers begin in the same relative location:

Enter Display
display at(5),—10.25 1@, 25

In addition to adding a leading space before positive numbers,
BASIC also adds a space after every number. This “trailing” space
is intended to separate the number from any information that may
be displayed following the number.

The valid range for column positions is 1 through 80, inclusive,
but only the first 31 positions correspond to physical locations in
the display. For example, try

Enter Display
display at(32),cost

The underline cursor is displayed as usual, but no value is visible.
To see the value, hold down the right arrow [»] key. The underline
cursor moves toward the right side of the display. If you continue
to hold the right arrow key down, the value scrofls into view 1
character at a time. Since the display is physically limited to 31
characters, it is not possible to see information displayed beyond
column 31 unless the information is scrolled into view.

DISPLAYing Information / 13

Technical Note: The computer has what is known as an 80-charac-
ler display buffer. Since the display is only 31 characters wide, it
is impossible to see the entire buffer at one time. The display can
be viewed as a “window” that can be shifted right or left as needed
o view the contents of the display buffer. When the display buffer
contains information to the right of the viewing window, the triangular
indicator in the upper right corner of the display is lighted. When
the display buffer contains information to the left of the viewing
window, the triangular indicator in the upper /eft side of the display
i, lighted. To see information to the right of the viewing window,
hold down the right arrow key. To see information to the left of
lhe viewing window, hold down the left arrow key.

The display statement also allows you to display more than one
villue at a time.

Enter Display
markup=1.75

display cost;markup 18,235 1.75
display cost;markup;cost+markup 1@.25 1.75 12
display at(7),1;—2;3 1 -2 3

When multiple values are display-ed, the values are known as a
print-list. A print-list can contain both constants and variables, but
must use a semicolon or a comma to separate the items of the
list. The display statement operates differently depending upon the
punctuation selected:

¢ When a semicolon print-list separator is used, the computer
displays the items adjacently, as in the examples above.
Remember, however, that BASIC automatically adds a space
after every number and before each positive number.

s When a comma print-list separator is used, the computer
displays the items beginning at certain column locations
known as the display zones. These zones are 15 columns
apart and correspond to display buffer positions 1, 16, 31,
46, 61, and 76. For example, try

Enter Display
display cost,markup 18,25 1.7

=]
()

14 / Lesson 3

The comma instructs the computer to display the next item in th
print-list beginning at the next print zone (in this example, colum
16). To view information displayed in the third, fourth, fifth, an
sixth print zones, you must scroll the display window to the righ
using the [»] key.

Enter Display

display 1,2,3,4,5,6 1 2

(Hold down the [»] key to view the information in print zones 3, 4,
5, and 6.)

The semicolon and comma separators can be mixed as desired
in a print-list:

Enter Display
display 1;cost,2;markup 1 18.25 Z 1.75

Another option offered by the display statement is the beep parame-
ter. The beep parameter can be used with or without a print-list
and instructs the computer to sound an audible tone when executed.
A comma must separate the display parameters from the informa-
tion being displayed.

Enter Display
display beep
display at(12) beep,12 1z

The beep and at parameters must precede the print-list, if one is
used, but can be entered in either order. The at parameter can
be used only once in a display statement, but beep can be repeated
as often as desired:

display beep beep beep beep beep
Other options available when using display are discussed in Lesson
20.

Technical Note: The print statement provides an aiternate way
of displaying information. Because the print statement has fewer
options than the display statement, it is not discussed in this book.

DISPLAYing Information / 15

For many examples of the print statement, refer to the User’s Guide
supplied with your computer.

LEARNED IN THIS LESSON

The display statement is used to place information in the display.
The statement offers several options. You can display information
starting at any column location up to 80 positions, sound a tone
as information is displayed, and display more than one item of infor-
mation at a time. f multiple items are displayed (a print-list), they
must be separated by semicolons or commas. The semicolon in-
structs the computer to place items adjacently, and the comma
instructs the computer to place items beginning at specific display
locations called zones.

When the computer is in a pause state, the or key
must be pressed to allow the entry of additional instructions. (The
computer shows a nonflashing underline cursor when you must

press or [ENTER] to proceed.)

Beginning Programming

The preceding lessons illustrate using the computer in what is known
as immediate execution or command mode. Such actions require
the correct use of BASIC commands and statements, but they are
not “programming.” Programming consists of storing a set of in-
structions in the computer’s memory. The stored instructions, or
program, are not executed when you enter them, but only after
you command the computer to run the program.

To store an instruction in memory, you must precede the instruction
with a fine number. A line number directs the computer to remember,
but not execute, the BASIC instructions that follow.

Clear the computer’'s memory by typing new and pressing [ENTER].
Then type the following sequence exactly as shown:

100 score=14

Before pressing [ENTER], check that you have typed a space be-
tween the line number and the variable name. If not, press
and retype the sequence. When the line seems correct, press
[ENTER]. The computer will store the “line” in memory and clear
the display.

Technical Note: Compact Computer BASIC requires spaces after
line numbers and between BASIC words. Spaces between other
program elements are generally optional. The policy of this book

16

Beginning Programming / 1

is to show spaces only where absolutely required. if you feel uncor
fortable with sequences such as score=14, enter score = 14. Ext
spaces do not affect the computer’s operation since it remowvt
all unnecessary spaces when the program line is stored in memoi
Be certain, however, that you enter spaces wherever you see the
in the text.

To confirm that the assignment statement has not yet been ex
cuted, display the value of score:

Enter Display
display score 5]

Now execute the program by typing run, or pressing the ke
and pressing [ENTER].

Enter Display
run

Although the computer’s only apparent response is to clear tt
display, the statement has been executed {(assuming no error me
sage was displayed). Check this by displaying the value of sco
again.

Enter Display
display score 14

1his program, although very short, clearly illustrates the differen
hetween command mode and programming. In command moc
mstructions are executed when is pressed. In programmir
«:xecution is deferred until the program is run.

I he distinction between command mode and programming is al
the basis for separating BASIC words into commands and sta
iments. Commands are BASIC words that can be executed oi
in command mode. Statements are BASIC words that can be ex
«nted in a program, and usually, in command mode as well.

the one-line program that you have just executed can be add

18 / Lesson 4

to and made more useful by entering more program lines. For exam-
ple, enter

110 display score

Notice that this line has a larger line number than the first. The
computer uses the size (or magnitude) of the line numbers that
you enter to determine the order in which program lines are exe-
cuted. Since 110 is larger than 100, line 110 will be executed after
line 100 when you run the program.

Run the program again.

Enter Display
run

Rather unexpectedly, the computer does not display the value of
score. Why not? Actually the number 14 was displayed, but so
quickly it was not visible. The computer automatically clears the
display just before and immediately after running a program. There-
fore, since the display statement is the last instruction in the pro-
gram, its effect is automatically cleared when the program ends.

To instruct the computer to hold a value in the display until you
have had an opportunity to see it, you must use the pause statement.
The pause statement causes the computer to temporarily halt pro-
gram execution without clearing the display. The computer remains
in the pause state until you press or to signal that
program execution is to continue.

Add the following line to the program and run it again. The larger
line number ensures that the pause statement will be executed
after the display statement.

Enter Display
120 pause
run 14

This time the program works as expected, assigning and displaying
the value of score. The computer then halts in the pause state
with the underline cursor displayed, which indicates that you are

expected to press [ENTER] or [CLR]. Program execution continues

Beginning Programming / 19

when you press one of these keys. In this case, of course, no
«dditional program lines follow and the program ends (which clears
the display).

1echnical Note: Some BASICs require the use of an end state-
ment at the end of a program. With Compact Computer BASIC,
Ilns statement is optional when the end of the program is the last
hnio of the program. It is possible, however, to design a program
to end at a line number other than the last. When this occurs, an
end statement is no longer optional. In this book, end statements
e omitted except where required as explained above. See Lesson
14 for an example of a program that requires an end statement.

1o preceding program illustrates one of the main advantages of
pmogramming your instructions over executing them in the command
mode: they can be easily executed more than once. To reexecute
these instructions, run the program again. The program will remain
m memory until you clear it by executing a new command. Even
turning the computer and will not erase it. (Of course,
the: contents of memory will be lost if power is removed as a result
ol discharging or removing the batteries.)

A you work through this book, you will write programs that are
longer and more complicated. When a program grows beyond five
o six lines, it becomes difficult to remember what instructions you
have already entered. Fortunately, BASIC has a command to allow
yon lo view or list program instructions.

he list command has two forms: list and list /ine-group. When
lint is executed, the computer displays the lowest numbered pro-
«qram line and halts. You can then display the next program line
hy pressing or [¥], or clear the display and end the listing
operation by pressing [CLR].

Ihe sole difference in executing list with a line-group parameter
. that the listing begins with the line number specified by the line-
wroup. A line-group can be either a single line number or a range
of line numbers specified by a beginning line number, a hyphen,
el an ending line number. If only a beginning line number and a
hyphen are entered, the ending line number is assumed to be the
1t line in memory. (The hyphen is entered with the minus key.)

20 / Lesson 4

You still press or [v], to advance to the next line numbern
and to end the listing.

To illustrate the list command, list the score program.

Enter Display

list 16@8 SCORE=14

11@ DISFLAY SCORE
126 FRUSE

Notice that the computer automatically translates BASIC words and
variable names from lowercase letters into capital letters.

Before ending this lesson, it is important to cover several additional
points regarding BASIC line numbers. First, observe that we began
this program with line number 100 and incremented each line by
10. The actual numbers selected were unimportant. A functionally
equivalent program could have been written using any three line
numbers in the valid range of 1 through 32766, as /long as the
lines remained in the same relative order.

Line numbers should not normally follow each other in increments
of 1, however. By selecting line numbers with unused values or
“gaps” between them, you make it easy to insert additional program
lines. Simply enter the new line with a line number between the
existing line numbers.

For example, suppose you want to increase the value of score by
7. This is accomplished by entering the following line:

105 score=score+7

Confirm that the line has been inserted between lines 100 and 110
by listing the program again.

Enter Display

list 1o ZCORE=14

165 SCORE=SCORE+T
118 DISFLAY SCORE
128 FAUSE

Beginning Programming / 21

Another important point regarding line numbers is the ease with
which they allow program instructions to be replaced or deleted.
To replace a program line, simply enter a new line with the same
line number. Since BASIC does not allow a program to have two
lines with identical line numbers, the computer automatically re-
places the original line with the new line. Test this feature by replac-
ing line 105 with

105 score=score+14

List the program again.

Enter Display

list 1w SCORE=14

185 SCORE=SCORE+ 14
118 DISFLAY SCORE
128 PAUSE

I'he original line has been replaced with the new one.

Program lines are deleted by the delete /ine-group command. (As
with the list command, a line-group can be either a single number
or a range of numbers separated by a hyphen.) This command,
which can be shortened to del to reduce typing, instructs the com-
puter to erase a line or a range of lines. For example, del 100
will erase line 100; del 100-120 will erase lines 100 through 120;
del -200 will erase all lines from the beginning of memory to line
200; and detl 200- will erase all lines from 200 to the end of memory.
You can test this command by entering:

del 100-

Il you now enter list, no lines will be displayed.

1EARNED IN THIS LESSON

I 'very BASIC program, from the simplest to the most complicated,
consists of one or more numbered “lines” of BASIC instructions.
I he numbers that precede each line serve three purposes:

22 / Lesson 4

1. They allow the computer to distinguish between instructions
to be stored in memory (a program) and instructions to
be executed immediately (command mode).

2. They determine the order in which program instructions are
executed.

3. They provide a method of identifying program instructions
that you can use when listing or editing a program.

Line numbers must be whole numbers in the range 1 through 32766.
As a rule, select line numbers that are 10 or more units apart.
This practice makes it easy to insert additional lines.

The list command is used to display program lines. The command
can be used singularly or with a line-group parameter. When list
is used by itself, the listing begins with the lowest numbered program
line. When used with a line-group parameter, the listing begins and
ends with a specified line number. To advance to the next program
line, press or [¥]. To clear the display and end the listing,

press [CLR].

The delete line-group command is used to delete specific program
lines. The command can be abbreviated del, if desired.

The pause statement should be placed in a program whenever
you want displayed information to remain in the display. The pause
statement instructs the computer to halt program execution without

altering the display until or is pressed.

Lesson “...*

Strings—Alphanumeric
Information

The most significant feature of a computer is not its capability to
manipulate numbers, since a pocket calculator can do that, but
its additional capability to manipulate letters, symbols, signs, words,
sentences, and, in general, textual information of any type. To enable
the computer to distinguish between textual information and num-
bers, textual information must be entered into the computer en-
closed in quotation marks. Such information, which can consist of
any collection of alphabetic letters, signs, symbols, or digits from
0 to 255 characters in length, is referred to as a string. For example,
enter

Enter Display
display “CC-40" CC-48

(Use the [SHIFT] key to enter the capitals and the minus [—] key to
enter the hyphen.)

Observe that the computer displays exactly what you enter between
the quotes, but not the quotes. Notice also the familiar underline
cursor in column one that indicates the computer is in the pause
state.

As you might suspect, a string such as that illustrated above is
referred to as a string constant. Like a numeric constant, it can
he changed only by retyping. You can create string variables, how-

23

24 / Lesson 5 |
ever, by simply assigning a string to a variable name that has as
its /ast character a dollar ($) sign.

Enter Display
¢$="Computer”
display c$ ComPuter

It you attempt to assign a string to a variable name that does not
end in a dollar sign, you will get an error message. Other than
this requirement, the rules governing the creation of string variable
names are the same as those for numeric variable names: they
must begin with a letter, underline, or @ symbol; they cannot be
more than 15 characters in length (including the $ sign); and they
cannot be on the reserved word list.

As you would expect, string constants and variables can also be
displayed in a print-list, and can be intermixed with numeric con-
stants and variables.

Enter Display
name$="CC-40"

display name$;c$ Co-4@Canputer
display 1;name$;c$ 1 CC-4Blomruter

Notice that the computer does not automatically add spaces before
and after strings as it does for numbers. If you want spaces displayed
between the strings, you can include the spaces in the appropriate
places within the strings:

Enter Display
name$="CC-40 "
display 1;name$;c$ 1 CC=-48 Conput e

Or set a string equal to a single space and display it or a space
constant between print items.

Enter Display
name$="CC-40"

space$=""

one$="1"

display one$;space$;name$;” ;c$ 1 CC-48 Caprputer

Strings—Alphanumeric Information / 25

As stated above, a string can be from 0 to 255 characters in length.
That a string has a maximum length is logical, but you may well
wonder how a string can consist of zero characters. Such a string
is referred to as a null string and is created by the seguence "”
(no space between the quotes). (Lesson 24 illustrates several appli-
cations of the null string.)

A string, even one consisting entirely of digits, can never be used
as a number. If you attempt to perform a mathematical operation
using a string or string variable, you will get an error message.

As you become familiar with BASIC, you will encounter the use of
the dollar sign regularly. The dollar sign always refers to a string
or string operation and is pronounced “string.” For example, the
variable name$ is pronounced “name string,” not “name dollar.”

One of the more interesting operations that can be performed with
strings is called concatenation. Concatenation is simply a large word
lor the process of joining strings together. The ampersand (&) sym-
bol is used to instruct the computer to concatenate strings.

Enter Display
a$=one$&” "&name$&” "&c$
display a$ 1 CC-48 ComFutar

Concatenation always adds strings in left to right order.

Enter Display
z$=c$&space$&name$
display z$ Computer CC-48

A sequence of strings joined by the concatenation symbol is referred
10 as a string-expression.

LEARNED IN THIS LESSON

l'extual information can be manipulated by the computer if it is
cntered in the form of strings. Strings must be enclosed in quotation
inarks and can consist of any collection of alphabetic letters, signs,
symbols, or digits from 0 to 255 characters in length.

26 / Lesson 5

Strings can be either string constants or string variables. String
variables must conform to the same rules as numeric variables with
the added restriction that the last character of the variable name
must be a dollar sign.

A string of zero length is a special string referred to as a nul/l string.

Strings can be joined together using the ampersand (&) symbol.
This operation, referred to as concatenation, combines strings in
left to right order. A sequence of strings joined by the concatenation
symbol is referred to as a string-expression.

Review Test 1

1. Which of the following are valid variable names?

(a) dollar$ (h) 90

(b) acreinch (i) PHd$

(c) AVE. (j) CC-40

(d) start (k) end

(e) z1z1z () phantasmagoria$
(f) FIRST# (m) enter

(g) @% {n) 1st_count

.. What are the rules for creating variable names?

3. Which of the following are valid assignment statements?

(a) Ag="" (f) 12 F=F—F

(b) 2 t$="," (g) pay=wages*rate
(c) 100meters=feet*x0.3048 (h) 2=t

(d) 8=4-+4 (i) move$="P-K4"

(e) let g8="exo"&"gust” (j) 50 word$ = old$&new$

4. What is the initial value of a numeric variable? What is the initial
value of a string variable?

‘. How large is the display buffer? How much of it can you view
at one time?

. What does the statement display 1,,3 do? Is this a legal se-
quence?

27

28 / Review Test 1

7.

10.

11.

12.

13.

What is the function of the comma separator in a print-list?
What is the function of the semicolon in a print-list?

. Which of the following do you think are valid display state-

ments?

(a) display at(0),x

(b) display “tes”;;;;:"t"

(c) display beep at(12) beep,”mass”
(d) display .,y 7

(e) display at(7),7 at{11),11

(f) display "1,3"

(g) display disptay

Can 0 be a line-number?

How can you insert a new program line in a program? |s it
possible to write a program in which a new line cannot be in-
serted?

How do you replace a line?
How do you erase a program? How do you erase a line?

Do you think the following program will function as the writer
intended?

10 a$="Humphrey "
20 b%$="Bogart”
30 display a$&b$

. ¢sson lll=

INPUTing Keyboard Information

the word “input’” refers to the entry of information into a computer
g the execution of a program. Naturally enough, the BASIC
laloment for this operation is input.

' lo:u the computer's memory by entering new and: then type in
e tollowing illustrative program.

100 input a
110 display "a=";a
120 pause

ftun the program.
Enter Display
run ¢

1wy question mark that you see is generated by the input statement
aud 1 an example of a prompt. A prompt is a sign or message
-.played by the computer (or program) indicating that it is waiting
tocwilormation. Respond to this prompt by typing 3313 and pressing
[t R|.

Inter Display
3313 a= 23132

e program accepts what you type and assigns it to the variable
it Tullows the input statement. (The variable after input is not

29

30 / Lesson 6

optional.) Next the program displays the value of the variable ar
pauses. The input statement, then, is an assignment statemef
that allows you to enter the value of a variable during progra
execution.

As an experiment, run the program again and enter the word “tes
in response to the prompt.

Enter Display

run ?
test Darisble not defined

The computer displays an error message because you did not ents
the kind of information that can be assigned to a numeric variabls
The error has not stopped program execution, however. Pres
[ENTER] and the ? prompt will be displayed again. In fact, until yo
enter a number or press the [BREAK] key, the computer will refus
to proceed beyond the input statement.

If you want to input string information, use a string variable followm
the input statement:

100 input a$ 1
110 display "a$=";a$

(These lines replace previous lines 100 and 110.)

You can now enter string information without creating an error cond
tion.

Enter Display

run b
qwerty afF=querty

A prompt such as a question mark is too general for most applice
tions. While it does indicate that you are expected to enter some
thing, it gives no hint as to what information to enter. As a rule,
is better to provide prompts that describe what the program use
is expected to input.

To facilitate the display of descriptive prompts, the input statemer
has a built-in display capability. You can use this feature by placin

INPUTing Keyboard Information / 31

the prompt that you want to display in quotation marks and locating
it after the input statement and before the input variable. A semico-
lon must separate the prompt from the variable, and the prompt
must be less than 31 characters long or only the first 30 characters

are displayed.

l:xample:

new (To clear memory)

100 input "Enter a number ”;a
110 display “The number is”;a

120 pause

130 input "Enter a string ";a$

140 display "The string is ";a$

150 pause

After listing the program to be certain that you have entered it cor-

tactly, run it.

Enter

run
186284

(To end pause)

first violin

(To end pause)

Display

Enter a number

The number is 1862324
Enter a =ztringd

The =ztring iz first
wiolin

Observe that the computer does not display a question mark when
you use a prompt with the input statement. Since you have created
your own prompt, the computer assumes that you have included
. question mark if you want one. In this case, the prompt is better

wilhout one.

Hun the program several times. The input statement will be used
m nearly every program you write so you will need to be certain

you understand its operation.

Enter Display
run Enter a number
—35.01 The rmumbesr iz ~35.81

(cont. on following page)

32 / Lesson 6

(cont. from preceding page)

Joe Green

run

Display

Enter 3 =tring

The =tringd iz Joe Graen
Enter a rnunber

The rnunber iz 44

Emter a string

Bad IMHFPUT dats

Enter o string

The =z=trind is= B FEHHY

Notice that the input statement allows you to enter mathematical
expressions (calculations) as well as constants for numeric informa-
tion, but it does not allow you to enter a comma for string information.

The input statement aiso allows you to correct a mistake by pressing

and retyping if you have not pressed yet:

Enter Display

run Enter a nunber

911 119 The number iz 119
Enter a =tring

texas Texas The strind iz Tewas

The input statement has another useful feature: A single input
statement can be used to display multiple prompts and accept multi-
ple inputs. To use this feature, you must separate the additional
prompts with a comma. The following program uses- this feature
of the input statement to compute the volume of a box.

new

100 input “Length? “;length,”Width? »;width,”Height? ”;height
110 volume=length = width *height
120 display "Volume =";volume;”cubic feet”

130 pause

INPUTing Keyboard Information / 33

Itan the program. (The values entered are assumed to be in feet.)
Enter Display

un Lemnath?

97 Width?

17 Heiakht ?

u5 Dglume = 15685.% cubic feet

[computer automatically displays the next prompt in the se-
nnence when you enter the expected input.

he input statement also allows the use of string variables or ex-
pressions as prompts. The volume program is revised below to
e drate this feature.

new
100 e$="Enter "

110 1$="length: "

120 w$="width: ”

130 h$="height: ”

140 input e$&I$;length,e$&wS;width,e$&h$;height
150 volume=length = width *height

160 display "Volume =";volume;”cubic feet”

170 pause

A -.ample run is shown below.
Enter Display

run Enter lendth:

7 Enter widih:

11 Erit et heidht:

3 Dalume = 231 cubic feet

Although a program is usually better if descriptive prompts are used,
the: prompt parameter is always optional. If desirable, the input
Ialement can accept multiple inputs without displaying prompts.
Ihe following program illustrates this option.

new
100 input n1,n2,n3,n4,n5
110 display n1;n2;n3;n4;n5
120 pause

A comma must separate the additional input variables.

34 / Lesson 6

Enter Display
run #

G h wWwh =
i

1 2 I 4 5

Technical Note: The input statement is also used to read informa|
tion from a peripheral device. This application of the input statemen
is beyond the scope of this book. Refer to the User’s Guide supplie
with your computer for information on this subject.

LEARNED IN THIS LESSON

The purpose of the input statement is to aliow the entry of numeri
or string information during program execution. The information en
tered is assigned to the variabie following the input statement. Th
type of input variable used (numeric or string) determines the typ
of information accepted by the input statement.

If used without any of the optional parameters, the input statemen
displays a question mark prompt when executed. A prompt is
sign or message indicating that the computer is waiting for keyboar:
information. To permit a program to display more informative
prompts, the input statement has a built-in display capability. The
general form of the input statement when used with the prompt
option is

input prompt;variable

A semicolon must separate the prompt from the variable, and the
prompt must be less than 31 characters long or only the first 30
characters are displayed. The prompt can be either a string constant
or a string variable.

The input statement can display multiple prompts and accept multi-
ple inputs. The general form of the input statement when used
with multiple prompts is

Lesson ¢

More on the PAUSE Statement

The purpose of the pause statement is to hold information in the
display until it can be viewed. The statement can be used by itself,
as illustrated in Lessons 4 and 6, or with one of two optional parame-
ters.

The optional forms of the statement are

pause numeric-expression
pause all

The numeric-expression parameter allows you to specify the number
of seconds that information is paused in the display to 0.1 second
accuracy. This form of the pause statement, called a timed pause,
eliminates the requirement to press [ENTER] or [CLR] to continue
program execution. After the specified time value has elapsed, the
computer automatically executes the next program statement.

As indicated by the general term “numeric-expression,” the time
value in a timed pause statement can be a numeric constant, vari-
able, or calculation. This value can also be either positive or nega-
tive. If a positive value is specified, you can override the timed
pause by pressing or [CLR]. If the value is negative, the
timed pause cannot be overridden.

The following program provides an example of the operation of
the timed pause statement. Written for a retail business that calcu-

36

More on the PAUSE Statement / 37

lates its selling prices by adding a markup percentage to the whole-
sale costs of merchandise, the program calculates and displays
the dollar amount of the markup and the final selling price.

new

100 input "Wholesale cost? ”;cost

110 input "Markup percentage? “;percentage
120 markup=cost#*percentage/100

130 display "Markup =";markup

140 pause 3.5

150 display "Selling price =";cost+markup
160 pause 3.5

An illustrative run of the program is shown below.

Enter Display

run Wholeszzle cost?
21.14 Markur rpercentale
36 Markur = 7.&6184

Zellind price

The pause all version of the pause statement instructs the computer
to execute an automatic, untimed pause after every display state-
ment. A pause all statement takes effect as soon as it is executed,
and remains in effect until cancelled by the execution of a pause
0 statement.

The major advantage of the all parameter is that it reduces program
size by removing the need to place pause statements later in the
program. The retail markup program is rewritten below to illustrate
the operation of the pause all statement.

new

100 pause ali

110 input "Wholesale cost? ";cost

120 input "Markup percentage? ”;percentage
130 markup=-cost*percentage/100

140 display "Markup =";markup

150 display "Selling price =";cost+markup

INPUTing Keyboard Information / 35

input prompt;variable ,prompt,variable,prompt;variable . . .
A r.omma must separate the additional prompts.

It dosirable, the input statement can accept multiple inputs without
diplaying a prompt by using the form:

input variable,variable,variable . . .

“invn the prompt option is not being utilized, the input statement
dinplays a question mark for each input variable.

38 / Lesson 7

A sample run of the new version of the program is shown below.

Enter Display

run WMholeszale cost?

21.14 Markur Frercentads

36 Markur = 7.&184

(ENTER] Zelling rrice = 28,7564
[ENTeR|

LEARNED IN THIS LESSON
The two optional forms of the pause statement are

pause numeric-expression
pause all

The numeric-expression option allows a program to pause informa-
tion in the display for a variable time period, depending upon the
value of numeric-expression. This value can be entered as a numeric
constant, variable, or calculation. Program execution continues auto-
matically after the specified time period has elapsed.

The pause all statement instructs the computer to execute an auto-
matic, untimed pause after every display statement. This option
requires that you press or to continue program execu-
tion after each display statement, just as if a regular pause followed
the statement. The all option remains in effect until a pause 0
statement is executed.

lesson ..

I'rogram Branching—The
(.OTO Statement

Ihe normal sequence of program execution is from the smallest
to the largest line number. This order is easily altered, however,
hy Ihe use of the goto statement. The goto statement has the
yoneral form:

goto /ine number

Ihe goto statement instructs the computer to transfer program ex-
ocution from the current program line to the line number, or transfer
address, following the goto statement. For example, executing

50 goto 10000

uansfers program execution from line 50 to line 10000, skipping
all program lines in between. Of course, the transfer address must
oxist or an error condition will occur.

ihe advantage of the goto statement is that it allows a program
1o control the order in which program lines are executed. If neces-
~.ry, a program can skip the execution of a line or group of lines,
o1, as in the next example, repeat a sequence of lines.

l nter and run the following program.

new
100 x=0

110 display x

(cont. on following page)

39

40 / Lesson 8

{(cont. from preceding page)
120 x=x+1
130 goto 110

The computer begins madly counting by 1s. The program tells the
computer to display the value of x, add 1 to x, and then go to
line 110, which repeats the sequence. A program segment that is
executed over and over such as this is known as a /oop.

In this example, the computer has been placed in an infinite loop.
It will execute lines 110, 120, and 130 until either its batteries dis-
chargeor. .. ?

Fortunately computer manufacturers are aware of the ease with
which computers can be placed in infinite loops and have provided
a quick method of manually halting or “breaking’’ a program—the

key. The key instructs the computer to stop what
it is doing and return to command mode.

To satisfy yourself that you can always stop a running program,
run and break this program several times. You will notice that when-
ever you press the computer displays Eir=x=k followed by
the famitiar underline cursor. Of course you must press or
before you can perform another operation.

Observe that no pause statement is used in this program. The
period of time for which the value of x is displayed is determined
by the time it takes the computer to increase x by 1 and return to
line 110. If you want to slow the counting down, insert a pause
statement between line 110 and line 120:

115 pause .3

When you now run the program, it counts more slowly.

Here is another interesting modification: Break the program and
replace line 110 with

110 display x;

(The program as it should now look is listed below. List your program
to ensure that you have made no entry mistakes.)

Program Branching—The GOTQO Statement / 41

Enter Display

list 188 H=§@

118 DISFLAY 3
115 FAUSE .3

2B M=K+

1z
128 G070 114@

Run the program. Now, instead of counting in one place in the
left side of the display, the computer displays successive values
horizontally. After displaying 9, the computer pauses for several
seconds before continuing the count in the left side of the display
with 22. If you continue to watch, the pause repeats after 22, 42,
62, 82, Although you cannot see the numbers to the right
of the display, what is occurring is shown in Fig. 8-1. The delay is
explained by the time it takes the computer to place values 10
through 21 in the portion of the display buffer to the right of the
current viewing window. Once the 80-character display buffer is
filled, the computer clears the buffer and starts again at the left
side of the display. The part of the display buffer that you actually
see is the left-most 31 characters.

iy

You can check the validity of this explanation as follows: Break

the program during the delay period. Then press ([sHIFT] [a])
twice. The display should show the values of x. By now scrolling
the viewing window with the [»] key, you can view the contents of
the display buffer to the right of column 31.

As another experiment, replace line 110 with
110 display X,

When you now run the program, the computer displays the values
of x in print zones, rather than adjacently as specified by the semico-
lon. '

80-Character Display Buffer

01 2 3 4 5 6 7 8 9810 1t 12 13 14 16 16 17 18 19 20 21
| |

31-Character Display Window

Fig. 8-1 lllustration showing the effect of putting a semicolon
after the display statement.

42 / Lesson 8

Whenever you place a semicolon or a comma after a display state-
ment, you create a pending display state. A pending display state
causes the computer to preserve the previous display contents when
the next display statement is executed, unless the display buffer
is full. When the buffer is full, it is cleared and displaying begins
anew at column 1.

Counting examples serve primarily to demonstrate visually the loop-
ing power of the goto statement. A more practical application of
a loop is shown below.

new

100 pause all

110 input "Feet? ”;feet

120 meters=feet*.3048

130 display "Meters =";meters
140 goto 110

This program performs a simple function. It takes the value you
enter in response to “Feet? ” and converts it to meters. By perform-
ing the function in a loop, however, you avoid having to reenter
run to convert additional values. The program automatically loops
back to the input prompt until you press the key to stop
program execution.

Enter Display
un Fest ¥
44 Meters = 13,4112
Faat?
99.9 Meters = Z8.44952

BREAK Ereak

This technique is often used when an application requires repetitive
work.

LEARNED IN THIS LESSON

The goto statement instructs the computer to transfer program ex-
ecution from the current line to the line number following the goto
statement.

Program Branching—The GOTO Statement / 43

The goto statement can be used to skip the execution of a line
or group of lines, or to place a program in a /oop. Most programs
contain at least one loop, although as a rule not an infinite loop
as in the examples in this lesson. An infinite loop is a sequence
of program instructions that are executed over and over without
any provision for exit. The decision-making capabilities of the com-
puter discussed in Lesson 10 make it possible to write programs
that control the number of times that a loop is executed.

Aninfinite loop can always be stopped manually by pressing[BREAK].
The key will stop any running program, not just a program
in an infinite loop.

Placing a semicolon or a comma at the end of a display statement
instructs the computer to preserve any information presently in the
display when the next display statement is executed. This is referred
to as a pending display state. Once the entire 80-character display
buffer is full, it is cleared and displaying begins anew at column 1.

Lesson ..

The NUMBER and
RENUMBER Commands

Although it is necessary to begin each program line with a line
number, it is not necessary to type these numbers yourself. BASIC
provides a command to automatically number program lines as you
enter them—the number command. This command has the general
form

number initial-line ,increment

where initial-fine is the line number you want assigned to the first
program line and increment is the amount by which you wish the
lines to increase. If you enter no values for initial-line or increment,
the computer assumes an initial-line of 100 and an increment of
10. The command can be abbreviated num, if desired.

To illustrate this command, clear the computer’s memory and enter
num.
Enter Display

new
num 16

,.
AR
T
!

The computer places the number 100 in the display and then waits
for you to enter a program statement:

Enter Display
100 x=1 116

The NUMBER and RENUMBER Commands / 45

(You enter only the x=1, the computer provides the 100.)

When you do enter a statement, the computer displays the next
ne number and again waits for your entry:

Enter Display
110 display x 126

I'his process repeats for as long as you enter program statements.
When you are done entering your program, simply press
or [BREAK] in response to the next line number and the automatic
line numbering will end:

Enter Display
120 x=x+1 1zZ@
130 goto 110 145

A listing of the program as you should have entered it is shown
below.

100 X=1

110 DISPLAY X
120 X=X+1
130 GOTO 110

Ity omitting both the initial-line and the increment in this example,
you instructed the computer to use the default values of 100 and
10, respectively. If you want your program to begin with another
mitial value orincrement at a different rate, then substitute the values
you want. The following table shows several number examples.

Command Meaning
num 1 Number by tens beginning with line 1
num ,50 Number by 50s beginning with line 100

num 11,121 Number by 121s beginning with line 11

i you are using the number command and the computer comes
lo a line number that already exists, it displays that line and you
can either press [ENTER] to advance to the next line number, change

46 / Lesson 9

the displayed line, or press to cancel the numbering opera;
tion. (The number command will not display a line that alread
exists if the number of the line is not evenly divisible by the specifie
increment.)

e =

The number command is convenient for numbering program line
while entering a program. To change line numbers after a progra
has already been entered, use the renumber command:

=

renumber /nitial-line,increment
Like the number command, renumber lets you specify an initiald
line and an increment. If you enter no values for these parameters,
the computer assumes an initial-line of 100 and an increment o
10. The renumber command can be abbreviated ren.

To illustrate the renumber command, change the line numbers o!]
the counting program that you just entered so that it begins with
line 2000 and increments by 3 (if you have cleared the program,f
you will have to reenter it before you do this):

ren 2000,3

Now list the program.

CISFLAY ¥
=+t
GOTO ZAET

Not only does renumber change the numbers of program lines, it
also changes all references to program lines within the program.
Thus, the goto 110 of the original program is changed to goto
2003 in the renumbered version. Without the capability to change
references within a program, the renumber command would be
much less useful.

If you renumber a program that has a reference to a line number
that does not exist, the computer renumbers the program as re-
quested, but it also displays the message Lire mot fournd

The NUMBER and RENUMBER Commands / 47

and gives the unexplained line reference the value 32767. The com-
puter always substitutes the value 32767 so that you can easily
find the erroneous line. To test this, change line 2009 in this example
to

2009 goto 1

and renumber the program again.

Enter Display

ren Line mot found
(clears message)
list

188 ¥=1
L

12

13

EI FLAY &
M=+l
l:i!:lTl-l IEVET

The computer could find no program line 1, so it replaced goto 1
with goto 32767. The program will not run correctly until you change
this statement to goto 100.

[I R o)

Do T AU I A x|

LEARNED IN THIS LESSON

The number command instructs the computer to automatically num-
ber program lines as you enter them. The general form of the com-
mand is

number initial-line,increment

If no initial-line or increment is given, the computer assumes values
of 100 and 10, respectively. To cancel automatic line numbering,
press [ENTER] in response to a blank line number or press [BREAK
at any time.

The renumber command changes line numbers after a program
has been entered. The command changes both line numbers and
references to line numbers within the program. The renumber com-
mand also allows you to specify an initial-line and increment in
the form

renumber /nitial-line,increment

48 / Lesson 9
If no initial-line or increment is given, the computer assumes values
of 100 and 10, respectively.

The number command can be abbreviated num and the renumber
command can be abbreviated ren.

Lesson .

Decision Making—The IF THEN
Statement

The program statements discussed so far have all had one charac-
leristic in common: they are always executed when encountered
in a program. With the if then statement, however, the execution
of a statement, line, or group of lines can be based upon the result
of a decision-making test.

The general form of the if then statement is
it condition then action

where condition consists of a decision-making test and action is
any valid program statement.

The decision-making tests discussed in this lesson are relational
tests. Lesson 26 discusses the use of logical decision-making tests.

Six relational tests are available. The symbols used to perform them
in BASIC and their meanings are listed below. Notice that the not-
cqual-to, less-than-or-equal-to, and greater-than-or-equal-to sym-
hols are made by combining two other symbols. (The more usual
symbols for these operations, #, <, and >, respectively, are not
present on most computer keyboards.)

Symbol Meaning

< less than
> greater than
(cont. on following page)

49

50 / Lesson 10
(cont. from preceding page)

Symbol Meaning

= equal to
<> not equal to

<= less than or equal to
>= greater than or equal to

A relational test can have only two possible results: either the rela-
tion is true, or it is false. If the relation is true, then the action is
performed. If the relation is false, the action is skipped. This rule
can be summarized as “‘do if true, skip if false.”

The following program illustrates how the if then statement is com-
bined with a relational test to make program decisions. After setting
up the automatic pause, the program requests that you enter a
number. When you do, the if then statement compares the number
with zero. If your entry is less than zero (relation true), the display
statement is executed. If your entry is not less than zero (relation
false), the display statement is skipped.

new
100 pause all

110 input "Enter a number: “;n

120 if n<0 then display “The number is negative!”
130 goto 110

Run the program and try various numeric entries. Whenever a value
less than zero is entered, the program displays “The number is
negative!”

Enter Display

run Enter a number:
-7 The mumber iz nedative!
Enter a number:
7 Enter a rumbers

BREAK Ereak

As it stands, the program only informs you when a number is nega-
tive. With several additional decision-making tests, you can make

Decision Making—The IF THEN Statement / 51

the program tell you whether your entry is negative, positive, or
zero.

122 if n>0 then display "The number is positive!”
124 if n=0 then display "The number is zero!”

Run the expanded version of the program.
Enter Display

run Enter a number:
99 The number iz pozitive!
Enter a number:
—.001 The number 1z nedative!

ENTER Eriter a nunber:

The rumber 12 zero!

BREAK Ereak

This program analyzes the number that you enter by “filtering” it
through three decision-making tests. Since the three tests are mutu-
ally exclusive, only the display statement following the true test
is executed. The other display statements are skipped.

(@]

lechnical Note: 1t is the action that follows the then part of the
If then statement that is skipped if the relation is false, not the
relational test. The relational test is always performed.

e next program illustrates how an if then statement can be used
to control the number of times a loop is executed. The program
calculates the average of a series of numbers that you input.

new
100 total=0

110 input “Number of entries? ”;n
120 count=n

130 input "Entry? “;entry

140 total=total+entry

150 count=count—1

160 if count=0 then goto 180
170 goto 130

180 average=total/n

190 display "Average =";average
200 pause

52 / Lesson 10

The program begins by asking how many entries there are and
assigning that value to the variable count. Next the program requests
your entry. The value that you enter is added to the variable total.
Then, after subtracting 1 from count, the program tests if count
equals zero. If count does equal zero (relation true), execution is
transferred to line 180 to calculate and display the average. If count
does not equal zero (relation false), the conditional action is skipped,
allowing execution to advance to line 170—which sends the program
back to line 130.

A sample run of the program is shown below.

Enter Display

run Humber of entries?
5 Entera?

10 Eritra?

20 Entra®

30 Eritra?

40 Entra?

50 Auesrade = I8

This program illustrates a common programming technique. The
computer is placed in a loop until a counting variable reaches a
desired terminating value, and then program execution is transferred
out of the loop. The purpose of the counting variable is to control
the number of times the loop is executed. In this example, the count-
ing variable is set initially to the number of entries and is decreased
by 1 each time a new entry is accepted (a “‘countdown”).

An interesting point to observe is that the decision used to end
the loop can be written two ways. In the current example, the pro-
gram tests whether the value of count equals zero. By modifying
the program to test whether the value of count is not equal to
zero, the program can be made shorter and more efficient.

new

100 total=0

110 input “Number of entries? ";n
120 count=n

Decision Making—The IF THEN Statement / 53

130 input "Entry? “;entry

140 total=total+entry

150 count=count—1

160 if count<>Q then goto 130
170 average=total/n

180 display "Average =";average
190 pause

This program is functionally equivalent to the previous program.
Instead of using the if then statement to transfer program execution
out of the loop, this version of the program uses the if then state-
ment to keep the program looping until the exit condition is met.

In both of these examples, the action following the if then statement
was a goto statement. One of the features of BASIC is that when
a goto statement is used as a conditional action, the goto can
be dropped and only the line number need be supplied. Thus, a
statement such as

160 if count<<>0 then goto 130
can also be entered as
160 if count<>0 then 130
BASIC recognizes the implied goto between then and 130.

LEARNED IN THIS LESSON

The if then statement provides a BASIC program with the capability
1o perform different actions depending upon the resutt of a decision-
making test. If the test is true, the action following the then portion
of the if then statement is executed. If the test is false, the action
is skipped.

The decision-making tests discussed in this lesson are listed below.

Symbol Meaning
< less than
> greater than
(cont. on following page)

54 / Lesson 10
(cont. from preceding page)

Symbol Meaning

= equal to
<> not equal to

= less than or equal to
>= greater than or equal to

A common application of decision making is to control the number
of times that a loop is executed. The usual technique is to maintain.
a counting variable that is either increased or decreased by 1 each
time the loop is executed until a desired terminating value is reached.
When the counting value reaches the terminating value, execution
is transferred out of the loop with a goto statement.

When a goto statement is used as the action parameter of an if
then statement, the goto can be dropped and only the line number
entered. For example, both

100 if a=10 then 150
and
300 if a<>120 then 90

are valid if then statements that use this option. The computer
understands the implied goto in these lines.

Review Test 2

. Which of the following are valid input statements?

(a) 5 input ENTER YOUR NAME:;n$

(b) 300 input a;b;c;d;e

(c) 110 input "Account? ";account+2

(d) 1 input [D$&" —001";item$,”quantity”;quantity

(e) 50 input "Enter five names:";N1$,N238,N3$,N4$,N5%
(f) 22 input "Direction? ”,d$

. How do you cancel a pause all statement in a program?

3. Write a program that counts by 9s and displays the count in

column 9 of the display. Modify the program to count backwards
by 99 beginning at 2475. Make the second program beep every
time it displays a number.

. What is a pending display state? How is it created and why is

it useful?

. The first two lines of a program designed to balance a checking

account are given below. Complete this program so that you
can use it to balance your checkbook. Assume that deposits
are entered as positive values and checks as negative values.

100 INPUT “Current balance? ";BALANCE
110 INPUT "Amount of check or deposit? ";AMOUNT

5. What is a *counting variable” and how is it used to control the

number of times a loop is executed?

55

56 / Review Test 2

7. Which of the following are valid if then statements?

(a) 100 if x=x+1 then 300

(b} 121 if true=false then false=true+2

(c) 112 if T><12 then input "ENTER A NEW
NUMBER";T

(d) 50 if x<y<z then 200

(e) 75 if 2xB—C/12<=2400/C then ID$="end"

(f) 92 if count + 1 = 99 then goto 2001

(g) 100 if yards>=35 then if down=4 then display
"BETTER KICK!”

8. A wholesale distributor of chess sets offers the following discount
schedule: 20% off on orders of 100 or fewer sets, 25% off on
orders between 101 and 500 sets, 30% off on orders between
501 and 1000 sets, 35% off on orders between 1001 and 4999
sets, and 40% off on orders of 5000 or more sets. The base
cost of the chess sets is $14.88 per set. Write a program that
allows you to input the number of chess sets ordered and displays
the total cost of the order. Use the program to calculate the
wholesale cost of 433 sets, 888 sets, and 2001 sets.

Lesson

Order of Calculations

A fundamental rule of mathematics is that a series of mathematical
operations can have only one result. Without such a convention,
problems which intermix different mathematical operations could
have several answers, depending upon the order in which the opera-
tions are performed. Consider, for example, the problem

3+5Xx2+4=

If the addition operations are performed before the multiplication
operation, the result is 8 X 6 = 48, [f the multiplication operation
is performed before the addition operations, the result is 3 +
10+ 4 =17.

The correct answer to this problem according to the rules of mathe-
matics is 17, the answer given by the computer if you enter the
calculation just as it is written. To obtain this answer, the computer
must perform multiplication before addition. This capability to per-
form one operation before another is achieved by a built-in ranking
system and a set of rules governing the order in which operations
are executed. These rules are usually referred to as /evels of prece-
dence.

The levels of precedence used by the computer in order of highest
to lowest priority are

57

58 / Lesson 11

Operation Operator
Precedence Name Symbol

1 Higher-order (see discussion
functions below)

2 Exponentiation A

3 Unary minus -
(negation)

4 Multiplication * and /
and division

5 Addition and + and —
subtraction

The higher-order functions assigned to the first precedence level
consist of mathematical operations such as common and natural
fogarithms, trigonometric functions, and absolute value, as well as
operations unique to BASIC such as int, rnd, and len. Because
of the variety and compiexity of these functions, they are discussed
in later lessons (see Lessons 12, 13, 14, and 25). For the moment,
be aware that when intermixed with other operations from this table,
higher-order functions are performed first.

The second priority level is assigned exponentiation. Exponentiation
means “raised to a power’” and refers to operations of the general
form:

base numberexponent

A familiar example of exponentiation is 52 = 25.

The exponentiation operator used by the computer is the A symbbl.
obtained by pressing the [A] key ([SHIFT] 6).

Enter Display
121A 5 i1.
6A—3 CBE4EZIEZIE

The third precedence level is assigned to the unary operation “taking
the negative of” as in the exampie

Order of Calculations / 59

Enter Display

x=9
—X -9

This type of minus operation is called unary, meaning “one,” to
emphasize its difference from the operation of subtraction, which
operates on two values.

The fourth precedence level is assigned to muitiplication and divi-
sion.

The fifth precedence level is assigned to addition and subtraction.

When the computer evaluates a calculation (hereafter referred to
as a numeric-expression), it works through the expression from left
to right performing: first, all higher-order functions in the expression;
second, all exponentiations; third, all unary minuses; fourth, all multi-
plications and divisions; and finally, all additions and subtractions.
When two or more operations of the same precedence are present,
the left-most operation is performed first.

This order of precedence is followed whether an expression is evalu-
ated in command mode or within a program.

The computer’s capability to recognize and perform mathematical
operations in the order expected by mathematicians is a great con-
venience. Sometimes it is necessary, however, to evaluate an ex-
pression in a different order.

If you want an expression to be evaluated in another order, put
parentheses around the part of the expression you want evaluated
separately. By enclosing a portion of the expression in parentheses,
you instruct the computer to evaluate the operations within the pa-
rentheses before any operations outside of the parentheses. For
example, entering

Enter Display
2N (8+10/2) 258

forces the computer to perform the division and addition operations
before the exponentiation operation. Observe that within the pa-
rentheses, the normal rules of precedence still apply.

60 / Lesson 11

A calculation can require parentheses to be evaluated correctly
even though it is not written with parentheses. For example, you
will get the wrong answer if you enter

41+3

17—6
as41 +3/17 - 6.

In examples of this type, the numerator and denominator must be
evaluated before the division operation is performed. Therefore,
the correct way to enter this problem is

Enter Display
(41+3)/(17~-6) 4

If you are not certain that the computer will evaluate an expression
in the order that you want, use parentheses. If necessary, use pa-
rentheses within parentheses. As long as you have defined the
evaluation order correctly, the presence of extra parentheses will
not disturb the calculation.

When parentheses are used within parentheses, the computer be-
gins its evaluation process with the innermost set of parentheses
and works outward.

2+ (2%(2%(2%(2+(2+3) +2)+2)))

Fig. 11-1 Example illustrat-
ing the order of evaluation
of parentheses.

Order of Calculations / 61

Enter Display
2+(2x(2=(2%(2*(2+3)+2)+2))) ZRE

The order in which this expression is evaluated is illustrated graphi-
cally in Fig. 11-1.

When using parentheses, match the pairs of parentheses carefully.
If you enter an unequal number of left and right parentheses, the
computer will display the error message timatched raren-

thesis.

LEARNED IN THIS LESSON

The order in which mathematical operations are evaluated is con-
trolled by a ranking system usually referred to as the computer’s
levels of precedence. This system is based on conventions of math-
ematics and is designed to allow expressions that are entered as
they are generally written to be evaluated in the correct algebraic
order.

The levels of precedence used in evaluating mathematical opera-
lions are listed below.

Operation Operator
Precedence Name Symbol
1 Higher-order (see Lessons 12,
functions 13, 14, and 25)
2 Exponentiation A
3 Unary minus
(negation) -
4 Multiplication and
division =and /
5 Addition and
subtraction + and —

Ihese operations are performed in a strict left-to-right order, begin-
ning with the highest level of precedence. If two or more operations
ol the same level are present in an expression, the left-most opera-
tion is performed first.

62 / Lesson 11

Through the selective use of parentheses, the computer can be
made to perform operations in any order. Parentheses instruct the
computer to evaluate all operations within the parentheses before
any operations outside of the parentheses. If you have any doubts
about how the computer will evaluate an expression, use pa-
rentheses.

When parentheses are used within parentheses, the computer be-
gins its evaluation process with the innermost set of parentheses
and works outward.

Lesson .

Higher-Order Mathematical
Functions

The higher-order functions of the computer fall into two broad cate-
gories: mathematical and nonmathematical functions. This lesson
briefly discusses the mathematical functions. Nonmathematical
functions are discussed in Lessons 13, 14, and 25.

With one exception, the mathematical functions have the general
form:

function(numeric-expression)

where numeric-expression represents the value operated upon by
the function. This value, which can be a constant, variable, or calcu-
lation, is referred to as the argument of the function. The argument
of a function must always be enclosed within parentheses or an
error condition will occur.

xecuting a function does not change the value of its argument.
Thus,

display sqr(x)

displays the square root of x without changing the value of x. Be-
cause a function gives a result without changing its argument, it
is said to return a value.

You can use a function in almost any way that you can use a variable.
You can display it, manipulate it mathematically, base decision-mak-

63

64 / Lesson 12

ing tests on it, or assign its value to a variable. You can even include
it in the argument of another function. For example:

Enter Display

display log(sqr(abs(—45))) LEZREBEZERT
What you cannot do with a function is use it on the left side of an
assignment sequence. Thus,

sqr(x)=11
is an illegal assignment sequence.

The mathematical function that does not take the general form
shown above is pi, which returns the vaiue of pi (7) to 13 significant
digits. (Strictly speaking, pi is not really a function since it requires
no argument and does not perform an operation. It is more accu-
rately classified as a constant.)

The higher-order mathematical functions are listed below:

Function Definition
sin(numeric-expression) sine
cos(numeric-expression) cosine
tan(numeric-expression) tangent
asn(numeric-expression) arcsine
acs(numeric-expression) arccosine
atn{numeric-expression) arctangent
log(numeric-expression) common logarithm
In(numeric-expression) natural logarithm
exp(numeric-expression) natural antilogarithm
sqr{numeric-expression) square root
abs(numeric-expression) absolute value (makes a num-
ber positive)
pi 3.141592653590 (rounded to

3.141592654 in the display)

As you can see from the list, the name of a function is based upon
what the function does. Although most of these names are distinct,
you may find that ash and acs are similar enough to be confusing.

Higher-Order Mathematical Functions / 65

Ihe trigonometric functions allow angular values to be entered or
vomputed in degrees, radians, or grads, depending upon the angle-
mode setting of the computer. The angle mode is selected by execut-
ing deg, rad, or grad in either command mode or within a program.
Ihe angle mode in effect at any time is indicated by the appearance
ol a DEG, RAD, or GRAD indicator in the display.

Several examples of mathematical functions follow:

Enter Display

deg

sin(30) =

log{pi) AITL4IETET
sqr(121) 11

abs(—9.1) 2.1

LEARNED IN THIS LESSON

With the exception of pi, the higher-order mathematical functions
have the general form:

function{numeric-expression)

where numeric-expression represents the argument, or value oper-
ated upon, of the function. The argument can be a constant, variable,
or calculation, but must be enclosed in parentheses. Because a
function gives a result without altering its argument, it is said to
return a value.

The pi (7) function has no argument and always returns the value
3.14159265359.

The trigonometric functions allow angular values to be entered or
computed in degrees, radians, or grads, depending upon the angle-
mode setting of the computer. The angle mode is set by executing
deg, rad, and grad, respectively. The angle mode currently in effect
is shown by the appearance of a DEG, RAD, or GRAD indicator
in the display.

Lesson .

The INT and SGN Functions

The int(numeric-expression) function is a higher-order function used
to find the integer portion of the value entered for numeric-expres-
sion. An integer is any of the natural numbers (1, 2, 3, etc.), the
negatives of these numbers, or zero. For example, the statement

display int(7.459)

displays the natural number 7. For negative values, the int function
returns a negative integer that is /fess than or equal to the value
of the argument. Thus,

display int(—7.459)

displays —8 and not —7 as you might expect (—8 is less than —7.459;
—7 is not).

The int function has a surprising variety of programming applica-
tions. It can be used, for example, to determine whether a value
is even or odd by comparing the integer result of dividing the number
by 2 with a straightforward division by 2. If the number is even,
there is no fractional portion to discard after the division and the
relation is true. If the number is odd, there is a fractional result
left over and the relation is false.

new
100 pause ali
110 input "Sampile number? ”;n

66

The INT and SGN Functions / 67

120 if int{n/2)=n/2 then display "The number is even”
130 if int(n/2)<<>n/2 then display “The number is odd”
140 goto 110

A sample run of this program is illustrated below.

Enter Display

run Sankple number?
99778 The numbar is euen
Sanrle number?
—333 The rumber iz add

Ereak

I'his technique can be used any time you want to determine whether
one number is evenly divisible by another. For example, if you are
manipulating dates in a program, you may want to find out which
years are leap years. The following program illustrates how int can
make this check.

new

100 pause all

110 input "Sample year? ";year

120 if int(year/4)=year/4 then display "The year is a leap
yearll

130 if int(year/4)<<>year/4 then display "The year is not a
leap year”

140 goto 110

A sample run is shown below.

Enter Display

run Samnele Hear?

1946 The gear iz not 3 l=arFr 2ear
Samrle wear?

1428 The w9ear iz & lear 4Year
Ereak

The int function can also be used to round values to a desired
number of decimal places. The general formula for this opera-
tion is

r=int(n*p+.5)/p

68 / Lesson 13

where r = the rounded value, n = the number to be rounded, and
p = a power of ten such as 10, 100, 1000, or 10000. The value
selected for p determines the number of places the value r is
rounded to. For example, if p = 100, r is rounded to 2 decimal
places. If p = 10000, r is rounded to 4 decimal places.

Briefly, the rounding formula works as follows: The value to be
rounded is first multiplied by p to shift the decimal point a fixed
number of places to the right. For example, if nis 12.3456, multiplying
by 100 gives 1234.56. Next the equation adds .5 to this intermediate
result. The purpose of this addition is to force decimal values of
.5 t0 .9 to “‘round up” to the next higher unit. In the example quoted
above, the intermediate result is now 1234.56 + .5 = 1235.06. Next
the int function is used to discard any digits to the right of the
decimal point. Finally, the intermediate result is divided by p to re-
store the decimal point to its original position. Thus, the final result
in this example is 1235 / 100 = 12.35, or 12.3456 rounded to 2
decimal places.

(This formula is correct only for positive values. If a program must
round negative values also, use the formula r=(int(abs(n)*p+
.5)/p)*sgn(n). See the end of the lesson for a discussion of the
sgn function.)

The program shown below illustrates rounding numbers to 2 decimal
places.

new

100 p=100

110 input "Sample number? “;n

120 r=int(n*p+.5)/p

130 display “"The rounded number is”;r
140 pause

150 goto 110

A sample run is shown below.

Enter Display
run Samrle number ¥
1.495 The rounded mumber iz 1.3

ENTER Samrle number?

The INT and SGN Functions / 69

1.494 The rounded mumber iz 1,49
Break

The program correctly rounds 1.495 up and 1.494 down.

If you want the program to round to another number of decimal
places, change the value of p in line 100. For example, entering

100 p=100000

will cause the program to round to 5 decimal places..

The int function can also be used to find the fractional portion of
a number. This is accomplished for positive numbers by subtracting
the integer portion of the number from itself:

new
100 input "Sample number? “;n

110 f=n—int(n)

120 display "The fractional part is”;f
130 pause

140 goto 100

A sample run is shown below.
Enter Display

run Samrle number?
765.4321 The fractional rFrart 1z 4321
Br=ak

Since the int function returns a value /ess than or equal to the
value of the argument for negative arguments, this program will
not work correctly for many negative numbers. For a method of
handling negative numbers, see the discussion of the sgn function
that follows.

Another higher-order function that is useful in testing the properties
of a number is the sgn(numeric-expression) function. The sgn func-
tion returns a value of —1, 0, or 1 based upon the following rules:

70 / Lesson 13

Value of Argument sgn Response

Less than 0 —1
Zero 0
Greater than 0 1

A program illustrating the operation of the sgn function is given
below.

new
100 input "Sample number? ";n
110 display sgn(n)

120 pause .5

130 goto 100

A sample run is shown below.

Enter Display
run Samrle number?
—7 -1

Samrle nunber?
0 A

Samrle number?
7 i

Sanrle number?

Break

The sgn function is often used to restore the sign of a number.
For example, the value of the fractional portion of a negative number
can be found using the formula

f=(abs(n) —int(abs(n))) *sgn(n)

This formula works as follows. The absolute value of the fractional
portion of the number is found, as indicated earlier, by subtracting
the integer portion of the number from the number. The absolute
value functions ensure that the correct fractional portion is found
for both negative and positive numbers. After the fractional portion
has been found, it is necessary to restore the minus sign for negative
numbers. One way to do this would be to use an if then statement
to test if the number was negative and then muitiply by —1 when

The INT and SGN Functions / 71

it was. It is more efficient to use the sgn function, however. Since
sgn returns either —1, 0, or 1, multiplying by the value of sgn(n)
will leave the sign unaltered when n is positive (or zero), and will
change it to minus when n is negative.

The same technique can be applied to the rounding formula when
it is necessary to handle negative numbers:

r=(int(abs(n) * p+.5)/p) *sgn(n)

LEARNED IN THIS LESSON

The int(numeric-expression) function returns the integer value of
numeric-expression. For positive arguments, this is the value of the
argument stripped of any fractional or decimal part. For negative
arguments, this is the negative integer just less than or equal to
the value of the argument.

Common applications of the int function include determining if one
number is divisible by another, rounding numbers to a fixed number
of decimal places, and finding the fractional portion of a number.

The sgn{numeric-expression) function returns —1, 0, or 1, depend-
ing upon the sign of numeric-expression. If numeric-expression is
negative, sgn returns —1. If numeric-expression equals zero, sgn
returns 0. If numeric-expression is positive, sgn returns 1.

A common application of the sgn function is to restore the sign
of a number after it has been removed.

Lesson .

Simulating Chance Occurrences

Compact Computer BASIC has two higher-order functions which
permit the computer to simulate chance or random occurrences.
These functions create a series of numbers which appear to be
random and have the same statistical properties as randomly gener-
ated numbers. Since these numbers are generated by a computa-
tional procedure, however, they are more accurately referred to
as pseudorandom numbers.

The general form of the functions used to create pseudorandom
numbers are given below. Notice that although intrnd requires an
argument, rnd does not.

rnd
intrnd(numeric-expression)
The rnd function returns a number in the range from 0 through 1,

where 0 is a possible value but 1 is not, each time the function is
executed. A program illustrating rnd is shown below.

new
100 display rnd
110 pause
120 goto 100

Run the program.
72

Simulating Chance Occurrences / 73

-
c
o

L17IT442624

e gl

While it appears that rnd does produce numbers in the range de-
scribed, you are probably wondering how these numbers can be
considered random. After all, didn’t your program produce the same
numbers as those printed in this book?

This result is not really contradictory and can be explained as follows.
The computer begins its generation of pseudorandom numbers with
an initial value known as a seed value. Unless you instruct it other-
wise, the computer always uses the same seed value when it exe-
cutes rnd for the first time in a program. Consequently, the same
series of pseudorandom numbers is generated each time the pro-
gram is run.

To instruct the computer to use a different seed value, you must
place a randomize statement in your program before the first execu-
tion of rnd. The randomize statement instructs the computer to
select an unpredictable seed value each time the program is run,
which results in an unpredictable sequence of pseudorandom num-
bers.

Add the randomize statement to the program developed earlier
by entering

90 randomize

Notice that the randomize statement is given a line number outside
of the loop used to generate and display the random numbers.
The statement is located outside the loop because it is necessary
to execute randomize only once in a program to get the desired
unpredictable results.

Now run and break the program several times. You will get a differ-
ent series of pseudorandom numbers each time you execute the
program.

74 / Lesson 14

Technical Note: The reproducibility of the pseudorandom number
sequence is actually an asset, as it allows complicated programs
that use random numbers to be developed without worrying about
whether operational differences are the result of programming errors
or changes in the sequence of random numbers. Since rnd can
be trusted to generate the same series of numbers when randomize
is not used, any differences in results are attributable to program-
ming problems. When a program is fully error free, the randomize
statement can be added to create unpredictable random number
sequences.

The following program illustrates how rnd can be put to a more
practical use than displaying pseudorandom numbers. This program
uses rnd to simulate the tossing of a coin.

new
100 randomize

110 r=rnd

120 if r<.5 then display at(1),”heads”
130 if r=>.5 then display at(7),"tails”
140 pause

150 goto 110

This program begins with randomize to ensure an unpredictable
sequence of pseudorandom numbers. Then the program generates
a random number. |f the random number is less than .5, the message
“heads” is displayed. If it is greater than or equal to .5, “tails” is
displayed. (The nature of the pseudorandom number generating
process of the computer is such that the likelihood of a pseudoran-
dom number being in either of these categories is exactly equal.)
The pause statement holds the appropriate message in the display
until you press [ENTER], and the goto statement loops the program
back to line 110 to repeat the sequence.

Run the program and observe the results. The sequence of heads
and tails that are displayed should appear as random as actually
flipping a coin.
Enter Display
run heads

tails

Simulating Chance Occurrences / 75

tails
tails
heads
Break

{The sequence shown by your computer will probably differ from
the sample shown above.)

The rnd function is ideal for programs such as the heads or tails
example where it doesn’t matter that the random numbers are deci-
mal values. For some applications, however, it is more convenient
to have random numbers that are integers. The intrnd(numeric-
expression) function should be used for these applications since
it returns an integer value between 1 and the rounded value of
numeric-expression. (The randomize statement must still be used
to create an unpredictable sequence of numbers.)

The following program illustrates how intrnd can be used to simulate
the roll of a pair of dice.

new

100 randomize

110 die1=intrnd(6)
120 die2=intrnd(6)
130 display diel,die2
140 pause

150 goto 110

The preceding programs illustrated how pseudorandom numbers
can be used to simulate events that are truly random such as
flipping a coin or rolling a pair of dice. Applications such as these
are the basis for many computer games. Pseudorandom numbers
are also useful for combining numeric or textual information in unpre-
dictable ways. For example, a program that uses random numbers
to provide drill practice for learning the multiplication tables is shown
below.

new

100 randomize

110 n1=intrnd(9)

(cont. on following page)

76 / Lesson 14

(cont. from preceding page)

120 n2=intrnd(9)

130 display n1;"” *";n2;"= ";
140 input answer

150 if answer=n1#*n2 then 190
160 display beep,"WRONG. TRY AGAIN.”
170 pause .8

180 goto 130

190 display "VERY GOOD!”
200 pause .8

210 goto 110

Observe that the pending display state created by line 130 prevents

the input statement in line 140 from clearing the display.

A sample run of the program is shown below.

Enter Display
run 4 % £ = 7
24 LDERY GOl
S w7 o= 7
48 WROHG. TEY RGEHIH
56 UEREY GZ000s
2ok 1 o= 7
8 VERNY FOol!
ok B o= T

Btreak

As written, this program provides drill practice for problems up to
9 X 9. The upper range of the program can be altered by changing
the arguments of the intrnd functions. For exampie, using an argu-

ment of 11 provides practice up to 11 X 11.

You can alter the type of drill practice by changing the operation
in line 150 and the prompt in line 130. For example, changing these

lines to

130 display n1;”+";n2;"= ",
150 if answer=n1+n2 then 190

will generate addition problems.

Simulating Chance Occurrences / 77

LEARNED IN THIS LESSON

The two functions used to generate pseudorandom numbers are

rnd
intrnd(numeric-expression)

The rnd function returns a pseudorandom number in the range 0
to 1, where 0 is a possible value but 1 is not. The intrnd function
returns a pseudorandom integer number in the range 1 to the
rounded value of numeric-expression, where both 1 and the rounded
value of numeric-expression are possible values.

The randomize statement is used to ensure an unpredictable se-
quence of random numbers. If randomize is not used, the computer
generates the same sequence of random numbers each time a
program is run.

Review Test 3

1. What is meant by the phrase “levels of precedence”? What is
the purpose of using parentheses in a calculation?

2. How can the exponentiation operation be used to compute the
square root of a number? The fifth root of a number?

3. Which operation is performed first when you enter the sequence
—7%2 into the computer?

4. Write one-line programs to display the results of the following
problems:

(a) vVi2+77 /= 142 9
(b) 118.56 X 2.0222+338 () 3_1%_6_1_2_
40
1 1. 1 1
(C)§+7+5+3

5. Write a program to evaluate the following problem. Assume that
206 is in degrees, 94 is in grads, and 1.71 is in radians.

sin 206 — tan 94
cos 1.71

6. What is the “‘argument” of a function? What is meant by stating
that an argument can be any valid numeric-expression?

78

8.

Review Test 3/ 79

. Write a program that computes the square root of any positive

number that is input, but displays “INVALID” for any negative
input. Use the sgn function to make the test.

What is the purpose of the randomize statement?

. What do you think is the largest pseudorandom number gener-

ated by rnd? The smallest?

. Using rnd, write a program to generate and sum 1000 random

numbers. What is the sum likely to be?

. Write a program that displays integer random numbers between

100 and 200.

Lesson .

FOR TO NEXT Looping

In Lesson 10 you learned how to control the number of times that
a loop was executed by establishing a “counting variable” and in-
creasing it by 1 each time the loop was executed. An if then state-
ment was used to determine when to stop executing the loop.

Because looping is such an important part of programming, BASIC
provides two special statements for this purpose—the for to and
next statements.

The for to and next statements have the general form:

for control-variable = initial-value to limit

- (the statements to be executed in the loop go here)

next control-variable

where control-variable is the statement’s “counting variable,” initial-
value is the starting value of the controi-variable, and /imit is the
termination value. The instructions to be executed in the loop are
placed between the for to and next statements.

The function of the for to statement is to specify the control-variable
and define the starting and ‘ending values of the variable. The for
to statement aiso marks the physical beginning of the loop.

The function of the next statement is to increase the vaiue of the
control-variable and then decide if execution is to be sent back to

FOR TO NEXT Looping / 81

the beginning of the loop or allowed to continue with the statement
lollowing the loop. If the control-variable is /ess than or equal to
the limit value, execution is sent back to the first statement following
ihe for to statement. If the control-variable is greater than the limit
villue, execution continues with the first statement following the
next statement.

An example of a for to next loop is shown below.

new

100 for count=1to 8
110 display count

120 pause .5

130 next count

140 display "loop done”
150 pause

Run the program and observe the results.

Enter Display
run

—

FouN o A

T

DO |

loor done

The for to and next statements cause the computer to repeat
the loop eight times.

When the for to statement is executed, the computer sets the value
of count to 1. Execution then proceeds with lines 110 and 120.
When the next statement is executed, the computer adds 1 to
lhe value of count and checks whether it is time to end the loop.
Since count is only equal to 2 at this point, execution is transferred
back to line 110.

82 / Lesson 15

The program repeats this looping procedure seven more times. At
the end of the eighth execution of the loop, the next statement
increases the value of count to 9, which exceeds the limit specified
by the for to statement. As a result the computer does not transfer
execution back to line 110, but allows the program to continue with
lines 140 and 150.

If you check the value of count after executing the program, you
will find it to be 9.

Enter Display
display count el
The control-variable is larger than the limit.

The values selected for initial-value and limit determine the number
of times the loop is executed. You can calculate this number using
the formula

number of loops = limit + 1 — initial-value

The value of limit is increased by 1 because limit must be exceeded
before the loop is exited.

You can use any values you want for initial-value and limit as iong
as they cause the computer to execute the loop the desired number
of times. For example, change line 100 of this program to

100 for count=1001 to 1008

and run the program again.

Enter Display

run ig@l
1882
1803
1aed
1ARS
1865
1887
g

F odone

—
i
[u]

FOR TO NEXT Looping / 83

the values displayed for count are different, of course, but
the number of times that the loop is executed is the same
(1008 +1—1001=8).

As you can see, for to next looping is very similar to looping with
i counting variable and an if then statement. The major difference
is that the next statement combines the functions of increasing
the counting variable, testing if the termination value has been
rcached, and transferring execution to the beginning of the loop if
the termination value has not been reached. You may be wondering
hen, since they are so similar, which technique to use. Although
there are instances in which a counting variable and an if then
statement is the better choice, as a general rule you should use
for to and next statements to create loops when you know how
many times the loop is to be executed.

I'he next example illustrates how the averaging program developed
in Lesson 10 can be modified to use a for to next loop.

new

100 input “"Number of entries? ";n
110 for count=1 to n

120 input "Entry? ”;entry

130 total=total+entry

140 next count

150 average=total/n

160 display "Average =",average
170 pause

In this program, a variable is used to specify the limit. You can
use any valid numeric-expression as an initial-value or limit. If a
variable is used, its value is not changed by the execution of the
for to statement. Thus, you can be certain that n retains the correct
value for calculating the average in line 150, even after it has been
used to define the for to next limit.

Enter Display

run Humber of eptries?
5 Ertra?

(cont. on following page)

84 / Lesson 15

(cont. from preceding page)

Enter Display

11 Entta?
22 Entra?
33 Ertea?
44 Entra?
55 Huerade = I3

The control-variable of a for next loop can do more than just count
the number of times a loop is executed. When convenient, the con-
trol-variable can also be used in any calculations performed by the
loop. If used in a calculation, however, it should not be changed
unless you intend to change the number of times the loop is exe-
cuted.

The following program provides a good example of an application
where it is desirable to use a control-variable in a calculation. This
program computes the factorial of any whole number that you enter
up to 84 (the factorial of values larger than 84 exceed the computa-
tional limit of the computer). The factorial of a whole number is
defined as the product of that number and all positive whole numbers
less than the number. For example, the factorial of 7 = 1 X 2 X
3X4X5E5EX6X7.

new

100 factorial=1

110 input “Enter number: ”;n

120 if n>84 then 110

130 for count=1 to n

140 factorial=factorial* count

150 next count

160 display "The factorial is”;factorial
170 pause

To compute the factorial, the program uses a loop to multiply the
variable ““factorial’’ by every whole number between 1 and the num-
ber entered.

A sample run of the program is shown beiow.

FOR TO NEXT Looping / 85

Enter Display

run Enter numbers:

12 The factorial 1= 479001858

run Enter mumber:

45 The factorial iz 1.19&222E+54

T'he factorial of 45 is'too large to display in regular format, so it is
displayed in scientific notation.

Ilis common in creating tables of numbers to use the control-variable
of a loop in the calculation. The following program illustrates this
tachnique.

new

100 onekarat=4.167

110 for karat=1 to 24

120 percentgold=karat * onekarat

130 display karat;"karats =";percentgold;” % gold”
140 pause .7

150 next karat

I'his program computes the percentage of gold in karat values 1
through 24. The calculations are performed by multiplying the value
of the loop counter by 4.167 (the approximate percentage of gold
n 1 karat). Since pure gold is 24 karats, the limit of the control-
variable is 24.

A partial program run is shown below.
Enter Display

run 1 karats 4,167V % Fold
2 karatz = 2,334 % gold
I karat= = 12,981 % 3o0ld
4 karats = l&.6683 % Jold
22 karats = 91,674 % Qold
23 karats = 33,841 Qold
24 karatz = 189,883 X Jold

86 / Lesson 15

Here is another example where the control-variable of a for ne

loop is used in a calculation. This program calculates the amou

of money generated by interest rates ranging from 10 to 15 perce

compounded monthly for 12 months. The formula for this calculatio
is FV = P x (1 + /}¥, where FV is the future value of the mone
P is the principal or amount deposited, / is the interest rate p4l
compounding period, and N is the number of compounding period
In this example, N equals 12 since the principal is compounde
monthly for 1 year and / is the value of the control variable divide
by 100 (the division by 100 is necessary to convert / to a decim

value).

new

100 pause all

110 input "Principal: ";P

120 for count=10 to 15

130 i=count/100

140 FV=Px(14+i/12)A12

150 FV=int(FV*100+.5)/100

160 display "Value at”;count;” % =";FV;"dollars”
170 next count

The purpose of the calculation in line 150 is to round the value of
FV to two decimal places. Refer to Lesson 13 for a discussion of
this formula.

A sample run for a deposit of $1425.17 is shown below.

Enter Display

run Frinciral

1425.17 Walus at 18 X = 15374.4 dollarsz
Walue at 11 % = 159@.8% dollars
Walue at 12 % = 1685.%% dollars
(ENTER] Walus at 13 % = 1821,8% dollars
(ENTER] Walus at 14 %X = 18Z3.81 dollars
Malue a3t 15 % = 1654,27 dollars

FOR TO NEXT Looping / 87

IEARNED IN THIS LESSON

Ihe function of the for to statement in a for next loop is to specify
o counting variable of the loop (known as the contro/-variable)
md define the starting and ending values of the variable, known
n the initial-value and /imit, respectively. The for to statement
niso marks the physical beginning of the loop. The value of the
litial-value and limit can be defined by any valid numeric-expression.

he function of the next statement is to increase the value of the
control-variable and decide if execution is to be sent back to the
haginning of the loop or allowed to continue with the statement
following the loop. If the control-variable is less than or equal to
the limit-value, execution is sent back to the first statement following
the for to statement. If the control-variable is greater than the limit
value, execution continues with the first statement following the
next statement.

Ihe control-variable of a for next loop can be used in calculations
within the loop when desirable. If used in a calculation, the control-
variable should not be changed unless you intend to change the
number of times the loop is executed.

itis recommended that you use for next loops whenever you know
how many times the loop is to be executed. The advantages of
for next loops are:

1. For next loops are shorter and more efficient than loops
that use a counting variable and an if then statement.

2. For next loops are easier to write and reduce the chances
of making a programming mistake.

3. A program that uses a for next loop is easier to understand
than a program that uses an if then statement and a count-
ing variable to control a loop.

Lesson .

REM Statements

program works. For this reason, BASIC provides a method of enter.
ing remarks or explanatory information directly into a program. The
statement used for this purpose is the rem statement.

As you know by now, it is not always easy to understand how 1

The rem statement instructs the computer to completely ignorg
the rest of the program line. As a resuit, you can place any informas
tion you want following a rem statement. You do not have to avoldi
using BASIC words or symbols in your remarks.

new
100 rem ks ko sk kokokskok kakok ok kok sk ok
110 rem This program consists

120 rem entirely of rem statements.
130 rem Since it contains

140 rem no active statements,

150 rem nothing happens

160 rem when it is executed

170 rem ssokseoksokstoksogokkoksksorkok s

The information that you enter following a rem statement is unal
tered. The computer does not convert lowercase letters to upper-
case letters as it does for program statements.

It is good programming practice to use rem statements in your pro.
grams. Good remarks make a program much more understandable
for others. They can also prevent you from wasting time trying to

88

REM Statements / 89

ligure out what some part of your program does when you want
lo modify a program several weeks or months after writing it. Many
programmers put their name, the name of the program, and the
date that the program was written in rem statements at the beginning
of every program they write. For longer programs, you may want
to put information such as the variables used, the purpose of each
variable, and the function of the major parts of the program in rem
slatements.

The following example illustrates the use of remarks in a program.
Because of the many rem statements, you should need no additional
uxplanation of the program’s operation.

new

100 rem Balance checkbook program

110 rem n1=number of deposits

120 rem n2=number of withdrawals (checks)
130 input “Starting balance: ”;balance

140 input "Number of deposits: ”;n1

150 input "Number of withdrawals: ";n2
160 rem next line tests for no deposits

170 if n1=<0 then 230

180 rem ** begin deposit loop

190 for count=1 to n1

200 input “Deposit amount; “;deposit

210 balance=balance-+deposit

220 next count

230 rem next line tests for no withdrawals
240 if n2=<0 then 300

250 rem =** begin withdrawal loop

260 for count=1 to n2

270 input "Withdrawal amount: ";withdrawal
280 balance=Dbalance —withdrawal

290 next count

300 display ”"Your new balance is $";balance
310 pause

Notice that although rem statements do not perform any action
during the running of a program, you can still transfer program execu-
lion to line numbers containing rem statements (line 170).

90 / Lesson 16

A sample run of the checkbook program is shown below.
Enter Display

run Starting balance!

41219 Humber of deroszits:

1 Hurber of withdrawals:

5 Lerozit amount:

10.42 Withdrawal amount:

125 Withdrawal amauemt:

79.51 Withdrawal amount:

9.95 Withdrawal amount s

12.98 Withdrawal amount:

5 Yaour mew balance iz £ 193,17

As an alternative to the word rem, you can use an exclamation
point (¥) to indicate a remark. The exclamation point serves the
same function as rem and has the additional advantage that it can
be placed at the end of a regular program line. An example of a
program line that uses the exclamation point for a remark is shown
below.

170 if n=<0 then 230!test for no deposits

LEARNED IN THIS LESSON

The function of the rem statement is to allow descriptive remarks
to be placed within a program. The rem statement instructs the
computer to ignore the remainder of the program line.

The exclamation point is an alternative to rem that can be used
at the end of a regular program line.

Lesson .

Storing DATA in a Program

Many programming applications require the manipulation of large
quantities of information: For example, a payroll program might store
lhe following information for each employee of a company: name,
address, pay rate, marital status, and number of tax exemptions.
I'his information could be placed in a program by using assignment
slatements, as shown below:

new

100 ipayroll information

110 namet$="Brock"

120 address1$="7000 Semiconductor Drive”
130 rate1=6.03

140 status1$="married”

150 exemptions1=2

160 name2$="Clark”

170 address2$="4116 Memory Lane”
180 rate2=4.75

190 status2$="married”

200 exemptions2=2

Il as you can see, if the company has many employees, this
mathod of storing information requires a large number of variables

92 /lLesson 17

and creates a program that is long and cumbersome. Fortunately,
BASIC provides a more efficient method of storing information in
a program. The basis of this alternative is the data statement.

The data statement has the general form
data dgata-list

where data-fist is a list of string and/or numeric constants separated
by commas.

The sole function of the data statement is to store information in
a concise and organized manner. An example of the statement is
shown below.

110 data Brock,7000 Semiconductor Drive,6.03,married,2
120 data Clark,4116 Memory Lane,5.32,married,2

Note that string information can be stored without quotation marks
and that strings and numbers can be intermixed.

Technical Note: The use of quotation marks around string informa-
tion in data statements is optional except when a string contains
commas, leading or trailing spaces, or quotation marks. If you want
to put commas or leading or trailing spaces in a string, you must
enclose the string in quotation marks. If you want a string to contain
quotation marks, enter two quotation marks where you want one
quote to appear and enclose the string in quotation marks.

The information in all of the data statements of a program is consid-
ered to be one large list that begins with the first item of the first
data statement and ends with the last item of the last data state-
ment. Therefore, the number of items following a particular data
statement is unimportant—what is important is the order in which
items are listed. Thus,

110 data Brock,7000 Semiconductor Drive,6.03,married,2
and

110 data Brock
120 data 7000 Semiconductor Drive
130 data 6.03

Storing DATA in a Program / 93

140 data married
150 data 2

lorm identical lists of data as far as the computer is concerned.
1) course, the first example stores the information in fewer program
Ines.

lo access the information stored in a data statement, you must
use the read statement. The general form of the read statement
I

read variable-list

where variable-list is a list of string and/or numeric variables sepa-
tited by commas.

the read statement assigns the information in a data-list to the
variables in a variable-list. The data items are always assigned in
the precise order in which they appear in the program. Thus the
lirst read statement assigns the first data items to the variables
in its variable-list, the second read statement assigns the next data
items to the variables in its variable-list, and so on for each read
statement that is executed. The computer keeps an exact count
of the data items that have been assigned already and ensures
that the next read statement always begins with the first unread
data item.

The following example illustrates how this works.

new
100 !read data-list example

110 data Brock,7000 Semiconductor Drive,6.03,married,2
120 data Clark,4116 Memory Lane,5.32,married,2

130 data Dever,Software Circle,4.75,single,2

140 data Riddle,1024 Byte Road,4.15,married,2

150 data Smith,911 Silicon Park,7.75,single,1

160 data Stewart,8088 Processor Boulevard,6.95,singie,1
170 for count=1 to 6

180 read name$,address$, rate,status$,taxexmpt

190 display name$,status$

200 pause 1

210 next count

94 / lesson 17

A sample run of the program is shown below.

Enter Display

run Brock matrisd
Clark mat-ied
[R=XRE-Y zindle
Fiddle rartied
Smith zindle
Stewart simdle

This program places the read statement in a loop and reads thd
data items into the same variable names each time the loop lt
executed. Although the information could be read into different varIq
ble names, one of the advantages of using data statements is that
information does not have to be saved in variables since it ha¢
already been permanently stored in data statements. Observe that
the program reads string information into string variables and nus
meric information into numeric variables. Compact Computer BASIQ
allows numeric information to be read into either a numeric or string
variable, but it permits string information to be read only into &
string variable.

Notice also that even though the information that is read into ad-
dress$, rate, and taxexmpt is not used by the program, it is necessary
to read that information in order to get the name and marital status
of the next employee.

Data statements can be placed anywhere that you find convenient
in a program. To verify this fact, delete lines 150 and 160 and
reenter them at the end of the program.

del 150-160
220 data Smith,911 Silicon Park,7.75,single, 1
230 data Stewart,8088 Processor Boulevard,6.95,single,1

The new location of the data statements does not alter the execution
of the program.
Enter Display
run Er ook Mart1ed
Clark mareied
(cont. on following page)

Storing DATA in a Program / 95

(cont. from preceding page)

Lzver =indle
Fiddle marrisd
Smith zindle
Stewart zim3le

since data statements can appear anywhere in a program, different
programmers develop different preferences for their location. Some
prefer to place them at the beginning of a program, some at the
ond of a program, and some scatter them throughout a program.

When using data statements, you must be careful that your program
does not attempt to read more data items than exist in the program.
If a read statement is executed after the last data item has been
read, a DATH =rr ot condition occurs.

To avoid data errors, you must prevent your program from reading
past the last data item. This can often be accomplished by counting
the number of data items and using that value in a for next loop.
In some programming applications, however, you may want to add
or subtract data each time the program is run. In such cases, a
common technigue is to store a “dummy' value as the last data
item in the program. The program can then test the value of data
items as they are read to determine when the end of the data-list
is reached. The example that follows illustrates this programming
lechnique.

new

100 Igrocery list program

110 read desc$,quantity,unit$

120 if quantity=—1 then end

130 display quantity;unit$;” ”;desc$
140 pause

150 goto 110

160 data eggs,2,dozen,milk,1,quart
170 data buns,3,packages,lettuce,2,heads
180 data softdrinks,7 liters

999 data ¢, —1,X¢x

96 / Lesson 17

This program displays a list of foods to be bought on the nexi
grocery trip. Since this list will presumably change as purchases
are made or supplies are depleted, it is organized so that the las}
items in the data-list are dummy values. There must be three dummy
items to correspond to the three variables in the read statement,
The computer can test for a quantity of —1 to determine when
the last data item has been read.

A sample run is shown below.
Enter Display

run 2 dozen e39=

1 suart milk

I Fackades buns

2 heads lettuce

T oliters zoftdrinks

As new supplies are needed, they can be added to the list by simply
entering a new data statement with a line number less than 999.
To remove a food from the list, delete the line containing the data
statement where it is listed or remove it from the data statement.
Just be certain to keep the string and numeric data in the correct
order. The program will automatically adjust itself to the number
of data items present.

del 160
190 data cheese,2 pounds

A sample run is shown below.
Enter Display

run 3 Fackades buns
2 head:z lettuce
Foliters zoftdrinks
2 Founds chesse

It is often desirable to read a data-list more than once during the
execution of a program. The restore statement allows a program
to read a data-list over and over.

Storing DATA in a Program / 97

tho yeneral form of the restore statement is
restore /ine number

Iho restore statement specifies the line number where the next
tend statement that is executed is to begin reading data. The line
innber specified by the restore statement does not have to contain
n data statement. If there is no data statement on that line, the
tond statement will begin with the first data statement after the
npecified line number. If no line number is given with the restore
nlntement, the next read statement will begin with the first item in
tho data-list.

Ihe following program illustrates the use of the restore statement.

new
100 !search for inventory item

110 pause all

120 input "Enter ID number: “;id

130 read n,quantity

140 if n=—1 then 180!test for end of data
150 if n<>id then 130!test for id number
160 display quantity;id;”in stock”

170 goto 190!skip next line

180 display id;"”not found”

190 restore 100!reset data pointer

200 goto 120!loop

210 data 1001,7,1011,23,1003,3

220 data 1022,12,1009,1,1012,0

230 data 1033,4

999 data —1,—1ldummy data

I'he program searches through the information stored in a data-
st for stock ID numbers. If the ID number is found, the quantity
on hand is displayed. If the ID number is not found, the message
“not found” is displayed. Since it is necessary to search through
lhe data-list from the beginning each time a new ID is entered, a
restore 100 statement is executed at the end of every search.
The restore 100 ensures that the data-list is read from the begin-
ning.

98 / Lesson 17

A sample run is shown below.

Enter Display

run Eriter ID wiumber:
1017 1617 mot found
Enter ID riumber:
1022 12 1822 in =ztock

Ereak

LEARNED IN THIS LESSON

The data statement permits numeric and string information to be
stored in a program without the requirement to assign it to variables,
The items of information stored in a data statement must be sepa-
rated by commas. It is not necessary to place quotation marks
around strings unless the strings include commas, leading or trailing
spaces, or quotation marks.

The data statement is not executed when a program is run. To
access the information stored by data statements, it is necessary
to use the read statement. The read statement assigns the informa-
tion in data statements to variables in the read statement. Data
statements can be placed wherever convenient in a program. It is
not the location or number of data statements that is important,
but the order in which information is listed in the statements. The
data information is always assigned in the precise order in which
it appears in the program.

Compact Computer BASIC allows numeric'data to be read into either
numeric or string variables, but it permits string data to be read
only into string variables.

The restore statement can be used to allow a program to re-read
data items. The general form of the statement is

restore /ine number

where line number indicates the location in the program where the
next read statement is to begin reading. if the specified line number
does not contain a data statement, reading begins with the first
data statement found after that line number. If no line number is
given, reading begins with the first item in the data-list.

lesson .

Arrays and Subscripts

lhe examples that you have studied so far have used what are
known as simple variables to store information. Simple variables
can be either numeric or string, but have the characteristic that
they can be assigned only one value at a time. By contrast, an
array variable can be assigned many values at a time. The different
values assigned to an array variable are called elfements and are
kept separate by giving each value a unique subscript.

An example of an array variable is shown below.
grade(3)=95
Array name Subscript

This sequence assigns the value 95 to element 3 of an array named
grade. The subscript that identifies the element is placed in pa-
rentheses immediately following the array’s name.

Other array elements can be assigned just as easily.

grade(1)=88
grade(5)=100

The grade array as it is now defined is illustrated below. Notice
that the first element is grade(0). The first element of an array varia-
ble is always element 0. Since you have not assigned values for
elements 0, 2, and 4, they are shown as having zero values.

100 / Lesson 18

grade(0) =0
grade(1) = 88
grade(2) = 0
grade(3) = 95
grade(4) =0

grade(5) = 100
String arrays can be created by using a dollar sign as the last charao}
ter of the array name. Thus,

name$(1) =“Shakespeare”

assigns the string value “Shakespeare” to element 1 of a strin'
array named name$.

Once a value has been assigned to a particular array element, yol
can use that element just as any variable as long as you speci
the correct subscript when referring to it.

Enter Display
grade(4)=52

grade(4)*2 184
name$(0)="Hamiet”

display name$(0) Hamlet

Itis the subscript following a variable name that identifies the variable
as an array variable. If you drop the subscript, you are no longer
referring to an array. Thus,

grade
grade2
grade(2)

are entirely different variables. The first two are simple variables
and the third is an element of an array variable.

Technical Note: Although names such as grade and grade(2) refer
to entirely different variables, you are not allowed to use identical
names for an array and a simple variable in a program. If you do
use the same name for an array and a simple variable, the error
message Yariabkle previously det ined will be displayed
when the second variable is encountered.

Arrays and Subscripts / 101

the rules for forming array names are the same as for forming
nimple variable names with the added restriction that the array ele-
muont be specified by a subscript enclosed in parentheses. If the
array is to contain string information, the last character of the array
iwme must be a dollar sign. The following are examples of valid
nray names:

x(2)
@payroll(5)
item_cost(4)
day$(1)
L$(7)

Ihe first three examples are numeric arrays. The last two examples
ure string arrays.

In the examples given so far, the number of the array element is
specified by a constant. If you always had to use constants to specify
nn array element, array variables would be no more useful than
simple variables. The strength of array variables is that subscripts
«:an be specified by other variables. The following program provides
an example of this feature.

new
100 larray demonstration program

110 for n=0 to 5

120 input "Enter sample number: “;sample(n)
130 next n

140 display "The numbers entered were: ”
150 pause .5

160 forn=01to 5

170 display "Element”;n;"=";sample(n)

180 pause

190 next n

A sample run of the program appears below.

Enter Display
run Erter
100 Erter
(cont. on following page)

amrFle nunber
arFele number

102 / Lesson 18

(cont. from preceding page)

Enter Display

101 Enter zamrle runber:
102 Enter zamrle number:
103 Enter zamrle nunber:
104 Enter samrle tiumber:
105 The numbersz entered wers:
Element B = 184
Element 1 = 181
Element & = 182
ENTER Elemert 3 = 183
Element 4 = 184
ENTER Element 5 = 1835

This program accepts the numbers that you enter and stores them
in elements 0 through 5 of an array named sample. After you have
entered the six numbers, the program displays them one at a time,
showing the array element in which they were stored.

The use of an array variable in this example makes it possible to
enter and display the sample numbers using a loop, since the array
element in which the numbers are stored is changed by simply
changing the value of the subscript variable. if simple numeric varia-
bles were used instead of an array variable, then the input part of
the program, for example, would require a sequence such as:

110 input "Enter sample number:” ;n0
120 input "Enter sample number:” ;n1
130 input "Enter sample number:” ;n2
140 input "Enter sample number:” ;n3
150 input "Enter sample number:” ;n4
160 input "Enter sample number:” ;n5

The display portion of the program would be equally repetitious.

If you modify the array demonstration program to accept 12 or more
sample numbers, the error message Ezxd sub=crirt wil be
displayed when the program attempts to assign a value to the twelfth
element. The reason for this error is that the computer does not

Arrays and Subscripts / 103

allow you to use an array with more than 11 elements unless you
fmve first defined the size of the array.

tho size of an array is defined by the dim statement. The dim
{tor dimension) statement has the general form:

dim array-name(integer-constant)

where array-name is the name of the array variable and integer-
vonstant is the number of the largest element of the array that
will be used. A variable or calculation cannot be used to specify
the array size. Since the first element in any array is element 0,
lhe number of elements defined by the dim statement will be the
vilue of integer-constant + 1.

soveral examples of valid dim statements are shown below.

Statement Meaning
dim test$(25) 25 is the largest valid element
dim miles(55) 55 is the largest valid element

dim n(12),p$(3) 12 is the largest valid element of
array n, 3 is the largest valid element
of array p$

Observe that a single dim statement can define the size of more
than one array variable, as long as the different array names are
separated by commas.

Although the computer will allow array variables of 11 or fewer
olements to be used without requiring a dim statement, it is a good
idea to define even smail arrays. If you do not define an array varia-
ble’s size with a dim statement, the computer will automatically
reserve enough memory for 11 elements when it encounters the
first array element. |f you know that fewer than 11 elements are
o be used, you can save memory by dimensioning the array for
the smaller number of elements.

I'he following rules must be followed when dimensioning arrays:

¢ The dim statement must always appear on a lower-num-
bered line than that of the first occurrence of the array varia-
ble.

104 / Lesson 18

* An array can be dimensioned only once during the executio|
of a program. Thus, the size of an array cannot be chang
by a program after it has been defined. If you attempt
redimension an array, the error message 'ariable Fre

viouzly defined will be displayed.

* A dim statement cannot be used as the action of an I

then statement.

An example of a program requiring a dim statement is shown below
This program prompts for the entry of 12 monthly utility bilis ang
stores the values that are entered in an array named bill. After alf
of the values are entered, the program displays the yearly total,
the monthly average, the month of the highest charge, and the

month of the lowest charge.

new
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

Imonthly utility bill program

dim month$(12),bili(12)

forc=11to 12

read month$(c)

input "Enter "&month$(c)&”’s bill: ";bill(c)
next ¢

pause all

total=0

smallest=1

largest=1

for c=1to 12

total=total -+ bill(c)

if bill(c)<bili(smaliest) then smallest=c

if bili(c) > bill{largest) then largest=c

next ¢

display "Yearly total =";total

display "Average bill =";total/12

display "Smallest bill was in ”;month$(smallest)
display “Largest bill was in ”;month$(largest)
data January,February,March,Aprit

data May,June,July,August

data September,October,November, December

Arrays and Subscripts / 105
A sample program run is shown below.

Enter Display

run Enter Januars® = bill:

46.15 Enmter Februare’z kill:

454 Enter March®s Bill:

40.88 Enter AFril =z bill:

38.45 Enter Maa®z bill:

30.07 Ernter June’ =z kill

313 Erter Julw's bill:

39.52 Enter Audust’ =z kill:

43.17 Eriter Sertember™z kill

36 Enter October’s kbill:s

31.62 Enter Howvembser®sz kill:

35.22 Enter [wecember’= bill:

38.9 Yearle total = 496,68
Austrzde bill = I8.AS8EEEET
Smallest bBill was in Maw9
Largeszt bkill was in Januarg

Since the program uses two arrays larger than 11 elements, a dim
statement is needed to define the arrays’ sizes. In this case, both
arrays are dimensioned to 13 elements (0-12), although element
0 is never used. After dimensioning the arrays, the program uses
a loop to read the months of the year into the month$ array, and
lo input the monthly charges into the bill array.

I'he program sequence beginning with line 160 is responsible for
linding and displaying the yearly total, the average, the month of
lowest charge, and the month of highest charge. The sequence
begins by setting total equal to 0, and setting smallest and largest
to 1. The variables smallest and largest will be used to store the
number of the array element with the smallest and largest values.

T'he program then enters the loop which computes the total and
finds the two charges. The method used to find the total is a simple
adding of all of the array elements. The method used to find the
smallest and largest charges is described below.

106 / Lesson 18

1. When the loop begins, it is assumed that array element 1
contains the smallest and largest value. This provides a
starting point for the first comparison.

2. On each execution of the loop, the program compares the
value of the current array element (¢) with the value of
the array element it has previously found to be the smallest.
If the current array element is found to be smaller, the value
of smallest is set equal to the number of the current array
element. On the next execution of the loop, the comparison
will be with the new smallest element.

3. An identical technique is used to find the largest array ele-
ment.

4. When the loop is complete, smallest will equal the number
of the array element with the smallest charge, and /argest
will equal the number of the element with the largest charge.
(if there are two identical smallest or largest charges, the
program will find only the first.)

The program then displays the total, average, and month of the
smallest and largest charges. Since the elements of the two arrays
have a one-to-one correspondence, month$(smallest) will contain
the name of the month with the smallest charge, and month$(largest)
will contain the name of the month with the largest charge.

The preceding examples have illustrated what are known as one-
dimensional arrays. A one-dimensional array is essentially a num-
bered list, where the number of the item in the list corresponds to
the number of the array element. It is also possible to have fwo-
(and three-) dimensional arrays.

A two-dimensional array can be visualized as a table of values,
as illustrated in Fig. 18-1. Any element in a two-dimensional array
can be identified by a row number and a column number. For exam-
ple, the value in row 2, column 1 is 8.

As with one-dimensional arrays, the size of a two-dimensional array
is defined with a dim statement. The general form of a two-dimen-
sional dim statement is

dim array-name(row-integer,column-integer)

Arrays and Subscripts / 107

column 0 column 1 column 2 column 3
row O 5 9 1 3
row 1 7 4 0
row 2 2 8 6 5

Fig. 18-1 An example of a table of values illustrating
how an element of a two-dimensional array is de-
fined by a row value and a column value.

where row-integer is the number of the largest row and column-
integer is the number of the largest column. The row value is always
specified before the column value. You are not required to use a
dim statement for an array that has 11 or fewer rows and 11 or
fewer columns.

A dim statement to define an array suitable for storing the table
of values given in Fig. 18-1 is shown below.

dim table(2,3)

Notice that this statement defines an array that is 3 rows by 4
columns in size.

A program that allows you to enter values into an array that is 4
rows by 2 columns in size is shown below. The program then aliows
you to display the value of any element in the array.

new
100 12 dimensional example

110 dim table(3,1)

120 for row=0 to 3

130 input "Sample number: ";table(row,0)

140 input “Sample number: ";table(row,1)

150 next row

160 input "Enter row value: ”;row

170 input "Enter column value: ";column

180 display "Element”;row;",”;column;”=";table(row,column)
190 pause

200 goto 160

108 / Lesson 18

A sample run is given below.

Enter Display

run SamFle rdmber:

111 Samrle number:

888 Sanrle number:

454 Samrle munber:

333 Samrle ndnbse:

222 Samrle numbers:

999 Samrle runbers

101 SamFle numkber:

717 Enter row waluye:

2 Enter column waluye:
0 Element = B o= 22
Enter row walue:

0 Enter colummn walue:
0 Element & . 8 = 111
e ak

Since the table array has been defined as having only 4 rows and
2 columns, the error message Ead =ub=cr irt will be displayed
if you enter a row vaiue larger than 3 or a column value larger
than 1. Entering a negative value will also cause the erfror to occur.

LEARNED IN THIS LESSON

Array variables have the capability to store many different values
under one variable name. The different values assigned to an array
variable are called elements. Each element is identified by a unique
subscript.

The first element of any array is element 0.

The rules for forming array names are identical to those for forming
simple variable names with the added restriction that the array ele-
ment be specified by a subscript enclosed in parentheses immedi-
ately following the array name. If the array is to contain string infor-
mation, the last character of the array name must be a dollar sign.

Arrays and Subscripts / 109

The dim (for dimension) statement is used to define the size of
an array. The general form of the statement for a one-dimensional
array is

dim array-name(integer-constant)

where array-name is the name of the array variable and integer-
ironstant is the number of the largest element that will be used.
since the first element in an array is element 0, the total number
of elements defined by a dim statement is given by the value of
integer-constant + 1. A single dim statement can dimension more
than one array if the different array names are separated by commas.

The following rules must be followed when dimensioning arrays:

¢ The dim statement must always appear on a lower-num-
bered line than the first occurrence of an array variable.

* An array can be dimensioned only once in a program.

* A dim statement cannot be used as the action of an if
then statement.

You are not required to have a dim statement for one-dimensional
arrays with 11 or fewer elements. Nevertheless, it is a good idea
to dimension even these small arrays, since dimensioning for less
than 11 elements saves memory over not dimensioning at all.

Two-dimensional and three-dimensional arrays can also be created
by the dim statement. The general form of a two-dimensional dim
statement is

dim array-name(row-integer,column-integer)

where row-integer is the number of the largest row and column-
integer is the number of the largest column. The row value is always
specified before the column value. As with one-dimensional arrays,
two-dimensional arrays of 11 or fewer rows and 11 or fewer columns
do not have to be dimensioned, although defining the smaller arrays
can save memory.

Lesson .. .

The GOSUB and RETURN
Statements

you will find that it is often necessary to repeat the same seri
of actions at different locations in a program. The most obvioug!
way to write such a program is to reenter the necessary programq
lines each time they are needed. Of course, this method of handlmq;
repetition increases the size of the program and makes it more:
difficult and time-consuming to write.

As you develop programs that are longer and more complicate:i

Fortunately BASIC provides an important alternative known as &
subroutine. A subroutine is a program segment that can be executed
whenever needed by means of a gosub statement. The gosub
statement has the general form

gosub /ine number

and instructs the computer to save a return address and then trans.
fer program execution to the line number specified by the gosub
statement. The return address consists of the location of the firs
program statement following the gosub statement.

Every subroutine must end with a return statement. When the return
statement of a subroutine is executed, the computer sends program
execution back to the address that was saved when the gosub
statement was executed.

A program that illustrates the operation of the gosub and return
statements by displaying a message indicating what part of the
program is being executed is shown below.

110

The GOSUB and RETURN Statements / 111

new
100 !subroutine demonstration program

110 pause all

120 display "Executing main program”

130 gosub 180

140 display "Executing main program again”
150 gosub 180

160 display “Main program yet again”

170 end _
180 !beginning of subroutine]
190 display "Now executing subroutine” — — Subroutine
200 return)

— Main program

A sample run of the program follows.

Enter Display

run Executingd main prolram

How executing zubroutine
Executing main Frodram adain
Hiow executind zubrout ine
Mairn Frodram det adain

When the computer executes the gosub 180 statement, it transfers
uxecution to line 180, just as if a goto statement were executed.
Since the gosub statement saves a return address, however, the
return statement in the subroutine allows execution to resume with
the appropriate main program line number. If a goto statement
had been used instead of the gosub statement, no return address
would be stored and the program would not know which line number
o return to. Thus, the power of a subroutine is that it can be executed
ul any place in the main program without permanently changing
the order of program execution.

10 emphasize that a gosub statement only temporarily transfers
oxecution to another location, programmers generally refer to the
process of executing a subroutine as “calling a subroutine.” The
word call is understood by programmers to indicate that execution
will return to the main program when the subroutine is complete.

112 / Lesson 19

Notice the end statement in line 170 of this program. This stateme
serves a very important purpose. If you remove the end statemen
the computer will allow execution to continue into the subroutin
after line 160 is executed. The first line of the subroutine will execu
properly since it is a display statement, but when the computeflg
attempts to execute the return statement, the error message FE
TURN without GOSUE will be displayed. It is always a mistak
to aliow a subroutine to be executed by a method other than
gosub statement, since no return address is created for the retuely
statement to use.

The computer uses a “last address in-first address out” method
of keeping track of return addresses. Each time a gosub statemeni‘
is executed, a return address is stored. Each time a return statement’
is executed, the return address stored last is erased from memory
and used as the transfer address. This arrangement makes it possis
ble for one subroutine to call another subroutine, a technique known
as ‘‘nesting” subroutines.

To illustrate nesting subroutines, add the following lines to the
subroutine demonstration program.

195 gosub 210

210 lbeginning of second subroutine
220 display "Executing subroutine 2”
230 return

Run the program.

Enter Display

run Executing main Frodvamn

MHow executind zubeouline
Executingd subroutine 2

ENTER Eseculingd main Frrodram adzin
Mow executing subroutine
[ENTER Executing zubroutine 2

[ENTER Main Frrodram 9t 33ain

Now, when the main program calls the subroutine at line 180, that
subroutine displays its message and in turn calls a second subrou-

The GOSUB and RETURN Statements / 113

i at line 210, The second subroutine displays its message and
ihenr returns execution to line 200 of the first subroutine, which
anids execution back to the appropriate line in the main program.
Ilnis, program execution returns in the opposite order in which the
aubroutines are called.

il 15 also possible for the main program to call subroutine 2 directly.
Muke the following change to line 130 to demonstrate this feature.

130 gosub 210

A sample run appears below.

Enter Display

run Executing main rrodran
Executing subroutine 2
Executing main Fraodram adain
How executind subroutine
ENTER Executind subraoutine 2

Mair Frodram dHest adain

lhe next program provides a more practical example of the use
ol subroutines. Before entering this program, however, be certain
that you understand how the gosub and return statements affect
the order of program execution. If you are unsure about some aspect
of their operation, experiment with the subroutine demonstration
program by adding subroutines and subroutine calls of your own.
I-or example, you might want to add a third subroutine and have
i called by subroutine 2. By writing a subroutine that displays a mes-
sage identifying itself, the flow of the program is easy to follow.

Ihe program that follows calculates the depreciation of an asset
using the Accelerated Cost Recovery System (ACRS) adopted by
the tax law of 1981. An asset life of 3 years is assumed. The function
of the subroutine in the program is to calculate the amount of depre-
ciation for a year and then round that value to two decimal places
using the rounding formula discussed in Lesson 13. If a subroutine
had not been used, it would be necessary to duplicate the state-
ments that perform these calculations in three places in the program.

114 / Lesson 19

new

100 !program to calculate ACRS depreciation |
110 pause all

120 input "Enter cost of asset: ";cost

130 factor=.25

140 gosub 240

150 display "Depreciation year 1 =";depr

160 factor=.38 }—Main prografll
170 gosub 240

180 display "Depreciation year 2 =";depr
190 factor=.37

200 gosub 240

210 display "Depreciation year 3 =";depr

220 end —d
230 !depreciation subroutine]
240 depr=cost=*factor
) - Subrouth
250 depr=int(depr*100--.5)/100 ubroutnt
260 return |
A sample run of the program is shown below.
Enter Display
run Ernter cost of gsset:
2995.95 Derreciation dear 1 = 745,39
Derreciation wear T = 1138.46
Derrecigtion wear 3 = 1182.3

In addition to providing another example of the operation of the
gosub and return statements, the ACRS program also illustrates
how information can be passed between the main program and a
subroutine. Just before calling the subroutine, the main program
assigns the value to factor that the subroutine is to use in its calcula-
tions. The subroutine assigns the result of its calculations to the
variable depr, which is then displayed by the main program. Thus,
the fact that the values of variables are not changed by the flow
of program execution is used to send and get information from
the subroutine.

Here is a much ionger subroutine example.

The GOSUB and RETURN Statements / 115

new
100 !Cards program

110 dim card$(52)

120 randomize

130 gosub 350!read cards into array

140 display at (1),”Shuffling deck . . .*

150 gosub 180!shuffle deck

160 gosub 270!deal cards

170 goto 140Irepeat loop

180 !shuffle deck subroutine

190 for count=1 to 50

200 x=intrnd(52)

210 y=intrnd(52)

220 temp$=card$(x)

230 card${x)=card$(y)

240 card$(y)=temp$

250 next count

260 return

270 'deal cards subroutine

280 s=intrnd(48)

290 for count=s to s+4

300 display card$(count);” ";

310 next count

320 display beep

330 pause

340 return

350 lread cards subroutine

360 for count=1 to 52

370 read card$(count)

380 next count

390 return

400 data 2S,3S,4S,55,65,75,88,95,10S,JS,Q8,KS,AS
410 data 2H,3H,4H,5H,6H,7H,8H,9H,10H,JH,QH,KH,AH
420 data 2D,3D,4D,5D,6D,7D,8D,3D,100,JD,QD,KD,AD
430 data 2C,3C,4C,5C,6C,7C,8C,8C,10C,JC,QC,KCAC

The function of this program is to create a deck of cards, shuffle
the cards, and then deal out a hand of five cards. A sample run

116 / Lesson 19

of the program is given below. Since the randomize function
used, the cards that you see in your display and those shown
this text will differ.

Enter Display

run Shuftling deck...
18z JH ZH &% AH
Shuffling deck...

8% 18%S 18C I IH

BREAK Ereak

The abbreviations used to represent the suits are S for spades,
for hearts, D for diamonds, and C for clubs. The abbreviations f
the nonnumeric card values are J for jack, Q for queen, K for king
and A for ace.

The first point to observe about the card program is that the subrous
tines are not used to perform a function needed several times by
the main program. Then why use them? The answer is that the
subroutines split the program into units that are easier to understand,
In fact, many programmers consider the organizational value of
subroutines to be as important as the capability to reduce repetition,
By separating the overall task of a program into smaliler tasks and
writing subroutines to perform those pieces, you can reduce complls
cated programs to manageable portions.

Briefly, here is how the card program works. The program beging
by defining an array named card$ to hold the 52 cards. next, rans
domize is used to ensure a different seed number each time the
program is executed. A subroutine is then called to read the card
values from the data statements into the card$ array. This needs
to be done only once each time the program is executed.

The subroutine beginning at line 200 is used to shuffle the deck
of cards. The technique adopted for this process is to select two
.cards at random and then exchange their positions in the card$
array. The cards to be exchanged are selected by randomly assign-
ing values between 1 and 52 to the variables x and y. Then, while
the original value of card$(x) is temporarily stored in the variable
temp$, the value of card$(y) is put into card$(x). To complete the

The GOSUB and RETURN Statements / 117

wi-hange, the value of temp$ is assigned to card$(x). To mix the
duck thoroughly, it is necessary to repeat this process a number
nl imes. The for next loop in the subroutine repeats this sequence
L limes.

Allor the cards are shuffled, the subroutine beginning at line 300
in called to deal the hand. This subroutine begins by generating a
random starting value between 1 and 48 so that the dealing begins
ul a different location each time (this is similar to “‘cutting” the
inck). The upper value of this variable is placed at 48 so that the
pmogram will never attempt to deal past card$(52). The for next
loop that follows displays five cards beginning with the randomly
jonerated starting value. A semicolon is placed after the display
nlatement to create a pending display state so that all of the cards
iun be seen at one time.

When execution returns from the dealing subroutine, the goto state-
ment in line 170 loops the program back to the shuffling operation.

IEARNED IN THIS LESSON

ubroutines are executed by means of the gosub statement. The
gosub statement instructs the computer to save a return address
nnd then transfer execution to the line number in the gosub state-
ment. Every subroutine must end with a return statement. The pur-
pose of the return statement is to transfer program execution back
lo the return address created by the gosub statement.

lo indicate that executing a gosub statement only temporarily sends
cxecution to another location, programmers generally refer to the
process of executing a subroutine as “calling a subroutine.”

I'he “last address in-first address out” method of keeping track
of subroutine addresses allows subroutines to call other subroutines,
a technique known as “nesting” subroutines. When subroutines
are nested, the flow of execution always returns in the opposite
order in which the subroutines were executed.

Besides reducing the occurrence of repetition in a program, subrou-
lines are an organizational tool. They allow large programming appli-
cations to be broken into smalier tasks that are more easily written
and understood.

Review Test 4

1. Which of the foliowing are valid BASIC statements?

(a) 135 for f=T+7 to A*L

(b) 200 data 126;17;5;15;7

(c) 212 for f=—10 to 20

(d) 116 read a,a,a,a

(e) 999 data 1,6,3/2,16

(f) 180 read a+2,a+3,a+4

(g) 110fork=01t0 0

(h) 101 dim A(5.2)

(i) 712 restore 100,200

(j) 100 dim 3D(17)

(k) 211 word(3)="test”

() 500 dim swat(0)

(m) 300 for a(2)=1 to 10

(n) 500 for a=a(1) to 10

(o) 222 dim a(g+7)

(p) 100 dim week$(7),ID(12,7)

(9) 950 grade(2)=grade2-+grade3
(r) 951 dim cost(32),cost(3,7)

(s) 953 if employees=50 then dim wages(49)

2. Write a program that uses a for next loop to sum the whole
numbers between 1 and 200, inclusive (1 +2-+3+. . . 200).

3. A very rich man agrees to the following terms: for 31 days he
will double the amount of money that he paid on the previous
day. He begins by paying $.01 on day 1. Write a program that
displays the following information for every day in the 31-day

118

.

11.

12

13.

14.

Review Test 4/ 119

period: the number of the day (beginning with 1 for the first
day), the amount to be paid that day, and the total amount
paid, including the amount to be paid that day.

What are the two methods of placing comments in a program?
How do they differ?

. What is the purpose of dummy values in data statements?

What is the purpose of the restore statement?

What is an array element? Does the variable pair$(5,6) describe
one or two array elements?

What is the purpose of a dim statement? When is it required?

To dimension the A array for 20 elements, would you use A(19)
or A(20)?

. How many array elements does the following statement estab-

lish?

130 dim test(3,7,4)
What is the function of a return statement?

How are subroutines helpful in improving the organization of
a program?

When is an end statement required in a program?

How is information passed to a subroutine and back to the
main program?

LessOn .inee *uee

More on DISPLAYing
Information

Lesson 3 introduced the display statement and illustrated its uss,
In addition to the at and beep options discussed in that lesson,
the display statement allows the use of three other optional parames
ters: erase all, size, and using.

The erase all parameter instructs the computer to clear the contents
of the display buffer before displaying any information. Since the
computer normally clears the display buffer when it executes a dis-
play statement, an erase all parameter is needed only when you
want to cancel the effects of a pending display state. As described
in Lesson 8, a pending display state prevents the display buffer
from being cleared when a display statement is executed. (A pend-
ing display state is created by putting a comma or semicolon after
the last item of information in a print-list.) An example of the erase
all option appears below.

200 dispiay erase all beep,fee

Another display option is the size(numeric-expression) parameter.
The size parameter allows you to limit the maximum number of
characters displayed by the display statement to the value con-
tained in parentheses foliowing the size parameter. An example
of the size option is given below.

125 display at(4) size(12),"Cost =";cost
120

More on DISPLAYing Information / 121

iho size(12) parameter limits the maximum number of characters
il can be displayed to 12. Since the constant “Cost =" takes 6
rhuracters, the size of the value of the variable cost is limited to
s maximum of 6 characters, including the leading space or minus
sy preceding the number.

Iho most powerful of the display options discussed in this lesson
in the using parameter. When adopted, the using parameter must
Im lhe last parameter in the display statement. The using parameter
mstructs the computer to follow a specific format when displaying
intormation. This format can be specified by either an image state-
munt or a format string.

I an image statement is used, the number of the program line
containing the image statement must follow the using parameter.
It a format string is used, then that string must foliow the using
parameter.

Ihe characters used to define the format are:

Specifies the position of a digit when a number is
displayed or a character when a string is displayed.
The amount of # signs used in the format establishes
the maximum number of digits or characters that can
be displayed.

Specifies the position of the decimal point in a number
format. If omitted, no digits are displayed to the right
of the decimal point.

AAAA The use of either four or five of these A signs in a
number format specifies that a number is to be dis-
played in scientific notation. For a discussion of scien-
tific notation, refer to the User’'s Guide supplied with
your computer.

An example that uses an image statement is shown below.

new
100 !example of image statement

110 input “Enter a sample number: ”;n
120 display using 150,n

130 pause

(cont. on following page)

122 / Lesson 20

(cont. from preceding page)
140 goto 110
150 image #######H#

A sample run appears below.

Enter Display

run Ernter a :
—23 23,
Ertear a
.3456 K
Enter
362432 IEZ47
Bresak

Observe that the computer fits the numbers into the format given
by the image statement. Since the image statement specifies two
digits to the right of the decimal point, the computer either displays
zeros when there are no decimal digits in the number being dig-
played, or rounds to two decimal places when the number has more
than two decimal digits. Notice also that while unused format posi-
tions to the left of the decimal point are displayed as spaces, the
“sign” space that is ordinarily displayed in front of every positive
number is omitted.

J

amFle number:

o i

]
A

DR]
OB TUR i B T I

aFle turbker s

w
=

aFle rumber:

L
L4
o
=
A
w

The six # signs to the left of the decimal point limit the number
of digits that can be displayed there. If you attempt to display a
number with more than six digits to the left of the decimal, the
computer displays asterisks (*) for each format character in the
image statement to indicate that something unexpected has oc-
curred.

Enter Display
run Enter a zamrle number:
1234567 O R R P e TR P)

Erter a zamrle number:
—123456 R SRR T S SR O T

BREAK Ereak

The minus sign is counted as a character, so the image statement
aiso rejects —123456 as too large.

More on DISPLAYing Information / 123

At Image statement can contain information other than format char-
wiors. To illustrate this, replace line 150 with

150 image The number is: ####H## ##

and run the program again.

Enter Display

run Enter a =zamrle nunber:
59.999 The number iz:

Ereak

Nonformat characters that are used in an image statement are
wferred to as literals, because they are displayed exactly as you
nnter them. You can use any character that you want as a literal
nxcept for a quotation mark. If you want a quotation mark to be
isplayed, then you must enclose all information within the image
statement in quotation marks and put two quotation marks where
you want the quotes to appear. For example, the statement

150 image "The ""number”" is: ###### ##"

would display quotation marks around the word “number.”

The image statement can also be used when displaying string infor-
mation. To illustrate this possibility, make the following changes
to the demonstration program.

110 input "Enter a sample string: ";s$
120 display using 150,s$
150 image The string is: #########

A sample run is shown below.

Enter Display

run Erter a zamrle string:
Dallas The strina iz: [Dallas
Enter 3 zamrle string:
Albuquerque The strind is: $sdwsetdk
Break

Again, the amount of # signs determines the maximum number
of characters that can be displayed. Albuquerque is too long for

124 / Lesson 20

this format, so the computer displays asterisks () when you attemp
to display it. To avoid this result, anticipate the maximum numbg}
of characters that will be displayed and enter that many # signg,

An image statement can specify a format for more than one variablg
at a time. The following program illustrates this feature.

new
100 !grocery list program

110 read desc$,quantity,unit$

120 if quantity=-1 then end

130 display using 999,quantity;unit$;desc$
140 pause

150 goto 110

160 data eggs,2,dozen,milk,1,quart

170 data buns,3,packages,lettuce,2,heads
180 data drinks,7 liters

998 data xxx,—1,xxx!dummy values

999 image buy # ###HFHAF HHAFHFEHHF

A sample run is shown below.

Enter Display

run by 2 dozen =3Iz

bug 1 Hyart milk
buw I Fackades buns

bus 2 heads lettuce
bua 7 liters drinks

The computer uses the three groups of format characters in the
image statement to format the three variabies.

As an alternative to an image statement, the using parameter can
specify a format string. The format string, which can be either a
variable or constant, uses the same format characters as an image
statement.

You can modify the grocery list program to use a format string by
deleting the image statement and substituting the foliowing for line
130.

More on DISPLAYing Information / 125

del 999
130 display using "buy # #####H#HE HHAFHFH#F#A",
quantity;unit$;desc$

Notice that when a string constant is used, it must be enclosed in
yuotation marks. A format string can also be specified by a string
viriable or string expression, as illustrated below.

130 f$="buy # ####H#### REHH#H#HASE"
135 display using f$,quantity;unit$;desc$

LEARNED IN THIS LESSON

In addition to the at and beep options, the display statement allows
erase all, size, and using parameters. The erase all option clears
the display buffer before displaying information, a capability that
is useful for cancelling a pending display state. The size option
limits the maximum number of numeric and string characters that
can be displayed to the value specified in parentheses following
the option. The using option specifies a format to be used for dis-
playing information. When adopted, the using parameter must al-
ways be the last parameter in a display statement.

The two forms of the using parameter are

using /ine number
using string-expression

The using /ine number form instructs the computer to format infor-
mation using an image statement. The using string-expression form
instructs the computer to format information using the string variable
or constant that follows the using parameter.

The characters used to define a display format are:

Specifies the position of a digit or string character.
Specifies the position of the decimal point in a number
format.

AAAA Specifies the position of an exponent of a number
to be displayed in scientific notation.

126 / Lesson 20

Any characters in a format other than those listed above are referref
to as literals and are displayed “as is.” The amount of # sign§
used in the format establishes the maximum number of digits ¢f
characters that can be displayed.

The image statement is similar to a data statement in that il I§
not executed directly. it is used only when referred to by a using
parameter. Therefore, it can be placed anywhere convenient in §
program, although as a rule image statements are located at thg
end of a program.

[CSSON ofeae =

Multiple Statement Lines

In the examples you have seen so far, each program statement
hegins with a new line number. It is possible, however, to put more
lhan one program statement on a line. Multiple statements can
be placed on the same line by entering a colon between the state-
ments. Except when used with an if then statement as explained
later in this lesson, a colon instructs the computer to treat the state-
ment that follows as if it was an entirely separate program line.

To illustrate this feature, look at the following program.

100 pause all

110 input "Feet? ”;feet

120 meters=feet+*.3048

130 display “Meters =";meters

The purpose of this program is to convert feet to meters. Here is
the same program as one multistatement line.

100 pause alliinput "Feet? ";feet:meters=feet*.3048:
display “"Meters =";meters

To combine the program lines, simply substitute a colon for the
number of the next line. As long as the line does not exceed the
80-character limit imposed by the display buffer size, you can con-
tinue to add new statements to a line by preceding them with a
colon. (The example given above is 77 characters long.)

127

128 / Lesson 21

Technical Note: Compact Computer BASIC does not permit &
statement except a rem (or !) statement to appear on the sa
line with a data, image, or dim statement.

As you compare the two versions of the English-to-metric conversioh
program, it is evident that the first is easier to understand. Thef
why ever use multistatement lines? The primary answer is to sav§
memory space. The computer uses 4 bytes of memory to stora §
line number, but only 1 byte to store a colon separator. Thus, replage
ing three line numbers with colons reduces the amount of memory.
needed to store the English-to-metric program by 9 bytes. This I§
calculated as follows:

memory for 3 line numbers = 3 X 4 = 12 bytes
memory for 3 colons =3 X 1= _3 bytes
savings = 9 bytes

When memory space is not critical, however, it is usually better toff
avoid using multistatement lines, since they increase the complexity.
of a program. It is not uncommon for programmers to introduce

errors into a program as a result of trying to save memory by combin.

ing lines. The more densely packed lines seem to breed errors:

Also, be aware that some program lines cannot be correctly com-
bined. For example, a program such as

100 x=100

110 display x
120 x=x+2
130 goto 110

cannot be combined into one line because the goto statement can
only transfer execution to the beginning of a line—not to the middle
as would be required if this program was entered as one multistate-
ment line. You can reduce this program to two lines, however.

100 x=100
110 display x:x=x-+2:goto 110

The computer generally treats what follows a colon statement sepa-
rator as an entirely separate program line. The exception to this
rule occurs when the colon separator is used with an if then state-

Multiple Statement Lines / 129

nmont. To understand why the colon separator is treated differently
i this case, you need to remember that the general form of the
It then statement is

if condition then action

It the condition is true, the action is executed. If it is false, the
wection is skipped. Therefore, if a second statement is added to
the action by means of a colon separator, that statement will also
uxecute only when the condition is true; it will be skipped when
the condition is false. The two examples that follow should help
clarify this point.

Example 1

100 pause all

110 input "Enter a number: ”;n
120 if n<.0 then display “Negative”
130 goto 110

Example 2

100 pause all
110 input "Enter a number: ”;n
120 if n<0 then display "Negative”:goto 110

At first glance, these programs may appear to be functionally identi-
cal. They are not, although the only difference is the use of the
colon separator. In Example 1, the computer is in a true endless
loop. No matter what numeric value you enter, the computer will
always send execution back to line 110.

In Example 2, the computer is not in an endless loop. The program
will stop when you enter a positive value. The reason for this differ-
ence is that the goto statement in Example 2 is executed only
when the condition is true—in this case, only when a negative num-
ber is entered. When a zero or positive value is entered, both the
display and goto statements are skipped.

The computer’s treatment of the colon separator following an if
then statement is a useful feature. It simplifies the process of making

130 / Lesson 21

multiple operations conditional. For example, consider the followiNg
program.

100 randomize

110 ni=intrnd(9)

120 n2=intrnd(9)

130 display nt;" *";n2;"=";
140 input answer

150 if answer=n1*n2 then 190
160 display beep, "WRONG. TRY AGAIN.”
170 pause .8

180 goto 130

190 display "VERY GOOD!"
200 pause .8

210 goto 110

This is a copy of the multiplication tables program discussed in
Lesson 14. The purpose of the if then statement in line 150 is to
check the answer that is entered. If the answer is correct, the pro-
grammer wants to display VERY GOOD, pause for .8 seconds, and
then send execution back to generate a new problem. Because
the program does not use muiltistatement lines, it is necessary to
transfer execution to another part of the program to perform these
actions. A version of the program that uses a multistatement line
is given below.

100 randomize

110 n1=intrnd(9)

120 n2=intrnd(9)

130 display ni;" *";n2;"=";

140 input answer

150 if answer=n1*n2 then display "VERY GOOD!":
pause .8:goto 110

160 display beep,”WRONG. TRY AGAIN.”

170 pause .8

180 goto 130

The second version is not just shorter—it is also more understanda-
ble. The consequences of a true decision-making resuit are obvious.

Multiple Statement Lines / 131

tn 1w original version, by contrast, it is necessary to examine several
pmuls of the program to find the consequences of a true result.

ILARNED IN THIS LESSON

Multiple statements can be placed on the same program line by
shtering a colon between the statements. Except when used with
il then statements, the colon instructs the computer to treat the
slntement following the colon as if it was an entirely separate pro-
gram line. When a colon separator is used following an if then
ulalement, the additional statement or statements are part of the
action of the if then statement. This is a useful feature that simplifies
the execution of multiple actions by if then statements.

Ihe maximum line length is 80 characters.

t.ompact Computer BASIC does not permit any statement except
n rem (or !) statement to appear on the same line with a data,
Image, or dim statement.

(;ombining program statements shortens programs and reduces the
memory needed to store them. This reduction in size is usually
¢gained at the expense of program clarity. Unless program size is
crucial, it is generally better to avoid densely packed multistatement
lines.

LeSSON afeee afese

More on Decision Making

The purpose of the if then statement in a program is to permit
the computer to perform different actions depending upon the resuit
of a decision-making test. If the test is true, the action following
the then portion of the if then statement is executed. If the test
is false, the action is skipped.

By using the else option with the if then statement, you can define
a specific action to be performed when the result of the test is
false. The general form of the if then statement with the else option
is

if condition then action1 else action2

The if then else combination instructs the computer to perform
action1 when the condition is true and action2 when the condition
is false. In other words, “do action1 if true, do action2 if false.”

To illustrate the convenience of the else option, examine the follow-
ing program.

100 pause all

110 input "Enter a number: ”;n
120 if n<0 then display "Negative”
130 display "Positive”

140 goto 110

132

Mare on Decision Making / 133

Hore the programmer wants to indicate whether the entered number
m negative or positive (zero is assumed to be positive). The logic
wied to perform this task is not correct, however. Although the
jmogram does perform as intended when a positive number is en-
lwred, it does not work correctly with negative numbers. When a
nogative number is entered, the program displays both messages.
It executes the action following the then statement and the program
ine that follows.

lo fix this program, you can replace line 120 with
120 if n<O then display "Negative”:goto 110

or you can use the else option. The program as it appears if you
use the else option is shown below.

100 pause all

110 input "Enter a number: ”;n

120 if n<<O then display "Negative” else display "Positive”
130 goto 110

Although both the corrected original and the else version perform
the intended task, the else version is shorter and easier to under-
stand.

When multiple statements are used following an else option, they
are treated as part of the action to be performed when the test
result is false. For example, in the sample program line

300 if n=38 then display "Done”:end else read tn=n+t:
goto 100

action1 consists of

display "Done”:end
and action2 of

read t:n=n-+t:goto 100

Notice that although colons are needed to separate multiple state-
ments, no colon is needed to separate the else option.

134 / Lesson 22

LEARNED IN THIS LESSON

The else option is used to define a specific action to be performad
when the result of a decision-making test is false. The general form
of the if then statement with the else option is

if condition then action? else action2

Action1 and action2 can consist of single statements or multiple
statements joined by the colon separator.

The advantage of the else option is that it shortens a program
and generally makes it easier to understand.

LesSON «fase "enet

More on FOR NEXT Looping

The purpose of for to next statements in a program is to control
the number of times that a loop is executed. In the examples in
which these statements have been used so far, only one for next
loop has been active at a time. It is possible, however, to “nest”
for next loops just as you can nest subroutines.

An example that demonstrates the operation of nested for next
loops is shown in Fig. 23-1. As you can see from the boxes drawn

new
100 Inested for next demonstration
110 pause all

120 for 0=11t0 3
130 display "outer loop, 0 =";0

140 fori=1to 2
150 display at(3),”inner loop, i =";i r—-—lnner foop rOuter/oop
160 next i

170 next o

Fig. 23-1 A program demonstrating the operation of nested for next
loops.

135

136 / Lesson 23

around the loops, the inner loop is completely within the outer loop.
This is absolutely essential when nesting for next loops. If you
attempt to put any portion of the inner loop outside the outer loop,
an error condition will result.

A sample run of the program from Fig. 23-1 is shown below.
Enter Display

run ater loor: o = |
ENTER ianer looes i
ENTER irfer loor. 1 0= 2

outer loorp. o =
inper loorp. 1 =
imper loor. 1 0= 2

anter loor, o = 3
itimer looe. 10= 1
ENTER inner loorp. 1 = 2

ENTER

milmiimiim
z)zllz)l=z
SilSH(=
mim)pm{m
|| 3||2||©

The program executes the entire inner loop every time it executes
the outer loop once. Therefore, the inner control-variable always
begins anew with the initial-value. While the inner loop is being
executed, however, the computer keeps track of the current value
of the control-variable of the outer loop. When the value of this
variable exceeds 3, the program stops.

Compact Computer BASIC allows you to use as many as 24 nested
loops in a program. When nesting loops, however, observe the fol-
lowing rules.

* Each loop must begin with its own for to statement and
end with its own next statement.

e Aninside loop must be located completely within the bounds
of the next higher loop.

¢ Each loop must have a different control-variable.

Nested loops are very useful when you want to find all possible
combinations, or permutations, of two or more variables. For exam-
ple, suppose you want to display the muitiplication table up to
6 X 6. The program shown in Fig. 23-2 demonstrates how this is
done with nested for next loops.

Mare on FOR NEXT Looping / 137

new
100 !multiplication table program

110 forn1=0to 6

120 forn2=01to0 6

130 display n1;” *";n2;"=";n1*n2 Inner loop —Outer loop
140 pause .5

150 next n2

160 next n1

Fig. 23-2 A program demonstrating how nested for next loops are
used to find all permutations of the multiplication table up to 6 X 6.

A partial run of the program from Fig. 23-2 is shown below.
Enter Display
run :

Py

#+
+
3

oo

P
1 H
o0 %

[T

+
K

N
1
o

[

fu i)
T
I

The first number in each of the multiplication problems is generated
by the outer loop. The second number is generated by the inner
loop. The two loops together generate all possible combinations
of the values between 0 and 6.

The power and flexibility of for next loops can be greatly increased
by using the step option. The step option allows you to define a
specific increment to use for increasing the control-variable. The
general form of the for next statement with the step option is

for control-variable = initial-value to limit step increment

The value given for increment can be either a constant or a variable.

138 / Lesson 23

The step option is useful primarily in cases where the control-varl-
able is being used for several purposes. For example, in the com-
pound interest program developed in Lesson 15, the value of the
control-variable was also used as the annual interest rate. That
program is reproduced below.

100 pause all

110 input "Principal: *;P

120 for count=10 to 15

130 i=count/100

140 FV=P=*(1+i/12)A12

150 FV=int(FV+100+.5)/100

160 display “Value at”;count;” % =";FV;"dollars”
170 next count

By replacing line 120 of this program with

120 for count=10 to 15 step .5
you can calculate the effects of increasing the interest rate by .5
percentage points. The step .5 statement instructs the computer
to increase the value of count by .5 rather than by 1. A sample
run of the new version of the program is shown below.

Enter Display

run Frinciral:

98723 lUzlus zt 18 % = 1838.41 dollars
Waluys 3t 18,5 % = 1895.83 dollars
Maluse st 11 % = 11681.47 dollars
Walue at 11.5 X = 118&.%4 dollars
Malue at 12 % = 1112.44 daollars
Walue a3t 12.5 % = 1117.96 dollars
Walus at 13 ¥ = 112%3.% dollars
tHalue at 13.3 % = 1123.87 dollars
Walue st 14 % = 1134.86 dollars
Ualue zt 14,5 % = 1148.2% dallars
Jalue at 15 % = 1145.93 dollars

More on FOR NEXT Looping / 139

By changing the increment of the step option, you can change
the value by which the interest rate is increased. For exampie, to
observe the effects of increasing the interest rate by 2 percentage
points, replace line 120 with

120 for count=10 to 15 step 2

and run the program again.

Enter Display

run Frinciral:

987.23 Walue at 18 X = 1@98.51 dallars
Malus at 12 % = 1112.44 dollars
Balue =zt 14 % = 1134.66 dollars

Since the control-variable is now being-increased by two, the vari-
able’s limit is exceeded when 2 is added to 14.

Besides specifying a positive increment, the step option can specify
a negative increment. If you then use the correct values for initial-
value and limit, the for next loop can be made to count backwards.
To illustrate this feature, make the foliowing change to line 120.

120 for count=15 to 10 step —1

A sample run is shown below.

Enter Display

run Frirnciral:
98723 llzlus a3t 15 % 1145,.%3 dallar:
112468 dollar

]
in

Ualue at 14 % =

Walue at 13 % = 1123.5 dollars
Walue =t 12 X = 1112.44 dollars
Ualue at 11 X = 1181.47 dallars
Ualue at 18 XN = 1898.61 dollars

To make the for next loop count backwards, tho mnilial value must
be larger than the limit.

140 / Lesson 23

LEARNED IN THIS LESSON

For next loops can be nested by placing one loop within another
loop. When nesting for next loops, the following rules must be
observed.

¢ Each loop must begin with its own for to statement and
end with its own next statement.

* An inner loop must be located completely within the bounds
of an outer loop.

* Each loop must use a different control-variable.

The power and flexibility of for next loops can be increased by
using the step option. The step option permits a for next loop to
be incremented by any value, including negative or fractional values.
The general form of the for next statement with the step option
is

for control-variable = initial-value to limit step increment

The value given for the increment can be either a constant or a
variable.

If a negative increment is used, and the initial-value is larger than
the limit, the for next {oop will count backwards.

Review Test 5

1. Which of the following are valid BASIC statements?

(a) 222 display using 500 at(7),price

(b) 100 display using ##### ## ,cost

(c) 500 image "grand total = ##### ##"

(d) 250 display using S$&T$,h$

(e) 190 display beep erase using 500,day$(x)

(f) 200 if fee=1000 then fee=fee+ 15 goto 245
(9) 110 gosub 200:rem call subroutine:x=x-+1
(h) 770 for x=1 to 10:display x;:next x

(i) 135 read a,b,c:data 1,2,3

(j) 400 if a=100 then 130 else if a=200 then 170
(k) 450 for count=7 to 1 else —2

() 300 for =50 to —50 step —5

(m) 235 for a=b to ¢ step d

(n) 266 for n1=19 to 9 step nit=r/t:next n

2. What is the purpose of the erase all parameter in a display
statement? When is it useful?

3. How is a display format specified for the using parameter? What
symbols are used to specify the format?

4, How are multistatement lines created? When are they advanta-
geous?

5. What is the function of the else option in an if then statement?

141

142 / Review Test 5

6. Write a program that uses the formula shown below to calculate
and display the value of Y as X increases from 5 to 15 in
increments of 0.5 units.

7. A common application of nested for next loops is to read data
into a two-dimensional array. Write a program that reads the
following test scores from data statements into an array named
grade and then calculates and displays the average test score

for each student.

Y=17X?*+ X -2

Test1 Test2 Test3 Average
Student 1 78 82 89 ?
Student 2 83 85 81 ?
Student 3 | 100 70 73 ?
Student 4 65 68 71 ?
Student 5 99 89 93 ?
Student 6 87 0 93 ?

Lesson ofaee

String Comparisons

L.esson 10 introduced the subject of relational tests and illustrated
how they are used to compare numbers in decision-making instruc-
tions. Relational tests are not limited to numbers, however. Strings
can be compared and tested just as easily.

A program that illustrates the use of string comparisons is shown
below.

new
100 !string comparison example

110 pause all

120 input "Fahrenheit or Celsius? (F/C) ";a$

130 if a$="F" then gosub 160!calculate Fahrenheit
140 if a§="C" then gosub 220!calculate Celsius
150 goto 120Yoop

160 !calculate Fahrenheit subroutine

170 input "Enter degrees Celsius: ";celsius

180 n=9/5=celsius+32

180 gosub 280!round to 2 places

200 display celsius;”Celsius =";n;”Fahrenheit”

210 return

220 Icalculate Celsius subroutine

230 input "Enter degrees Fahrenheit: “;fahrenheit
240 n=5/9x(fahrenheit—32)

250 gosub 280!round to 2 places

(cont. on following page) 143

144 / Lesson 24

(cont. from preceding page)

260 display fahrenheit;”Fahrenheit =";n;”Celsius”
270 return

280 frounding subroutine

290 n=int(n*100+.5)/100

300 return

Before running this program, look at lines 130 and 140. The purpose
of these lines is to determine whether an “F”’ (for Fahrenheit) or
a “C” (for Celsius) is entered in response to the ‘“Fahrenheit of
Celsius?” prompt. If an F is entered, the comparison at line 130
will be true and the subroutine at line 160 will be executed. If a G
is entered, the comparison at line 140 will be true and the subrouting
at line 220 will be executed. In either case, when execution returng
from the subroutine, it proceeds to line 140 which sends the program
back to line 120. If any character other than F or C is entered,
both comparisons fail and again execution loops back to line 120,

A sample run is shown below.
Enter Display

run Fahrenhelit or Celsius? CFo050

C Erter dedresz Fahrenheit:

100 18 Fahrenhelt = 3I7.78 Celzius
F
232.78

If you ran this program and it didn’t accept your entry of an F or
C, you were probably entering lowercase letters. Although it makes
no difference whether you use lowercase or uppercase when enter-
ing BASIC commands or statements, the two cases are not consid-
ered equal by relational tests.

To understand how the computer distinguishes between uppercase
and lowercase letters, you must know how string values are stored
inside the computer. Internally, every string character is stored as
a number between 0 and 255. These numbers are referred to as
the ASCl value or representation of the character. ASCIl is an
acronym for American Standard Code for Information Interchange

String Comparisons / 145

nnd defines a convention adopted by most computer manufacturers.
A complete list of the ASCII values used to represent characters
internally is given in Appendix A of this manual.

When the computer compares two string characters, it compares
their ASCII values. If their ASCII values are identical, they are consid-
ured equal. Otherwise, they are considered unequal. in the case
of f and F, the ASCII value of f is 102 and the ASCII value of F is
/0. Therefore, they are not equal.

Because the computer uses ASCII values to make comparisons,
it can also test whether a character is less than or greater than
another character. For example, a lowercase f is greater than an
uppercase F (102 > 70). A table showing the meaning of the rela-
lional operators when used to compare string characters is given
below.

Symbol Meaning for String Comparisons
< Precedes in ASCI| order
> Follows in ASCI! order
= Equal to
<> Not equal to
<= Equals or precedes in ASCI order
>= Equals or follows in ASCII order

Comparisons can be performed on strings longer than one charac-
ter. To do so, the computer compares the strings character by char-
acter, including any spaces in the string. (If you look at the list in
Appendix A, you will notice that the ASCII value of a “space” is
32. Therefore, a space is greater than any character with an ASCl|
value less than 32, and less than any character with an ASCII value
greater than 32.)

The following program will help you understand string comparisons.

new
100 !string relation example
110 pause all

120 input “String 1: ";s1$
130 input "String 2: ”;s2%
(cont. on following page)

146 / Lesson 24

(cont. from preceding page)

140 if s1$<<s2$ then display s18;" <”;s2%
150 if s1$=s2$ then display s18%;" =";s2%
160 if s1$>s2$ then display s1$;" >";s2$
170 goto 120

A sample run is shown below.

Enter Display

run String 14

xyz Strind 2:
XYZ R
Strind 1t

$ String 2:

LR

Strind 1:

cat Strinma 2

car cat soar
String 1@

Bill Stripa 2@

BILL BEill *BILL
String 1@
larger String 2t
large larder s larde
Streing 1
isotherm String Z:
isothermal izotherms izothermnal
Break

This program displays the relationship between two strings. You
shouid be able to explain the results of the first four comparisons
by referring to the ASCII table in Appendix A. To understand the
last two comparisons, you must know the following rule: if two strings
of unequal length are equal up to where the shorter string ends,
then the longer string is considered greater than the shorter string.
In effect, its extra length gives it a larger ASCIl value. Therefore,
“larger” is greater than “large”, and “‘isothermal” is greater than
“isotherm”.

The nuli string, or string of zero length, is considered less than
any other string:

String Comparisons / 147

Enter Display
run Strin3a 1:
ENTER Strim3a Z:

.

BREAK Et e ak

The null string is entered by just pressing [ENTER]. Since it contains
nothing, nothing is shown to the left of the < sign.

You may be wondering when the null string is useful. The null string
provides a convenient method of checking if an entry is made in
response to an input prompt. Since it is easy to hit[ENTER] by mistake
when responding to a prompt, it is a good idea to check for this
error in any program that accepts the entry of string information.
The next program provides an example of this type of error checking.

new
100 !telephone memo pad program

110 pause all

120 restore 200

130 input "Name: ";name$

140 if name$="" then 130

150 read a$,phone$

160 if a$="last name” then display “End of list":goto 120
170 if a$=name$ then display a$;” *;phone$:goto 120
180 goto 150!loop

190 !Istart of data statements

200 data Steve,867-5309,Chris,521-0021

210 data Bob,522-2345,John,787-1964

220 data Nancy,212-322-7667,Ben,788-8828

230 data Ken,455-7223,Charles,787-9329 ext 231

999 data last name,last phone

This program is an slectronic telephone directory. The names and
numbers are stored in data statements, so new names and numbers
can be added by simply entering data statements with line numbers
less than 999. When the program is run, you are prompted to enter
the name of the person whose phone number you want. The pro-
gram searches through its data-list looking for the entered name.

148 / Lesson 24

If the name is found, the person’s telephone number is displayad,
Otherwise, “End of list” is displayed.

A sample run is shown below.

Enter Display

run Hame:

Bob Bobk S2Z-2345

Hames

charles Ernd of list

Hame:

Charles Charles FET-93II9 ext 231

Ereak

Notice that the program requires that you enter the name you are
looking for exactly as it is listed in the data statements.

LEARNED IN THIS LESSON

The computer allows all relational tests to be performed on string
values. The tests are based upon a character by character compari-
son of the ASCII values of the strings. ASCIl is an acronym for
American Standard Code for Information Interchange and defines
a convention adopted by most computer manufacturers for repre-
senting string characters in a computer’s memory. A complete list
of the ASCII values used by the CC-40 is given in Appendix A of
this book.

A table showing the meaning of the relational operators when used
to compare string characters is given below.

Symbol Meaning for String Comparisons
< Precedes in ASCII order
> Follows in ASCIi order
= Equal to
<> Not equal to
<= Equals or precedes in ASCIl order

>= Equals or follows in ASCIl order

String Comparisons / 149
tho ASCII values for lowercase letters are greater than the values
for the corresponding uppercase letters.

lhe null string, or string of zero length, is considered to be less
than any other string.

LesSON «fese “east

String Manipulations

In the telephone memo pad program developed in the preceding
lesson, you had to enter an entire name, correctly spelled and capi-
talized, if you wanted the program to find a telephone number. This
requirement not only increased the difficulty of using the program,
it placed the burden of exactly remembering the person’s name
on your memory. By using the seg$ function, you can place most
of that burden on the computer’s memory.

The seg$ function allows a program to split a string into pieces,
for either assignment or testing purposes. The general form of the
seg$ function is

seg$(string-expression,position,length)

where string-expression is the string constant or variable you wish
to split, position is the place in the string at which the segmenting
is to begin, and /ength is the number of characters to split off.
The following short program will help you understand how this func-
tion works.

new

100 !seg$ demonstration program

110 pause all

120 test$ = "abcdefghijkimnopgrstuvwxyz”
130 input "Enter starting position: ";start
140 input "Enter length: ”;length

150

String Manipulations / 151

150 display seg$(test$,start,length)
160 goto 120

Ihis program defines test$ as the lowercase letters of the alphabet
from a to z. It then displays a segment of that string based upon
the values you enter for starting position and length. A sample run
is shown below.

Enter Display

run Enter ztarting rFosition:
1 Enter len3dth:

12 abcdetIkidkl

Enter ztarting rasition:
25 Enter lendth:

2 9z

Enter starting Fosition:
1 Enter lem3dth:

7 Elmnors

BREAK Etealk

The first position in a string is 1, so if you enter a zero or negative
number for starting position, a Esd ar-gument error condition
will result when the seg$ function is executed. You can enter any
nonnegative value that you want for the length. If you enter a value
that is greater than the number of characters from the starting posi-
tion to the end of the string, the computer simply takes the rest
of the string.

By using seg$, you can modify the telephone memo pad program
so that you only have to enter the first letter of a name and it will
find all names beginning with that letter.

new
100 !telephone memo pad program

110 pause all

120 restore 200

130 input "Name: ”;name$

140 if name$="" then 130

150 read a$,phone$

160 if a$="last name” then display "End of list*:goto 120
{cont. on following page)

152 / Lesson 25

(cont. from preceding page)

170 if seg$(a$,1,1)=seg$(name$,1,1) then display a$;
" ".ohone$

180 goto 150

190 Istart of data statements

200 data Steve,867-5309,Chris,521-0021

210 data Bob,522-2345,John,787-1964

220 data Nancy,212-322-7667,Ben,788-8828

230 data Ken,455-7223,Charles,787-9329 ext 231

999 data last name,last phone

The only change made to the original version was in line 170.
This change causes the program to compare a segment of a$ start-
ing at position 1 with a length of 1 to a segment of name$ starting
at position 1 with a length of 1 (in other words, the first letter of
a$ with the first letter of name$). If the two are equal, a maich
has been found and the name and phone number are displayed.
Since there can be many names with the same first letter, the pro-
gram continues to search the data statements until the end of the
list, marked by the dummy values ‘“last name” and ‘‘last phone”,
is found.

A sample run is shown below.

Enter Display

run Hame:

B Eok

Eer E-BEIE

Ermd of list

Hamet

C Chriz S21-86%1

Charles 7F27V-2329% ext 231
Ermd of lizt

EBreak

Since the program now looks only at the first letter of each string,
it will display the names Chris and Charles even if you enter Cz
for the name.

Another useful string function is the len function. The len function
allows a program to determine how long-a string is (i.e., how many

String Manipulations / 153

characters are in the string). The general form of the len function
is

len(string-expression)

where string-expression can be a string constant, variable, or con-
catenated expression.

A program that demonstrates the len function is shown below.

new
100 !len demonstration program

110 input "Enter string: ”;s$

120 display s$;” is”;len(s$);”characters long”
130 pause

140 goto 110

A sample run is shown below.

Enter Display

run Enter =tring:

test it tast it iz 7V characters lond
Eviter =ztring:

iz B characters lond

Ereak

The len function counts all characters in a string, including spaces.
if a null string is entered, it has a length of zero.

The rpt$ function creates a string of a specific number of characters.
The general form of the function is

rpt$(string-expression,numeric-expression)

where string-expression is the string to be repeated and numeric-
expression is the number of times it is to be repeated.

The following example demonstrates the operation of the rpt$ func-
tion.

new

100 hpt$ demonstration program
110 input "Enter string: ";s$

120 display rpt$(s$,5)

(cont. on following page)

154 / Lesson 25

(cont. from preceding page)

130 pause

140 display "The string length is:";len{rpt$(s$,5))
150 pause

160 goto 110

A sample run is shown below.

Enter Display
run Enter sterina:
qwerty Huertaguertgyyert aquertaguwerty

ENTER The =trind len3ath iz 20
Enter string:
ENTER

The s=tripnd lendth iz: 3

The rpt$ program displays five repetitions of the string that you
enter. (Other numbers of repetitions can be obtained by changing
the numeric-expression parameter.) When you press [ENTER], the
program then displays the length of the string. Observe that this
program does not actually assign the result of the rpt$ function
to a string variable. When desirable, this can be done by an assign-
ment statement such as

test$ =rpt$(s$,5)

Notice aiso that a string function can be used as the argument of
another string function (line 140). This type of construction is valid
as long as the inner function produces the kind of result expected
by the outer function. in this case, the rpt$ function produces a
string value, exactly as required by the len function.

The maximum string length allowed by the computer is 255 charac-
ters. If you attempt to produce a string that is longer than this,
the computer will cut the string length back to 255 characters and
display the message Strin3d trumcaticon. (You can check
this with the rpt$ demonstration program above by entering a string
that is more than 51 characters long.)

The next program puts the three string manipulation functions to
work. This program provides a simple version of a word guessing

String Manipulations / 155

game. The game requires two players. The first player enters a
word while the second player is not looking. The second player
must discover the word by guessing which letters are in the word.
Every time a correct guess is made, that letter is put in the appropri-
ate place(s) in the blank word. The computer keeps a count of
how many guesses were made and displays that number at the
end of each round.

new
100 Iguess word program

110 pause all

120 input "Enter secret word: ”;word$

130 if word$="" then 120

140 length=len(word$)

150 guesscount=0

160 letterscorrect=0

170 format$=rpt$("-",length)

180 Ibegin guessing loop

190 if letterscorrect=length then 350'round finished
200 display format$;” ";guesscount;

210 input " Guess? ";guess$

220 if guess$="" then 210

230 guesscount=guesscount+1

240 lbegin string search loop

250 for position=1 to length

260 if seg$(word$,position,1)=guess$ then gosub 290
270 next position

280 goto 180

290 !put letter in format$ subroutine

300 left$=seg$(format$,1,position—1)

310 right$ =seg$(format$,position+1,length —position+ 1)
320 format$ =left$&guess$&right$

330 letterscorrect=letterscorrect+1

340 return

350 Iround finished

360 display "You guessed it in”;guesscount;”guesses”
370 goto 120

A sample run is shown below.

156 / Lesson 25

Enter Display

run Enter secret word:

help ---- B Fu=sss?

h h-=-- 1 Guessz?

y4 f=—=-- 2 Guezs?

p h—=-p I GHuess?

e he-fF 4 Guesz?

| You Queszsed it in D Queszes
Erealk

A brief explanation of the program follows.

The program begins by prompting for the secret word and storing
that word in word$. The len function is used to determine how
long the secret word is. After setting the variables guesscount and
letterscorrect to zero, the program uses the value produced by the
len function to create a format string showing how long the secret
word is. The rpt$ function is used for this purpose since it allows
a variable to set the string length.

Line 180 begins the guessing loop of the program. The loop begins
by checking if the number of correct letters (letterscorrect) equals
the number of letters in the secret word (length). If this test is true,
the word has been guessed and the round is over.

If letterscorrect does not equal length, the program proceeds to
prompt for a guess. The variable guesscount is increased each
time a guess is made so that the program can display the number
of guesses at the end of the round.

The string search part of the program is a loop that uses the seg$
function to check each of the positions in the secret word to deter-
mine if a correct guess has been made. When a correct guess is
found, the subroutine at line 290 puts the letter in the correct location
in the format string, increases the value of letterscorrect by one,
and returns execution to the string search loop. After every letter
in the string has been checked, execution is transferred to line
180 to begin the guessing loop again.

String Manipulations / 157

LEARNED IN THIS LESSON

The seg$ function is used to split a string into a segment or piece.
The general form of the function is

seg$(string-expression,position,length)

where string-expression is the string to be split, position is the place
where the segmenting is to begin, and /ength is the number of
characters to split off. The first character in the string is position 1.

The len function determines the number of characters in a string.
The general form of the function is

len{string-expression)
where string-expression is the string whose length is to be tested.

The rpt$ function is used to create a string that consists of a certain
number of repetitions of another string. The general form of the
function is

rpt$(siring-expression,numeric-expression)

where string-expression is repeated the number of times specified
by numeric-expression.

LessOn ufree fune’

Logical Operations

In a decision-making statement such as
if day>31 then gosub 200

the computer decides to execute or not execute the subroutine
based upon the result of the relational test day>31. if the retation
is true, the subroutine call is executed. If the relation is false, the
subroutine call is skipped.

Degisions can also be based upon the results of logical operators.
Logical operators allow several true-false conditions to be tested
with a single if then statement. The logical operators are: and,
or, xor, and not.

The and operator compares two separate true-faise conditions and
arrives at a single true or false result, based upon the rules shown
in the table below. The resuits of the individual true-false tests (repre-
sented by X and Y) are shown on the left and the combined result
is shown on the right.

X Y Xand Y
True | True True
True False False
False | True False

False | False False

158

Logical Operations / 159

As you can see from studying the table, for the result of an and
operation to be true, both individual tests must be true. if either
of the individual tests is false, the combined result is false.

An example of an and decision-making test is shown below.
100 if month=4 and day=231 then display “Invalid day”

If month equals 4 and day equals 31, the message will be displayed.
if either or both variables have some other vaiue, the display state-
ment will be skipped.

The rules controlling the operation of the or operator are shown
below.

X Y XorY
True True True
True False True
False | True True

False | False False

The result of an or operation is false only when both individval
results are false. If either or both individual resuits are true, the
combined result is true also. An example of an or test is shown
below.

100 if day<<1 or day>>31 then display "Invalid day”
If day is less than 1 or greater than 31, the message will be displayed.

The rules controlling the operation of the xor (exclusive or) operator
are shown below.

X Y X xorY
True True False
True Falsa True
False | True True

False | False False

The result of an xor test is true only when the results of the individuai
tests differ. Whenever the individual tests have identical results,
the combined result is false.

160 / Lesson 26

An example of an xor test is shown below.
100 if a=5 xor b=10 then gosub 200

If either a or b equals the tested value, but not both, the subrouting
call is executed. If both are true, or both are false, the subroutine
call is skipped.

The last logical operator is the not operator. The not operator re-
verses the result of a single true-false test.

X not X

True False
False True

An example of the not operator is shown below.
100 if not a=5 then gosub 200

If a equals 5, the subroutine call will be skipped. If a does not
equal 5, the subroutine call will be executed.

The logical operators can be used to create very sophisticated deci-
sion-making tests. For example:

if a=5 and b<10 or ¢>15 and not d=20 then x=2

When different logical operators are combined in one decision-mak-
ing test, the operators are evaluated from left to right in the following
order:

Levels of Precedence
for Logical Operators

not (highest priority)
xor
and
or (lowest priority)

The order in which the decision-making example given above will
be evaluated is illustrated in Fig. 26-1. The first operator performed
is the not operator; the last operator performed is the or operator.

Logical Operations / 161

ifa=5 and b<<10 or ¢>15 and not d=20 then x=2
L+ |

4

Fig. 26-1 Example illustrating the order of
evaluation of multiple logical operators.

If you want logical operators to be evaluated in another order, you
can place parentheses around portions of the test, just as in mathe-
matical calculations. For example, entering

if a=5 and (b<<10 or ¢>15) then x=2

will force the computer to evaluate the or operator before the and
operator.

The major advantage of logical operators is that they allow programs
to be shortened by combining several if then tests into one state-
ment. The following program demonstrates how convenient this can
be. The purpose of this program is to ensure that values entered
for month, day, and year are valid. Without the capability to use
logical operators in these tests, the program would require many
more if then statements.

new

100 lvalidate date program

110 pause all

120 input "Enter month: ”;m

130 if m<<1 or m>12 or m<>int(m) then 220

140 input "Enter day: ";day

150 if day<<1 or day>31 or day<<>int(day) then 240

160 if day=31 and (m=4 or m=6 or m=9 or m=11) then
240

170 if day>29 and m=2 then 240

180 input “Enter year: ";year

190 if year/4<>int(year/4) and m=2 and day>28 then 260

200 display m;day;year;"is a valid date”

210 goto 120!oop

220 display "Invalid month”

(cont. on following page)

162 / Lesson 26

(cont. from preceding page)
230 goto 120

240 display "Invalid day”
250 goto 140

260 display "Year is not a leap year”

270 display "so day is invalid”
280 goto 140

The functions of the decision-making tests are explained below.

Line 130:

Line 150:

Line 160:

Rejects the entered month if it is less than 1 or
greater than 12 or a fractional value.

Rejects the entered day if it is less than 1 or greater
than 31 or a fractional value.

Rejects the entered day if it is equal to 31 and
any one of the following months was entered: April,
June, September, or November.

Rejects the entered day if it is greater than 29 and
the month is February.

Rejects the entered day if the year is not a leap
year and the month is February and the day is equal
to 29 (see Lesson 13 for a discussion of the leap
year test).

A sample program run appears below.

Enter Display

run Enter months:

2 Enter daa:

29 Enter desar:

1981 Yesr 1= not g lear Hear

so das 1= inwalid

Erter daw:

29 Enter g9sar

1980 2029 1928 iz a walid date
Erter month:

7 Erter daa:

31 Enter wear:

1949 oIl 1249 i= a3 walid date
Break

Logical Operations / 163

LEARNED IN THIS LESSON

Logical operators allow several true-false conditions to be tested
with a single if then statement. The logical operators available in
Compact Computer BASIC are and, or, xor, and not.

The and, or, and xor operators produce a single true or false result
from a comparison of two separate decision-making tests. A table
giving the rules governing these operations is shown below (X and
Y represent the results of the individual tests).

X Y XandY XorY XxorY
True True “True True False
True False False True True
False True False True True
False False False False False

in summary, and is true when both individual tests are true, or is
true when at least one individual test is true, and xor is true when
the results of the individual tests differ.

The not operator reverses the status of a single decision-making
test, as shown in the table below.

X not X

True False
False True

Lesson .fe..

The ON GOTO and
ON GOSUB Statements

The on goto and on gosub statements are decision-making state-
ments that base decisions on a numeric value and not on the result
of a true-false condition like the if then statement. These statements
have the general form:

on numeric-expression goto line-list
on numeric-expression gosub line-list

where numeric-expression is a numeric variable or calculation and
line-fist is a list of line numbers separated by commas.

The value of numeric-expression determines which of the transfer
locations in the line-list is selected. If numeric-expression equals
1, the program transfers to the first line number; if 2, to the second
line number; if 3, to the third line number, and so on. If numeric-
expression has a value that is less than 1, greater than the number
of line numbers in the line-list, or is not an integer, a BEad walus
error condition occurs.

A sample on goto statement is shown below.
50 on n goto 100,200,300

When this statement is executed, the computer will transfer program
execution to line 100 if n=1, to line 200 if n=2, and to line 300 if
n=3. A single on goto statement such as this can replace a three-
line program sequence such as

164

The ON GOTO and ON GOSUB Statements / 165

50 if n=1 then 100
60 if n=2 then 200
70 if n=3 then 300

The on gosub statement functions identically to the on goto state-
ment except that the line numbers in the line-list are treated as
subroutines rather than direct transfers. For example, when

250 on k/2+1 gosub 3000,205,3100,2000

is executed, the program calls line 3000 if k/2+1=1, line 205 if
k/2+1=2, line 3100 if k/2+1=3, and line 2000 if k/2+ 1 =4, When
the program returns from the selected subroutine, execution contin-
ues with the first line following the on gosub statement.

A program that uses the on goto statement is shown below.

new

100 !Meters/liters/grams conversion program

110 display ”1-Meters 2-Liters 3-Grams";

120 input option

130 if option<O or option>3 then 120

140 on option goto 150,190,230

150 IConvert feet to meters

160 input "Enter feet: ";feet

170 display feet;"feet =";feet*.3048;"meters”

180 pause:goto 110

190 !Convert gallons to liters

200 input “Enter gallons: “;gallons

210 display gallons;”gallons =";gallons *3.785;"liters”
220 pause:goto 110

230 !Convert ounces to grams

240 input "Enter ounces: ";ounces

250 display ounces;”ounces =";ounces * 28.349;"grams”
260 pause:goto 110

This program illustrates a common application of the on goto anc
on gosub statements. The program begins by displaying a list, ol
menu, of conversion options. To select one of the conversions
you enter the number of that option. After checking that you have

166 / Lesson 27

entered a valid option number, the program uses an on goto state-
ment to direct execution to the correct conversion routine.

A sample program run appears below.

Enter Display

run 1-Meters Z-Liters 3-Grams?

1 Enter feet:

45 45 feet = 13.71&6 meters
1-Meters Z-Litersz I-Grams?

3 Eriter ocurnces:

89.9 9,9 ouncez = 2548 ,5751 drans
1-Meterz Z-Liters 2Z-Grams?

2 Emter 9zllaons:

13.1 13,1 9allonz = 43,5335 liters
BREAK Erexzk

The next example illustrates an application of the on gosub state-
ment. This program calculates the day of the week for any date
after October 15, 1582. (The program is not accurate for dates
before October 15, 1582, the year the Gregorian calendar was insti-
tuted by Pope Gregory XIil.) The program uses a set of equations
based upon a formula known as Zefler’s congruence. The equations
are:

(1) T=365*YEAR+DAY +31*(MONTH—1)

(2) For January and February:
F=T+int{(YEAR—1)/4)—int(.75* (in{((YEAR —1)/100))+ 1))
For March through December:
F=T—int(.4*MONTH+2.3)+int{YEAR/4)
—int(.75* (int(YEAR/100) + 1))

(@) W=F+(—1x(int(F/7)*7))

where MONTH is the numeric month (1-12), DAY the calendar day
(1-31), and YEAR is the year (1582+) of the target date. T and
F are used for temporary storage of intermediate resuits. The final
result of the calculation is a factor W (0-6) that indicates the day
of the week based upon the values shown bslow:

The ON GOTO and ON GOSUB Statements / 167

Value of W Day of Week

Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

DO WN-=-O0O

Notice that Equation (2) is different depending upon whether the
month falls in the range January-February or March-December.

The program is given below.

new

100 !Day of week program

110 input "Enter month: ";month

120 input "Enter day: ";day

130 input "Enter year: ";year

140 t=365 *year+day+31*(month — 1)lequation 1

150 if month <=2 then 240!check for Jan or Feb

160 lequation 2 for Mar—Dec

170 f=t—int(.4*month+2.3)+int{year/4)—int(.75 *
(int(year/100) + 1))

180 lcalculate day of week factor

190 w=f4(—1x*(int(f/7) *» 7))lequation 3

200 on w+1 gosub 270,280,290,300,310,320,330

210 display "The day is: ”;day$

220 pause

230 goto 110Hoop

240 lequation 2 for Jan-Feb

250 f=t+int((year—1)/4)—int(.75* (int(((year—1)/100))+ 1))

260 goto 180!go calculate w

270 day$="Saturday”:return

280 day$="Sunday":return

290 day$="Monday":return

300 day$="Tuesday":return

310 day$="Wednesday":return

(cont. on following page)

168 / Lesson 27

(cont. from preceding page)
320 day$="Thursday":return
330 day$="Friday":return

The on gosub statement is used to assign the correct day of the
week to day$ after w has been calculated. (To keep the example
short, no attempt is made to check that a valid date is entered.
As a practice exercise, combine this program with the date checking
program given in Lesson 26 to ensure that only valid dates are
entered.)

A sample run is shown below.

Enter Display

run Ernter monthd

11 Erter daai

19 Erit e <eatr:

1946 The daa iz: Tusszda4
Erter months:

4 Enter dag:

25 Enter wesar:

2001 The daa iz: Wednezdag

BREAK Ereak

LEARNED IN THIS LESSON

The on goto and on gosub statements are decision-making state-
ments that differ from the if then statement in that

¢ They base decisions on a numeric value and not on the
resuits of a true or false test.

¢ They allow a single statement to transfer program execution
to more than one program location.

The on goto and on gosub statements have the general form

on numeric-expression goto /ine-list
on numeric-expression gosub line-list

where numeric-expression is a numeric variable or calculation and
line-list is a list of line numbers separated by commas.

The ON GOTO and ON GOSUB Statements / 169

The computer uses a simple counting scheme to select the line
number in the line-list. The program branches to the first line number
if the value of numeric-expression is 1, to the second line number
if it is 2, to the third line number if it is 3, and so on. if numeric-
expression has a value that is less than 1 or greater than the number
of transfer locations in the line-list, a Ead walus error condition
occeurs.

LesSON «laee “ees

Subprograms

A subprogram, like a subroutine, is a program sequence designed
to perform a specific function for a main program and then return
program execution to the first instruction following the subprogram
calling sequence. A subprogram is a more independent organiza-
tional unit than a subroutine, however. The variables used by the
subprogram are independent of the variables used by the main
program, even if the variable names are the same, and information
to be sent to or received from a subprogram must be communicated
in a special way.

The computer can execute four types of subprograms: user-written
subprograms (your subprograms), built-in subprograms, machine
language subprograms, and subprograms in Solid State Software™
cartridges installed in the cartridge port of the computer. This lesson
discusses the first two subprogram types. For information on ma-
chine language or Solid State Software subprograms, refer to the
User’s Guide provided with your computer.

Subprograms are executed by the call statement. The call statement
has the general form:

call subprogram-name(argument-list)

where subprogram-name is the name of the subprogram and argu-
ment-list is a list of constants, variables, array names, or calculations
that are separated by commas. The elements in the argument-list

170

Subprograms / 171

of a call statement are called arguments. The argument-list parame-
ter is optional and can be omitted if no information is to be ex-
changed between the main program and the subprogram.

Subprogram names can be almost any sequence of letters or digits
up to 15 characters in length, as long as the first character of the
name is a letter of the alphabet or underline character. A list of
names that cannot be used because they are the names of built-
in subprograms is given later in this lesson.

Subprograms must always follow the main program and any subrou-
tines used by the main program, as illustrated graphically below.

Start of main program

End of main program
Start of subroutines used by main program

End of subroutines used by main program
Start of subprogram

.
.

End of subprogram.

Every subprogram must begin with a sub statement. The sub state-
ment has the general form:

sub subprogram-name (parameter-list)

where subprogram-name must match the name that is used in the
call statement to execute the subprogram. The parameter-list in
the sub statement must meet the following criteria: It must have
a numeric element where the argument-list of the corresponding
call statement has a numeric element, and it must have a string
element where the call statement has a string element. If the argu-
ment-list and the parameter-list do not match as described above,

172 / Lesson 28

the error message I111=3al =3t 3= will be displayed when the
call statement is executed.

Just as every subprogram must begin with a sub statement, it must
end with a subend statement. The subend statement marks the
end of the subprogram and returns execution to the first instruction
following the call statement used to execute the subprogram.

A subend statement cannot be used as the conditional action of
an if then statement. If you need to return execution to the .nain
program as the result of a conditional test, you must use a subexit
statement as shown below.

2000 if count=done then subexit

The last line of a subprogram must still have a subend statement,
even though a subexit statement is used to return execution to
the main program.

The following example illustrates how the call, sub, and subend
statements are applied.

new
100 Isubprogram example 1 "]

110 m$="The count is”

120 for count=1 to 100 t—— Main program
130 call display(m$,count)
140 next count

150 end _

160 sub display(t$,x)

170 display t$;x ~—- Subprogram
180 subend 1

This example uses a subprogram to display the value of count.
Of course, you would not normally use a subprogram to perform
a task as simple as this. The program does illustrate several impor-
tant points about using subprograms, however.

First, notice that the name of the subprogram is a reserved word
(display). It is valid to use reserved words as subprogram names.

Second, notice the correspondence between the argument-list of
the call statement and the parameter-list of the sub statement.

Subprograms / 173

Both contain a string variable and a numeric variable, in that order.
The call statement passes the values of m$ and count to the subpro-
gram. The sub program links the value of m$ to t$, and the value
of count to x. Consequently, if the subprogram changes the value
of t$, the value of m$ changes; if the subprogram changes the
value of x, the value of count changes.

A partial sample run is shown below.

Enter Display

run The count iz 1
The count iz =2
The count iz 99
The count 1= 19A

Another example of a program that uses a subprogram is shown
below. In this example, information is passed to the subprogram,
modified there, and then returned to the main program.

new

100 fsubprogram example 2]
110 markup=.15

120 input "Enter cost: ”;cost
130 call calc(cost,markup) L Main program
140 display using 170,cost

150 pause

160 goto 120

170 image The price is #### ## |
180 sub calc(cost,factor)

190 cost=cost+cost «factor "— Subprogram
200 subend

In this example, a variable named “‘cost” is used by both the main
program and the subprogram.

Technical Note: Observe that the image statement used by the
main program is placed before the beginning of the subprogram.

174 / Lesson 28

Compact Computer BASIC requires that image and data statements
intended for use by the main program be located within the maln
program, and image and data statements for use by a subprogram
be located within the subprogram.

A sample run of example 2 appears below.

Enter Display

run Enter cost:

1912 The Frice is 21,99
Enter cost:

109.5 The Frice iz 125.93
Erealk

The subprogram calculates the marked-up price and passes it back
to the main program, which displays it.

Subprogram examples 1 and 2 illustrate what is called “passing
arguments by reference” by the User’s Guide supplied with the
CC-40. This phrase means that the subprogram can change the
value of a variable in the argument-ist of a call statement by chang-
ing the corresponding variable in the parameter-list of the subpro-
gram (as in example 2). The corresponding variables do not have
to have the same name. Arrays are always passed by reference.

The call statement can also “pass arguments by value.” When
arguments are passed by value, a subprogram cannot change the
value of a variable in the argument-list, even if the corresponding
variable in the sub statement is changed. Compact Computer BASIC
requires that constants and calculations always be passed by value.
Variables can be passed by value by enclosing them in parentheses
within the argument-list. The following example illustrates passing
information by value.

new

100 !subprogram example 3

110 markup=.15

120 input "Enter cost: ”;cost
130 call calc(cost,(markup))

Subprograms / 175

140 display using 170,cost

150 pause

160 goto 120

170 image The price is # # # #.# #
180 sub calc(cost,factor)

190 cost=cost+cost*factor

200 factor=.55

210 subend

This program is a modification of the previous example: In this ver-
sion, the amount of markup is being passed to the subprogram
“by value,” so it is enclosed in parentheses. As demonstrated by
line 200, when an arugment is passed by value, it cannot be
changed, even though the corresponding variable in the parameter-
list is changed.

Technical Note: The major difference between passing an argu-
ment by reference and passing an argument by value is this: When
an argument is passed by reference, the subprogram uses the same
variable as the main program, even though it may have been given
another name by the sub statement. Therefore, if the variable is
changed by any statement in the subprogram, the new value will
be used by the main program when execution returns to the main
program. When an argument is passed by value, the subprogram
establishes a new variable with a value equal to the corresponding
argument of the argument-list. Thus, any changes to the new varia-
ble will not be passed back to the main program, even if the variable
names are the same.

In addition to executing subprograms of your own creation, the call
statement can execute subprograms built into the BASIC language
of the computer. A list of the names of the built-in subprograms
is given below. These names cannot be used as names of user-
written subprograms.

addmem err
char exec
cleanup getlang

debug getmem (cont. on next page)

176 / Lesson 28

indic poke

io reimem
key setlang
load version
peek

More detailed information on the functions of the built-in subpro-
grams, including a description of the argument parameters required
by the subprograms, is provided in the User’'s Guide supplied with
the computer.

An example illustrating how a built-in subprogram is executed is
shown below.

new
100 !call indic demonstration
110 x=3:y=4

120 for count=1to 9

130 call indic(x,1):call indic(y,1)

140 pause .1

150 x=x—1:y=y+1:if x=—1 then x=17
160 next count

170 for count=110 9

180 call indic(x,0):call indic(y,0)

190 x=x—1:y=y+1:if y=18 then y=0
200 pause .1

210 next count

This program uses the indic subprogram to alternately turn the
display indicators on and off. The indic subprogram requires two
arguments, as shown below.

call indic(indicator-number,indicator-state)

The first argument indicates which indicator is being referenced.
An illustration showing the 18 display indicators and the numbers
assigned to them is given in Fig. 28-1. The second argument indi-
cates whether the subprogram is to turn the indicator on or off. If
the second argument has a value of 0, the indicator is turned off;
if it has any value other than 0, the indicator is turned on.

Subprograms / 177

9 10 11 12 13 14 15 16
N N M S S M
B - SHIFT CTL FN DEG RAD GRAD I/0 uUcL w»—17

ERROR ¥
T 1
0 i

v \ \ LOW
t f f }
4

5 6 7

n -
W

Fig. 28-1 tllustration showing the 18 display indicators and the numbers
assigned to them.

LEARNED IN THIS LESSON

A subprogram is an independent program sequence designed to
perform a specific function for a main program. A subprogram is
executed by the call statement. The general form of the call state-
ment is

call subprogram-name(argument-list)

The call statement specifies the name of the subprogram being
executed and lists the information, or arguments, being passed to
the subprogram.

A subprogram must begin with the sub statement. The general form
of the sub statement is

sub subprogram-name (parameter-list)

The subprogram-name in the call statement must match exactly
the name used by the sub statement. The argument-list must have
a numeric element where the parameter-list has a numeric element,
and a string element where the parameter-list has a string element.

A subprogram must end with a subend statement. The subend
statement marks the physical end of the subprogram and returns
execution to the first instruction following the call statement used
to execute the subprogram.

A subend statement cannot be used as the conditional action of
an if then statement. If you need to return execution to the main
program as the result of a conditional test, use a subexit statement.
Even when a subexit statement is used, the last line of the subpro-
gram must still have a subend statement.

178 / Lesson 28

Subprograms must always follow the main program and any subrou-
tines used by the main program. Any image or data statements
used by the main program must be located within the main program,
and any image or data statements used by the subprogram must
be located within the subprogram.

Information can be passed to a subprogram in two ways: by refer-
ence or by value. Information is passed by reference by putting
variable names in the argument list. Passing information by refer-
ence allows a subprogram to return information to the main program.
Arrays are always passed by reference.

Variable information is passed by value by enclosing it in pa-
rentheses in the argument-list of the call statement. The value of
a constant or calculation is always passed by value.

Compact Computer BASIC provides 17 built-in subprograms that
are also executed by the call statement.

Review Test 6

1. Which of the following are valid BASIC statements?

(a)
(b)
(c)
(d)
(e)
(f)
(9)
(h)
0]
(i)
(k)
0]
(m)
(n)
(0)

100 if d="6" then display "DONE!"
340 t$=rpt$(15,"%")

110 if len(p$) =rpt$(s$,7) then 100

400 r=len(seg$(i$x.y))

501 new$ =rpt$(old$,3)&seg$(old$,3,2)
110 if a<7 and >14 then read a$

220 if xor cost>100 then markup=.15
300 if not not not a=5 then 9000

310 if name$="end” and (b=5 or c=1) then 120
660 on n$ goto 10,70,170

500 on sgn(x)+2 goto 100,200,300
100 on price<<100 gosub 200 else 250
950 sub price-list(volume,price)

700 if x=15 then subend

200 call "price”&"list"(x,y,z)

2. What is an ASCII value and why is it important in programming?

3. Which of the following string comparisons are true?

(@
(b}
(c)
(d)
(e)
(f)
)

"Bill Smith” < "Bill Smithe”
IIGH < llsll

“ASCIl" > "ascii”

nullr <> "

II<!I < ">II

"Store1” >= "Store2”
“dysphemia” > “dysphonia”

179

180 / Review Test 6

(h) "ssksorsksdkaskr? = Mk
(i) "#!$%&" > "#'$§%&"
(j) "phantasmagoria” ="phantas” &”magoria”

4. What is the maximum length of a string?

5. The English alphabet is made up of 21 consonants and 5 vowels.
Write a program that reads the consonants into an array named
const$ and the vowels into an array named vowel$. Then have
the program construct and dispiay random words consisting of
a consonant, a vowel, and a consonant.

6. Write a program that allows you to input a string value and then
displays that value in “reverse” order (i.e., last character first,
next-to-last character second, etc.). Hint: Use the seg$ function
to take the string apart one character at a time, beginning with
the last character in the string, and use the concatenation opera-
tion to rebuild it.

7. Write a program that requests the capital city of the countries
listed below, and then checks the answer that is entered to see
if it is correct.

Countries Capitals
Afghanistan Kabul
Brazil Brasilia
Egypt Cairo
England London
Ethiopia Addis Ababa
France Paris
Greece Athens
India New Delhi
Japan Tokyo
Mexico Mexico City

United States Washington
US.S.R. Moscow

Review Test 6 / 181

8. What does the phrase “levels of precedence” mean when ap-
plied to the logical operators?

9. How are subroutines and subprograms similar? How do they dif-
fer?

Table of ASCII Codes and
Characters

This appendix lists the ASCII codes used by the Compact Computer
40. The decimal and hexadecimal values of the codes are given
in the columns titted DEC and HEX. The definitions of the codes
are given in the column titled Character {notice that only ASCII
codes 32 through 126 have single character definitions). The charac-
ters displayed by the CHR$ function for the displayable codes are
shown in the column titled Displayed Using CHR$. The keys used
to generate the codes are shown in the column titled Key Sequence.

The user-defined character codes (0-6) and the user-assigned keys
{codes 128-137) are shown as two asterisks {**).

ASCIl Code Displayed Key
DEC HEX Character Using CHR$ Sequence
00 00 NULL x CTL! 0
01 01 SOH o TTL| A
02 02 STX r CTL| B
03 03 ETX . CTL C
04 04 EOT * CTL| D
05 05 ENQ e CTL| E
06 06 ACK - CTL] F
07 07 BEL CTL| G
08 08 BS CTL| H
09 09 HT CTL| ¢
10 0A LF CTL| J

{continued)

182

Table of ASC!l Codes and Characters / 183

{continued)

ASCIl Code Displayed Key

DEC HEX Character Using CHR$ Sequence
11 0B VT CTL| K
12 0oC FF CTL] L
13 0D CR CTL] M or [ENTER]
14 OE SO CTL| N
15 OF Si CTL]| O
16 10 DLE %f P
17 N DC1 [cTL] Q
18 12 DC2 [CTL] R
19 13 DC3 CTL] S
20 14 DC4 ety T
21 15 NAK CTL] U
22 16 SYN [CTL] V
23 17 ETB CTL| W
24 18 CAN i X
25 19 EM CTL] Y
26 1A SUB CTL| Z
27 1B ESC [CTL] [CLR
28 1C FS CTL] =
29 1D GS CTL| ;
30 1E RS CTL

31 1F us CTL| ,
32 20 Space Space Space
33 21 ! ! SHIFT| !
34 22 " " SHIFT |
35 23 # # SHIFT| #
36 24 3 ¥ SHIFT| $
37 25 % EA SHIFT| /
38 26 & SHIFT| &
39 27 ! : SHIFT|’
40 28 (4 SHIFT| (
41 29) I:' SHIFT|)
42 2A * * *

43 2B + + +

44 2C , .

45 2D - - -

46 2E . . .

47 2F / /

(continued)

184 / Appendix A

{continued)

ASCIl Code Displayed Key

DEC HEX Character Using CHR$ Sequence
48 30 0 & 0

49 31 1 1 1

50 32 2 z 2

51 33 3 3 3

52 34 4 4 4

53 35 5 S 5

54 36 6 £ 6

55 37 7 v 7

56 38 8 5 8

57 39 9 E g

58 3A : : :
59 3B ; H)

60 3C < :
61 3D = = =

62 3E > SHIFT]| .
63 3F ? * SHIFT| ?
64 40 @ a [CTL] 2

65 41 A =1 SHIFT| A
66 42 B E SHIFT| B
67 43 C [SHIFT| C
68 44 D (] SHIFT| D
69 45 E E SHIFT| E
70 46 F F [SHIFT| F
71 47 G 5 SHIFT) G
72 48 H H SHIFT| H
73 49 T I SHIFT| |
74 4A J I SHIFT] J
75 4B K k [SHIFT| K
76 4C L L SHIFT| L
77 4D M 18] SHIFT| M
78 4E N H SHIFT| N
79 4F 0 u] SHIFT| O
80 50 P F [SHIFT| P
81 51 Q K] SHIFT| Q
82 52 R F SHIFT| R
83 53) = SHIFT| S
84 54 T T SHIFT| T

{continued)

Table of ASCil Codes and Characters / 185

(continued)

ASCII Code Displayed Key

DEC HEX Character Using CHR$ Sequence
85 55 U I SHIFT| U
86 56 v] SHIFT) V
87 57 W] SHIFT| W
88 58 X 5 [SHIFT] X
89 59 Y Y SHIFT| Y
90 5A 7 2 SHIFT| Z
91 5B [r CTL] 8
92 5C ¥ £ CTL| /
93 5D] 1 CTL) 9
94 5E ~ SHIFT] A
95 5F - — CTL| 5
96 60 A - CTL] 3
97 61 a Y A
98 62 b b B
99 63 e c C
100 64 d | D
101 65 e e E
102 66 f f F
103 67 g =] G
104 68 h h H
105 69 i i |
106 BA J i J
107 6B k k K
108 6C 1 1 L
1089 6D m i M
110 6E n r N
111 6F o o O
112 70 p S P
113 71 q o Q
114 72 r t R
115 73 s = S
116 74 % t T
117 75 u 4 U
118 76 v LA \
119 77 W N W
120 78 X S X
121 79 y o Y

(continued)

186 / Appendix A

(continued)
ASCH Code Displayed
DEC HEX Character Using CH.
122 7A zZ z
123 7B { 4
124 7C ! }
126 7D > ¥
126 7E e g -+
127 7F DEL +
128 80 v
129 81 '
130 82 **
131 83 “
132 84 >
133 85 x*
134 86 b
135 87 e
136 88 b
137 89 bl
138 8A
139 88
140 8C
141 8D
142 8E
143 8F
144 90
145 N
146 92
147 93
148 94 DELETE
149 95
150 96
151 97 NUMBER
152 98 VERIFY
153 99 SAVE
154 9A 0LD
155 9B LIST
156 9C CALL
157 3D ELSE

158 Q& CHR$(

Table of ASCIt Codes and Characters / 187

{continued)

ASCl Code Displayed Key

DEC HEX Character Using CHR$ Sequence
159 9OF GOTO @; =

160 A0 FN] [CLR]
161 A1 ASN(y (FN] A

182 A2 PAUSE @ B8

163 A3 GRAD ; [FN| C

164 A4 ATN(FN| D

165 A5 TAN(E_E E

166 AB IN(o3 PN F

167 A7 LOG([FN] G

168 A8 LINPUT 1 FN| H

169 A9 NEXT & [FN] |

170 AA INPUT = @ J

171 AB PRINT & [FN] K

172 AC USING I FN L

173 AD THEN a FN| M

174 AE IF = E N

175 AF GOSUB FN] o

176 BO RETURN - [FN) P

177 81 SIN(] FN] Q

178 B2 PI (PN R

179 B3 ACS([FN] S

180 B4 SQR(PN T

181 BS 0 TN U

182 86 EXP(E@ v

183 B7 00s(F (FN] W

184 B8 RAD b E X

185 B9 FOR FN] Y

186 BA DEG 7) 2

187 BB BREAK N

188 BC o

189 BD 3

190 BE CONTINUE

191 BF RUN

192 CO SHIFT 0
193 C1 SHIFT] [FN] 1
194 C2 SHiFT] [FN] 2
195 C3 ¥ SHIFT| %{ 3

(evnrttrunnd)

188 / Appendix A

(continued)

ASCH Code Displayed Key

DEC HEX Character Using CHR$ Sequence
196 C4 SHIFT| [FN] 4
197 C5 SHIFT| |[FN| 5
198 C6 SHIFT| [FN] 6
199 C7 SHIFT| [FN] 7
20 ¢8 X SHIFT| [FN| 8
201 C9 SHIFT] [FN] 9
202 CA

203 CB

204 CC i

205 CD

206 CE

207 CF b

208 DO g

209 D1 &

210 D2 By

211 D3

212 D4

213 D5

214 D6

215 D7

216 D8 L

217 D9

218 DA

219 DB o

220 DC gt

221 DD

222 DE

223 DF

224 EO

225 E1

226 E2

227 E3 i

228 E4

229 E5 PB i SHIFT] [4]
230 E6 OFF o OFF

231 E7 BREAK BREAK

232 E8 up

{continued)

Table of ASCIl Codes and Characters / 189

(continued)

ASCIl Code Displayed Key

DEC HEX Character Using CHR$ Sequence
233 E9 DOWN ~i v

234 EA SHIFT %&
235 EB =

236 EC %

237 ED

238 EE 7

239 EF K

240 FO

241 F1

242 F2

243 F3

244 F4

245 F5

246 F6 DEL -
247 F7 INS it % >
248 F8 HOME i?éf CTL

249 F9 SKIP [CTL] |v
250 FA CLR B2 CLR

251 FB BTAB T CTL] [«
252 FC & 2 -

253 FD FTAB =
254 FE >

255

FF

Appendix :...

List of Compact Computer
BASIC Reserved Words

This appendix provides an alphabetic listing of the CC-40 BASIC
reserved words. A reserved word cannot be used as a valid variable

name, but can be part of a variable name.

ABS

ACCEPT

ACS

ALL

ALPHA

ALPHANUM

AND

APPEND

ASC

ASN

AT

ATN

ATTACH

BEEP

BREAK

CALL

CHRS$

CLOSE

CON (abbreviation
for CONTINUE)

CONTINUE
190

COoSs
DATA
DEG
DEL (abbreviation
for DELETE)
DELETE
DIGIT
DIM
DISPLAY
ELSE
END
EOF
ERASE
ERROR
EXP
FOR
FORMAT
FRE
GOsuB
GOTO
GRAD

IF

IMAGE

INPUT

INT

INTERNAL

INTRND

KEY$

LEN

LET

LINPUT

LIST

LN

LOG

NEW

NEXT

NOT

NULL

NUM (abbreviation
for NUMBER)

NUMBER

NUMERIC

List of Compact Computer BASIC Reserved Words / 191

OoLD

ON

OPEN

OR
OUTPUT
PAUSE

PI

POS

PRINT
PROTECTED
RAD
RANDOMIZE
READ

REC
RELATIVE
RELEASE
REM

REN (abbreviation

for RENUMBER)

RENUMBER
RESTORE
RETURN
RND
RPTS
RUN
SAVE
SEG$
SGN

SIN

SIZE
SQR
STEP
STOP
STR$
SuB
SUBEND

SUBEXIT
TAB

TAN
THEN

TO
UALPHA
UALPHANUM
UNBREAK
UPDATE
USING
VAL
VALIDATE
VARIABLE
VERIFY
WARNING
XOR

Appendix ‘...

Answers to Review
Questions

REVIEW TEST 1

1.

(a)
(b)
(c)
(d)
(e)
)]
(9)
(h)
0)
)
(K)
()

Valid

Valid

Invalid (period not allowed in a variable name)
Valid

Valid

Invalid (# sign not allowed in a variable name)
Valid

Invalid (variable names cannot begin with a digit)
Valid

Invalid (hyphen not allowed in a variable name)
invalid (end is a reserved word)

Valid

(m) Valid

(n)

Invalid {variable names cannot begin with a digit)

2. Variable names must begin with a letter of the alphabet, under-
line character, or @ sign; cannot be more than 15 characters
long; and cannot be on the reserved word list. String variables
must end with a $ sign.

3. (a) Valid (" is the null string)
(b) valid

192

Answers to Review Questions / 193

(c) Invalid (A space must separate 100 from meters if 100 is
intended as a line number. Otherwise, 100meters is an in-
valid variable.)

(d) !nvalid (cannot assign values to a constant)

(e) Valid (the let is optional)

{f) Valid

(g) Valid

(h) Invalid (the variable must be on the left side of the = sign)

(i) Valid

(i) Vvalid (old and new are on the reserved word list—old$
and new$ are not)

. The initial value of a numeric variable is zero; the initial value
of a string variable is null.

. The display buffer is 80 characters wide. Although only 31 char-
acters can be seen at one time, the entire buffer contents can
be viewed by scrolling the display window right and left with
the [»] and [«] keys.

. The display 1,,3 statement is a legal BASIC sequence that
places 1 in the first print zone and 3 in the third print zone.
The second print zone is left blank.

. The comma print-list separator instructs the computer to display
the next print item in the next print zone. The semicolon in-
structs the computer to display the next item immediately fol-
lowing the preceding item.

. (@) Invalid (0 is not a valid column position)

(b) Valid

(c) Valid

(d) Valid (Using seven commas instructs the computer to dis-
play the 7 in the seventh display zone. Since there are
only six display zones in the display buffer, the seventh

194 / Appendix C

10.

11.

12.

13.

zone is actually the first zone of the next display cycle.
You must press to see the next cycle.)

(e) Invalid (only one at parameter allowed per display state-
ment)

) valid

(g) Invalid (display is not a valid variable name)

No, zero is not a valid line number.

Toinsert a new line, assign it a line number between the existing
line numbers where you want it to appear. |f a program is hum-
bered with no gaps between the lines, you cannot insert a new
line unless you renumber the program. The renumber command
is discussed in Lesson 9.

To replace a line, enter the new line with the same line number
as the old.

Use the new command to erase an entire program from mem-
ory. To erase a line, enter delete (or del) and the line number.

The writer evidently intended to display ‘“Humphrey Bogart”.
Without a pause statement, the name will not be displayed
long enough to be seen.

REVIEW TEST 2

1.

(a) Invalid (the prompt is not enclosed in quotes)

(b) Invalid (a comma is used to separate multiple input varia-
bles—not a semicolon)

(c) Invalid (This example mixes two types of assignment state-
ments—the input statement which assigns keyboard input
to a variable, and the assignment sequence which assigns
a value to a variable.)

(d) Valid (the string-expression ID$&"” —001” is a valid prompt)

Answers to Review Questions / 195

(e) Valid
(f) invalid (a semicolon must separate a prompt and an input
variable)

2. A pause 0O statement cancels a pause all statement.

3. A program that counts by 9s in column 9 is shown below.

100 DISPLAY AT(9),X
110 PAUSE .2

120 X=X+9

130 GOTO 100

A program that counts backwards from 2475 by 99 and beeps
each time a number is displayed is shown below.

100 X=2475

110 DISPLAY AT(9) BEEP,X
120 PAUSE .2

130 X=X—99

140 GOTO 110

4. A pending display state instructs the computer to preserve the
present contents of the display when the next display statement
is executed. It is created by placing a semicolon or comma after
a display statement. The advantage of the pending display state
is that it allows information to be jointly displayed by different
display statements.

5. The completed program is given below.

100 INPUT *“Current balance? ";BALANCE

110 INPUT "Amount of check or deposit? ";AMOUNT
120 BALANCE=BALANCE+AMOUNT

130 DISPLAY "New balance = $";BALANCE

140 PAUSE

150 GOTO 110

196 / Appendix C

A sample run of the program is shown below.

Enter Display
run Current balance?
127.18 Amount of check or deposit?

£ 97,23
Fie

P

—29.95 Hew bBalance
Brount of check or deroszit?
—4.51 Hew balance = £ Q2,72
Armount of check or deposzit?
—67.12 Hew balance = £ 25,8

Amount of check or derpozit?
—49.95 Hew balance = $-24,3I3
Arount of check opF derposit?
300 Hew balance = § 273.63

6. A “counting variable” is commonly used to control the number
of times a loop is executed. The counting variable is set to some
initial value before the loop is entered and is increased or de-
creased by one each time the loop is executed. An if then test
is used to determine when a specified termination value has
been reached. When the termination value is reached, execution
is transferred out of the loop.

7. (a) Valid (While valid, notice that the test x=x+1 can never
have a true result. An if then tests the truth or falsehood
of a condition; it does not perform an assignment operation.)

(b) Valid (true and faise are valid variable names)

(c) Valid (The not-equal-to sign can be entered as <> or ><.
The former is the customary way to enter it.)

(d) Invalid (this type of relational expression is not valid in BASIC)

-(e) Valid

(fy Valid

(g) Valid (an if then statement is valid as the action of another
if then statement)

Answers to Review Questions /197

8. A program that solves this problem is shown below.

100 INPUT "Enter order: ";ORDER

110 COST=0ORDER=*14.88

120 IF ORDER=>5000 THEN DISCOUNT=COST*.4
130 IF ORDER <5000 THEN DISCOUNT=COST *.35
140 IF ORDER<=1000 THEN DISCOUNT=COST *.3
150 IF ORDER<=500 THEN DISCOUNT=COST .25
160 IF ORDER<=100 THEN DISCOUNT=COST .2

170 PRICE=COST—DISCOUNT

180 DISPLAY “Wholesale price = $";PRICE

190 PAUSE

200 GOTO 100

A sample run appears below.

Enter Display

run Enter order:

433 Mholezale Frice = § 42352028
Enter order:

888 Wholesale price = £ 9249, 488
Enter order:

2001 Wholezzle erice = F19ISI.672

Break
REVIEW TEST 3

1. The phrase “levels of precedence” refers to the ranking system
used by the computer to determine the order in which mathemat-
ical operations are performed. The function of parentheses in
a calculation is to force the computer to evaluate an operation
or series of operations in an order different from that resuiting
from the levels of precedence.

2. The square root of a number can be calculated by raising the
value to the %2 power. The fifth root can be calculated by raising
the value to the % power.

3. The unary minus operation will be performed first.

204 / Appendix C

(cont. from preceding page)

220 total=total+grade(outerloop,innerloop)
230 next innerloop

240 average=total/3

250 display "Student”;outerloop;”average =";average
260 pause

270 next outerloop

280 'test scores

290 data 78,82,89

300 data 83,85,81

310 data 100,70,73

320 data 65,68,71

330 data 99,89,93

340 data 87,0,93

A sample run is shown below.

Enter Display

run Student 1 averads = 335

Studernt 2 awverzg9s = 23

Student I aversde = 21

Student 4 zverade = £8

Student 5 auverade = 93, REEEGERT
Student & suerade = £

REVIEW TEST 6

1. (@)
(b)
(©
(d)
(e)
(f

)
(h)
0)
0]
(k)

Invalid (cannot compare numeric and string values)
invalid (the rpt$ argument parameters are reversed)
Invalid {(cannot compare numeric and string values)

Invalid (the second comparison is not complete—it should
be a>14)

Invalid (the xor operator requires two tests, not one)

Valid (one not can perform the identical test: not a=5)
Valid

Invalid (the on statement requires a numeric decision value)
Valid

4.

5.

Answers to Review Questions / 205

() Invalid (the line is a mixture of if then and on statements)

(m) Invalid (subprogram names cannot contain hyphens)

(n) Invalid (The subend statement cannot appear in an if then
statement. The subexit statement must be used in this type
of construction.)

(o) Invalid (subprogram names must be constants, not string-
expressions)

. String characters are represented inside the computer as num-

bers between 0 and 255. These numbers are referred to as ASCII
values (ASCIl is an acronym for American Standard Code for
Information interchange). When the computer compares strings
for decision-making purposes, it compares the ASCIl values of
the characters in the strings.

. (a) true (f) false

(b) false (g) false
(c) false (h) false
(d) true () false
(e) true (j) true

The maximum length of a string is 255 characters.

A program to display randomly constructed three-letter words
is shown below. (Programs like this are sometimes used by com-
panies to generate a list of potential names for new products.)

100 'random 3-letter words
110 randomize

120 dim const$(21),vowel$(5)
130 for count=1 to 21

140 read const$(count)

150 next count

160 for count=1 to 5

170 read vowel$(count)

180 next count

(cont. on following page)

206 / Appendix C

(cont. from preceding page)

190 x=intrnd(21)

200 y=intrnd(5)

210 z=intrnd(21)

220 display const$(x);vowel$(y);const$(z)
230 pause .5

240 goto 190!Ioop

250 data, b,c,d,f,g,h,j,k,I,m,n,p,q,r.s.tv,wX,y,z
260 data a,e,i,ou

A sample run is shown below.

Enter Display

run ==
g
H4ak
L

BREAK Ereak

6. A program to reverse the order of characters in a string is shown
below.

100 lreverse string order program

110 input "Enter sample string: ";word$

120 reverse$=""

130 lettercount=Ilen{word$)

140 for loop=lettercount to 1 step —1

150 reverse$=reverse$&seg$(word$,loop,1)
160 next loop

170 display reverse$

180 pause

190 goto 110

A sample run is shown below.

Enter Display
run Erter zamples =tringd
qwerty R INE
Enter zamrle string:

MXYZTPLK ELPTZWEM

Answers to Review Questions / 207

Enter zamrle ziring
1234567890 HRE7VELd 321
EBreak

7. A program that tests for the capitals is shown below.

100 lcapitals of the world

110 pause all

120 for count=1 to 13

130 read country$,capital$

140 input “Capital of "&country$&”? ";quess$

150 if guess$<>capital$ then display "Not correct. Try
again!”:goto 140

160 display guess$;” is correct!”

170 next count

180 end

190 data Afghanistan,Kabul,Brazil,Brasilia,Egypt,Cairo

200 data England,London,Ethiopia,Addis Ababa,France,
Paris

210 data Greece,Athens,india,New Delhi,Japan, Tokyo

220 data Mexico,Mexico City,United States,Washington

230 data U.S.S.R.,Moscow

8. The phrase “levels of precedence” refers to the order in which
operations are performed. For the logical operators, this order
is: not, xor, and, and or (from highest to lowest priority).

9. Subroutines and subprograms are similar in that they can be
executed without permanently changing the flow of program ex-
ecution. When the subroutine or subprogram is finished, execu-
tion resumes with the first program instruction following the state-
ment that executed the subroutine or subprogram. Subroutines
and subprograms differ in their use of variables. Subroutines use
the same variables as the main program, while subprograms use
an entirely separate set of variables. Therefore, subprograms
require that information be passed between the main program
and a subprogram by means of optional parameters.

Index

AA batteries, 5
ABS (absolute value) function, 64
Accelerated Cost Recovery System
(ACRS) program, 113-114
Action, 49
Address:
return, 110
transfer, 39
ALL parameter, 37
American Standard Code for Information
Interchange (see ASCII entries)
Ampersand (&) symbol, 25
AND operator, 158-159
Angle mode, 65
Answers to review questions, 192-207
Antilogarithm, natural (EXP) function, 64
Application modules, Solid State
Software preprogrammed, x, 1-3,
170
Arccosine (ASC) function, 64
Arcsine (ASN) function, 64
Arctangent (ATN) function, 64
Argument-list, 170-172
Arguments, 171
of functions, 63
passing, 174-175
Array names, 99
dollar sign in, 100-101
Array variables, 99-101
Arrays:
dimensioning, 103-104
loops with, 105-106

208

one-dimensional, 106

size of, 103

two-dimensional, 106-108
ASC (arccosine) function, 64
ASCI| (American Standard Code for

information Interchange), 144

ASCII codes, table of, 182-189
ASCHl values, 144-145
ASN (arcsine) function, 64
Assigning values, 8
Asterisks (*), 122
AT parameter, 12, 14
ATN (arctangent) function, 64
Automatic Power Down, 9

Base numbers, 58
BASIC keyword keys, 3
BASIC line numbers (see Line
number)
BASIC programming language, 5
BASIC reserved words (see Reserved
words)
Batteries:
AA, 5
lost memory and, 19
BEEP parameter, 14

key, 3, 30, 40

Buffer, display, 13
Built-in subprograms, 175-176
Bytes of memory, 1

Calculations, order of, 57-62
Calendar program, 166-168
CALL statement, 170-178
Calling subroutines, 111
Capital letters (see Uppercase letters)
Card program, 115-117
Cartridge port, 1, 2
CC-40 (see Texas Instruments Compact
Computer 40)
Chance occurrences, simulating, 72-77
Character codes, user-defined, 182
Characters, ASCI|, table of, 182-189
CHRS function, 182-189
(Clear) key, 11, 16
Codes, ASCII, table of, 182-189
Colons:
IF THEN statements and, 129-130
in multiple statement lines, 127-131
Column values, 107-108
Comma:
as print-list separator, 13
prompt and, 32
in strings, 32
Command mode, 16
programming versus, 17-18
Commands, 17
Common logarithm (LOG) function, 64
Communication Interface, RS232, x, 4,
5
Compact Computer 40 (see Texas
Instruments Compact Computer
40)
Comparisons, string, 143-149
Computer 40 (see Texas Instruments
Compact Computer 40)
Concatenation, 25
Condition, 49
exit, 53
Constants:
numeric, 6
string, 23
Contrast control, display, 2
Control key, 3
Control-variable, 80
COS (cosine) function, 64
Counting variables, 52
(Control) key, 3
Cursor, 3
underline, 11

DATA error, 95
Data-list, 92

index / 209

DATA statement, 92-98

placement of, 94-98

within subprograms, 174-175
Data storage in programs, 91-98
Decimal numbers, 6
Decimal point, 6

position in number format, 121
Decision making, 132-134

with IF THEN statement, 49-54
Default values, 44-45
DEG function, 65
DELETE command, 21
DIM statement, 103-109
Dimensioning arrays, 103-104
Display:

holding values in, 18

liquid crystal (LCD), 2-4, 11
Display buffer, 13
Display contrast control, 2
Display indicators, 176-177
Display state, pending, 42, 120
DISPLAY statement, 11-14, 120-121

semicolon with, 117
Display zones, 13
Dollar ($) sign, 24-25

in array names, 100-101
Dummy values, 95-97

Element 0, 99

Elements, 99

ELSE option, 132~134

END statement, 19, 112

key, 6, 11, 16

Equal to, symbol, 50

Equals [=] key, 6, 7

ERASE ALL parameter, 120
Evaluating expressions in order, 59~61
Example programs, vii-vii

Exclamation point (), 90

Exclusive or (XOR) operator, 159-160
Exit condition, 53

EXP (natural antilogarithm) function, 64
Exponentiation, 58

Expressions, evaluating, in order, 59-61

False conditions, 158-160

False relation, 50

[¥N] (Function) key, 3

FOR NEXT toop (see FOR TO NEXT
loops)

210 / Index

FOR TO NEXT loops, 80-87, 135-140
nested, 135-137
FOR TO statement, 80-87
Fractional portions of numbers, 69
Function [FN] key, 3
Functions:
arguments of, 63
higher-order, 58, 63-65
trigonometric, 64-65

Game, word guessing, 154-156
GOSUB statement, 110-114
GOTO statement, 3943

in multistatement lines, 128
GRAD function, 65
Greater than, symbol, 49
Greater than or equal to, symbol, 50

HEX-BUS peripheral port, 2, 4
Higher-order functions, 58, 63-65
Hyphen, minus key as, 19

Identical line numbers, 21
IF THEN statement, 49-54, 83, 132-
134
colon and, 129-130
combining, 161
THEN part of, 51
IMAGE statement, 121-126
within subprograms, 173-175
Immediate execution mode, 16
Increments, 137-138
line number, 44
INDIC subprogram, 176177
Indicators, display, 176-177
Infinite loops, 40
Initial-line, 44
Initial-value, 80
number of loops and, 82
Initial values, 9
Input:
defined, 29
of keyboard information, 29-35
multiple, 32
INPUT statement, 30-34
INT (integer) function, 6669
Integer, 66
Integer-constant, 103
INTRND function, 72, 75, 76

Key sequence, 182-189

Keyboard, 1, 2

Keyboard design, 7

Keyboard information, inputing, 29-35
Keypad, numeric, 1-4

Keys, user-assigned, 182, 186
Keyword keys, BASIC, 3

Last address in-first address out method,
112
LCD (liquid crystal display), 2-4, 11
Leading space, 12
LEN function, 152-154
Length, 150
Less than, symbol, 49
Less than or equal to, symbol, 50
LET statement, 8-10
Levels of precedence, 57-59
Limit, 80
number of loops and, 82
Line-group:
DELETE command, 21
LIST command, 19
Line-list, 164
Line not found message, 46-47
Line number, 16
BASIC, 20-21
identical, 21
Liquid crystal display (LCD), 24, 11
LIST command, 19-20
Literals, 123
LN (natural logarithm) function, 64
LOG (common logarithm) function, 64
Logarithm:
common (LOG) function, 64
natural (LN) function, 64
Logical operations, 158-163
Logical operators, 158-163
combined, 160-161
parentheses around, 161
Loops, 40
with array elements, 105-106
FOR TO NEXT (see FOR TO NEXT
loops)
infinite, 40
number of, 82
Lowercase letters versus uppercase
letters, 20, 88, 144-145

Machine language subprograms, 170
Mathematical functions (see
Higher-order functions)

Memory:
expansion of, 1
lost contents of, 19
random access (RAM), 1
saving space in, 128
Menu, 165
Minus, unary, 58-59
Minus [=] key, 23
as hyphen, 19
Multiple inputs, 32
Multiple prompts, 32
Multiple statement lines, 127-131

Names:
array (See Array names)
subprogram (see Subprogram names)
variable, 9-10
Natural antilogarithm (EXP) function, 64
Natural logarithm (LN) function, 64
Negation, 58-59
Negative numbers, 6, 12
Nested FOR TO NEXT loops, 135-137
Nesting subroutines, 112-113
NEW command, 9, 16, 29
NEXT statement, 80-87, 136
Not equal to, symbol, 50
NOT operator, 160
Notation, scientific, 85, 121
Null string, 25, 146-147
NUMBER command, 4446
Number format, decimal point position in,
121
Numbers:
base, 58
decimal, 6
fractional portions of, 69
line (see Line number)
negative, 6, 12
positive, 12
pseudorandom, 72
Numeric constants, 6
Numeric-expression, 59, 63, 153, 164
Numeric-expression parameter, 36
Numeric keypad, 1-4
Numeric variables, 6-8

Occurrences, chance, simulating, 72-77
key, 3, 9

ON GOSUB statement, 164-169

ON GOTO statement, 164-169

[on] key, 3

Index / 211

One-dimensional arrays, 106
Operations, logical, 158-163
Operators, logical (see Logical
operators)
OR operator, 159
exclusive (XOR), 159-160
Order:
of calculations, 5§7-62
evaluating expressions in, 59-61
of evaluation of multiple logical
operators, 160-161

Parameter-list, 171-172
Parentheses:
for arguments of functions, 63
for evaluating expressions in order,
59-61
around logical operators, 161
within parentheses, 60-61
subscripts enclosed in, 101
unmatched, 61
Passing arguments:
by reference, 174-175
by value, 174-175
Pause, timed, 36
PAUSE O statement, 37
PAUSE ALL statement, 37
Pause state, 11
PAUSE statement, 18, 36-38, 40

key, 41

Pending display state, 42, 120
Peripheral, Printer/Plotter, x, 4, 5
Peripheral port, HEX-BUS, 2, 4
Pl function, 64
Plotter/Printer peripheral, x, 4, 5
Position, 150
Positive numbers, 12

zero as, 133
Power Down, Automatic, 9
Powers, raising to, 58
Precedence, levels of, 57-59
Preprogrammed application modules,

Solid State Software, x, 1-3, 170

Print-list, 13
Print-list separator, 13

comma or semicolon, 13
PRINT statement, 14-15
Printer/Plotter peripheral, x, 4, 5
Programming:

beginning, 16-22

command mode versus, 17-19

defined, 16

212 / Index

Programming language, BASIC, 5
Programs:

Accelerated Cost Recovery System

(ACRS), 113-114

calendar, 166-168

card-playing, 115-117

data storage in, 91-98

example, vii-viii

REM statements in, 88-89
Prompt, 29

commas and, 32

fength of, 31

muitiple, 32

string variable as, 33
Pseudorandom numbers, 72

Question mark, 29
Questions, review, answers to, 192-207
Quotation marks:

around string information, 92

textual information in, 23

two, 92

RAD function, 65
Raising to powers, 58
Random access memory (RAM), 1
RANDOMIZE function, 116
RANDOMIZE statement, 73-75
READ statement, 93-98
Reference, passing arguments by, 174-
175

Relational tests, 49-50
REM statement, 88-90

in programs, 88-89
RENUMBER command, 4647
Reserved words:

list of, 190-191

as subprogram names, 72
Reset key (button), 3
RESTORE statement, 96-98
Return address, 110
RETURN statement, 110-114
Returning values, 63
Review Test 1, 27-28

answers, 192-194
Review Test 2, 55-56

answers, 194-197
Review Test 3, 78-79

answers, 197-199
Review Test 4, 118-119

answers, 199-202

Review Test 5, 141-142
answers, 202-204
Review Test 6, 179-181
answers, 204-207
Review tests, viii
answers, 192-207
Right arrow [»] key, 12, 14
RND function, 72-75
Rounding values, 67-69
Row values, 107-108
RPT$ function, 153-154
RS232 Communication Interface, x, 4, 5

key, 3, 17

RUN statement, 17
repeating, 19

Scientific notation, 85, 121
Scrolling, 12
Seed values, 73
SEGS$ function, 150-152
Semicolon:

with DISPLAY statement, 117

as print-list separator, 13

with prompts, 31
SGN (sign) function, 69-71

key, 3
Sign {SGN) function, 69-71
Simple variables, 99
Simulating chance occurrences, 72-77
SIN (sine) function, 64
Size of arrays, 103
SIZE parameter, 120-121
Solid State Software preprogrammed
application modules, x, 1-3, 170

Space:

leading, 12

optional, 16-17

within strings, 24-25

trailing, 12
SQR (square root) function, 64
Statement lines, multiple, 127-131
Statements, 17
STEP option, 137-140
String comparisons, 143-149
String constants, 23
String-expression, 25, 150, 153
String information:

in data-list, 92

quotation marks around, 92
String length, maximum, 154
String manipulations, 150-157

String variables, 23-24
as prompts, 33
Strings, 23
commas in, 32
null, 25, 146—-147
spaces within, 24-25
SUB statement, 171-175
SUBEND statement, 172-173
SUBEXIT statement, 172
Subprogram-name, 170-172
Subprogram names, reserved words as,
172
Subprograms, 170-178
IMAGE statement within, 173-175
Subroutines, 110-117
calling, 111
nesting, 112-113
Subscripts, 99-101
enclosed in parentheses, 101
specified by variables, 101

TAN (tangent) function, 64

Tests, relational, 43-50

Texas Instruments Compact Computer
40, 1-5

figure, x, 2
User’'s Guide, vii

Textual information in quotation marks,
23

THEN part of IF THEN statement, 51

T1 Compact Computer 40 (see Texas
Instruments Compact Computer
40)

Timed pause, 36

Trailing space, 12

Transfer address, 39

Triangular indicator, 13

Trigonometric functions, 64-65

True conditions, 158-160

True relation, 50

Two-dimensional arrays, 106-108

Unary minus, 58-59

Unary operation, 59

Underline cursor, 11

Unmatched parentheses, 61

Uppercase letters versus lowercase
letters, 20, 88, 144-145

User-assigned keys, 182, 186

User-defined character codes, 182

User-written subprograms, 170-176

Index / 213

User's Guide, vii
USING parameter, 121

Values:

absolute (ABS) function, 64

ASCIl, 144-145

assigning, 8

column, 107-108

default, 44-45

dummy, 95-97

holding, 18

initial, 9

passing arguments by, 174-175

returning, 63

rounding, 67-69

row, 107-108

seed, 73
Variable names, 9-10
Variables:

array, 99-101

counting, 52

numeric, 6-8

simple, 99

string, 23-24

subscripts specified by, 101
Viewing window, 13

Window, viewing, 13
Word guessing game, 154-156
Words, reserved (see Reserved words)

X-Y graphs, four-color, 5
XOR (exclusive or) operator, 159-160

Zeller's congruence, 166
Zero as positive number, 133
Zones, display, 13

signs, 121-125
] key, 6

key, 6

key, 58

A signs, 121

Computers/VTX Series

LEARN BASIC: A Guide to Programming
the Texas Instruments
Compact Computer 40
DAVID THOMAS

This book is all you'll need to program your Texas
Instruments hand-held computer in the simple-to-learn
BASIC programming language. LEARN BASIC is organized
into 28 short, easy-to-follow lessons. Each lesson covers an
important programming concept or a BASIC statement or
command. Review exercises, designed to reinforce what
you've learned, follow every 4 or 5 lessons.

® Designed for people who want to learn BASIC fast and
have no previous computer experience.

@® Uses a practical, hands-on approach to this most popular
of computer programming languages.

@® Contains many example programs that can be used by
engineering and scientific professionals, students,
business people, managers, hobbyists, and computer
enthusiasts.

@® Includes complete answers to all exercises.

® Allows you to begin learning immediately. as it contains
no long technical or theoretical discussions.

® Covers all the major statements and commands of
Compact Computer BASIC.

As a lesson-oriented book, LEARN BASIC provides heavy
emphasis on examples, work problems, review exercises,
and user interaction that allows you to learn by doing.

David Thomas is a writing consultant to Texas
Instruments with many years of experience in writing for
programmable products and computers.

»
‘}.
TEXAS INSTRUMENTS Rl
e ISBN 0O-D7-0bY4257-5

